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This paper investigates synchronization problem of nonlinearly coupled dynamical networks, and
an effectively impulsive control scheme is proposed to synchronize the network onto the objective
state. Based on the stability analysis of impulsive differential equations, a low-dimensional
sufficient condition is derived to guarantee the exponential synchronization in virtual of average
impulsive interval. A numerical example is given to illustrate the effectiveness and feasibility of
the proposed methods and results.

1. Introduction

Synchronization of complex networks is an important topic that has drawn a great deal
of attention from diverse fields including physics, biology, neuroscience, and mathematics
[1–3]. It is also a fundamental phenomenon that enables coherent behavior in networks
as a result of interactions. In our real life, there are many interesting and useful network
synchronization phenomena, such as, fireflies in the forest, applause, description of heart,
and routing messages in the internet.

Due to its potential applications in many different areas, the synchronization of
complex dynamical networks has been widely discussed in the last decade. For example, in
[4, 5], the authors studied the synchronization in two specific kinds of networks including
scale-free networks and small-world networks. In [6–8], the authors introduced a time-
varying dynamical network with the same prototype of [4, 5] and further investigated
its synchronization. In order to simulate more realistic complex networks, the researchers
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studied the influences of time delays on synchronization in [9–12]. In [9], the authors
extended the model of [4, 5] to a uniform model with coupling delays, and some
synchronization criteria for complex networks are derived for both delay-independent and
delay-dependent exponential stability of the synchronous state. In [10], the authors are
concerned with global synchronization of coupled delayed neural network. In [11], the
authors studied the globally exponential synchronization in arrays of coupled identical
delayed neural networks by using Lyapunov functional method and Kronecker product
techniques. Some interesting results about synchronization and consensus of sensor networks
with communication constraints have been obtained in [12–14]. However, previous studies
on synchronization mainly concerned with linearly coupled dynamical networks, with the
coupling matrix constant or time varying, and so forth. Only some papers investigated
nonlinearly-coupled networks, such as [15–17].

Most recently, another synchronization technique, based on impulsive control, has
been reported and developed in [18–22]. This technique is very effective and robust and
with a low cost since the control input is implemented by the “sudden jumps” of some state
variables at some instants. Therefore it is of great importance to study the coupled dynamical
networks under impulsive control. Based on the theory of impulsive differential equations,
in [18], the authors proposed an impulsive synchronization criterion for an uncertain
dynamical network. In [19], the authors studied the synchronization of complex dynamical
networks with time-varying delays and impulsive effects by introducing the concept of
control topology. In [20], the authors investigated the exponential synchronization of the
complex dynamical networks with a coupled delay and impulsive control. By referring to the
concept of average dwell time, a unified synchronization criterion was derived by proposing
a concept named “average impulsive interval” in [21]. In [22], the authors investigate the
globally exponential synchronization for linearly coupled neural networks with time varying
delay and impulsive disturbances under the concept of average impulsive interval.

Motivated by the above discussions, the aim of this paper is to discuss the impulsive
synchronization of nonlinearly-coupled complex networks. Based on the stability analysis
of impulsive functional differential equations, some sufficient synchronization criteria are
derived in virtual of average impulsive interval.

The main contributions of this paper are as follows. First, this paper uses the concept
of “average impulsive interval” to obtain the synchronization criterion. It makes the result
much less conservative than previous results since the strict requirement on the upper bound
and lower bound of the impulsive interval, which always appear in the previous results, is
not necessary any more. Second, the model considered in this paper is nonlinearly coupled
network, which includes linearly coupled network and array of linearly coupled systems as
special cases.

The outline of this paper is given as follows. In Section 2, a model of nonlinearly-
coupled complex networks with impulsive control and some necessary definitions are
proposed. In Section 3, a sufficient criterion is derived based on the stability analysis of
impulsive functional differential equations. In Section 4, a numerical example is given to
illustrate the effectiveness and feasibility of the synchronization criterion.

Notation 1. Throughout this paper, some mathematical notations are used. I represents the
identity matrix and R = {−∞,+∞}. Denote the transpose of the vector x as xT . Without
explicitly state, the dimension of the vectors and matrices are assumed to be compatible in
the context.
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2. Model Description and Preliminaries

Consider a complex dynamical network consisting ofN nonlinearly-coupled identical nodes,
which is described by

ẋi(t) = f(xi(t)) + c
N∑

j=1

�ijΓh
(
xj(t)

)
, i = 1, 2, . . . ,N, (2.1)

where the nonlinear coupling function h(xj(t)) = (h(xj1(t)), h(xj2(t)), . . . , h(xjn(t)))
T satisfies

the following condition: [(h(u) − h(v))/(u − v)] ≥ � > 0 for any u, v ∈ R. The configuration
coupling matrix L = (�ij)N×N is defined as follows: if there is a connection between node i

and node j (j /= i), then �ij = �ji > 0; otherwise, �ij = �ji = 0; the diagonal elements are defined
as �ii = −∑N

j=1,j /= i �ij . Γ = diag{γ1, γ2, . . . , γn} > 0 is the inner coupling positive definite matrix
between two connected nodes i and j.

In order to achieve the synchronization of the complex dynamical network (2.1) at the
original point, we design an impulsive control law:

ui(t) =
∞∑

k=1

μxi(t)δ(t − tk), i = 1, 2, . . . ,N, (2.2)

where the impulsive instant sequence {tk}∞k=1 satisfies 0 ≤ t1 < t2 < · · · < tk < · · ·
and limk→∞tk = ∞, μ is the impulsive control gain, and δ(·) is the Dirac delta function.
Then, we obtain the following impulsive dynamical network with nonlinear coupling as
follows:

ẋi(t) = f(xi(t)) + c
N∑

j=1

�ijΓh
(
xj(t)

)
, t /= tk, k ∈ N, t ≥ t0,

Δxi(tk) = μxi(tk), t = tk,

(2.3)

where i = 1, 2, . . . ,N, and Δxi(tk) = xi(t+k) − xi(t−k) is the “jump” in the state variable at the
time instant tk, with xi(t+k) = limt→ t+

k
x(t), and xi(t−k) = limt→ t−

k
x(t). For simplicity, we assume

that x(t) is left continuous at t = tk, that is, xi(t−k) = xi(tk).
There are some definitions and denotations that are necessary for presenting the main

results as follows.

Definition 2.1. The nonlinear-coupled dynamical network is said to be exponentially
synchronized to the original point if there exist some constants ε > 0 andM > 0 such that for
any initial conditions

‖xi(t)‖ ≤ Me−εt, ∀t ≥ 0. (2.4)
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Now, we give the following definition on quadratic (QUAD) inequality, which plays
an important role in the discussion of synchronization.

Definition 2.2. The function f(·) is said to satisfy f(·) ∈ QUAD(P,Δ, σ), if there exists a
positive definite diagonal matrix P = diag(p1, . . . , pn), a diagonal matrix Δ = diag(δ1, . . . , δn),
and a scalar σ > 0, such that

(
x − y

)T
P
[
f(x) − f

(
y
) −Δ

(
x − y

)] ≤ −σ(x − y
)T(

x − y
)

(2.5)

holds for any x, y ∈ R
n.

Definition 2.3 (see [20] average impulsive interval). The average impulsive interval of the
impulsive sequence ζ = {t1, t2, . . .} is less than Ta, if there exist positive integerN0 and positive
number Ta, such that

Nζ(T, t) ≥ T − t

Ta
−N0, ∀T ≥ t ≥ 0, (2.6)

whereNζ(T, t) denotes the number of impulsive times of the impulsive sequence ζ in the time
interval (t, T).

3. Main Result

Suppose that we are mainly interested in achieving synchronization of the network (2.3) by
defining the controlled synchronization state as original point x∗ = 0, which satisfies f(x∗) =
0. Now the main result will be presented in this section.

Theorem 3.1. Consider the nonlinearly-coupled complex network (2.1) with impulsive controller.
Suppose that f(·) ∈ QUAD(I,Δ, σ), and the average impulsive interval of impulsive sequence ζ =
{t1, t2, . . .} is less than Ta. Then the impulsive dynamical system (2.3) is exponentially synchronized
with convergence rate η if

η =
2 ln

(∣∣1 + μ
∣∣)

Ta
+ α < 0, (3.1)

where α = −2σ + 2 maxk{δk}.

Proof. Construct a Lyapunov function in the form of

V (t) =
N∑

i=1

xT
i (t)xi(t). (3.2)
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When t ∈ (tk−1, tk], the derivative of V (t) with respect to (2.3) can be calculated as follows:

V̇ (t) = 2
N∑

i=1

xT
i (t)ẋi(t)

= 2
N∑

i=1

xT
i (t)

⎡

⎣f(xi(t)) + c
N∑

j=1

�ijΓh
(
xj(t)

)
⎤

⎦

= 2
N∑

i=1

xT
i (t)f(xi(t)) + 2c

N∑

i=1

N∑

j=1

�ijx
T
i (t)Γh

(
xj(t)

)
.

(3.3)

Since f(·) ∈ QUAD(I,Δ, σ), the following inequality can be obtained:

2
N∑

i=1

xT
i (t)f(xi(t)) = 2

N∑

i=1

[
xT
i (t)

(
f(xi(t)) −Δxi(t)

)
+ xT

i (t)Δxi(t)
]

≤ 2
N∑

i=1

[
−σxT

i (t)xi(t) +maxk{δk}xT
i (t)xi(t)

]

= (−2σ + 2maxk{δk})
N∑

i=1

xT
i (t)xi(t)

= αV (t),

(3.4)

where α = −2σ + 2 maxk{δk}.
Let xθ(t) = (x1θ(t), x2θ(t), . . . , xNθ(t))

T and h(xθ(t)) = (h(x1θ(t)), h(x2θ(t)), . . . ,
h(xNθ(t)))

T . Since [(h(u) − h(v))/(u − v)] ≥ � > 0, it follows from the diffusive property
of matrix L that

2c
N∑

i=1

N∑

j=1

�ijx
T
i (t)Γh

(
xj(t)

)
= 2c

N∑

i=1

N∑

j=1

�ij

[
n∑

θ=1

xiθ(t)γθh
(
xjθ(t)

)
]

= 2c
n∑

θ=1

γθ

⎡

⎣
N∑

i=1

N∑

j=1

xiθ(t)�ijh
(
xjθ(t)

)
⎤

⎦

= 2c
n∑

θ=1

γθ
(
xθ(t)

)T
Lh

(
xθ(t)

)

= −c
n∑

θ=1

γθ
N∑

i=1

N∑

j=1,j /= i

�ij
(
xiθ(t) − xjθ(t)

)(
h(xiθ(t)) − h

(
xjθ(t)

))

≤ −c
n∑

θ=1

N∑

i=1

N∑

j=1,j /= i

�γθ�ij
(
xiθ(t) − xjθ(t)

)2

≤ 0.

(3.5)
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From the inequalities (3.4) and (3.5), we can obtain that

V̇ (t) ≤ αV (t), t ∈ (tk−1, tk], k = 1, 2, . . . . (3.6)

Therefore,

V (t) ≤ V
(
t+k−1

)
exp[α(t − tk−1)], t ∈ (tk−1, tk), k = 1, 2, . . . . (3.7)

On the other hand, when t = t+
k
, k = 1, 2, . . .,

V
(
t+k
)
=

N∑

i=1

xT
i

(
t+k
)
xi

(
t+k
)
=

N∑

i=1

(
1 + μ

)2
xT
i (tk)xi(tk) =

(
1 + μ

)2
V (tk). (3.8)

From (3.7) and (3.8), we know that for any t ∈ (t0, t1], V (t) ≤ V (t0)eα(t−t0), which leads to
V (t1) ≤ V (t0)eα(t1−t0). When t = t+1 , one has V (t+1 ) ≤ (1 + μ)2V (t1) ≤ (1 + μ)2V (t0)eα(t1−t0). By
induction, for t ∈ (tk, tk+1], k = 1, 2, . . .,

V (t) ≤ V (t0)
(
1 + μ

)2k
eα(t−t0). (3.9)

Let Nζ(t, t0) be the number of impulsive times of the impulsive sequence ζ on the
interval (t0, t). Hence for any t ∈ R we can obtain

V (t) ≤ (
1 + μ

)2Nζ(t,t0)eα(t−t0)V (t0). (3.10)

Since μ ∈ (−2, 0), it follows from Definition 2.3 that

V (t) ≤ (
1 + μ

)2((t−t0)/Ta−N0)eα(t−t0)V (t0)

≤ (
1 + μ

)−2N0e(2 ln(|1+μ|)/Ta)(t−t0)eα(t−t0)V (t0)

=
(
1 + μ

)−2N0e(2 ln(|1+μ|)/Ta+α)(t−t0)V (t0)

=
(
1 + μ

)−2N0eη(t−t0)V (t0).

(3.11)

Since η = (2 ln(|1 + μ|)/Ta) + α < 0, the system (2.1) can be exponentially stabilized to
the original point, which implies exponential synchronization of the impulsive dynamical
network (2.3). The proof is completed.

Remark 3.2. Due to the introduction of the concept “average impulsive interval”, the
requirement on the lower bound and upper bound of impulsive interval is removed in
Theorem 3.1. It makes our result less conservative.
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4. Numerical Example

In this section, based on the results obtained in the previous section, we consider the
impulsive control of four nonlinearly-coupled canonical Lorenz systems to show the ef-
fectiveness of our results. The network is described as follows:

ẋi = f(xi(t)) + c
4∑

j=1

�ijΓh
(
xj(t)

)
, t /= tk,

Δxi(tk) = μxi(tk), t = tk,

(4.1)

where xi = (xi1, xi2, xi3)
T ∈ R

3 is the state vector of ith node, h(xi(t)) = (h(xi1(t)),
h(xi2(t)), h(xi3(t)))

T = (3xi1(t)+sin(xi1(t)), 3xi2(t)+sin(xi2(t)), 3xi3(t)+sin(xi3(t)))
T satisfying

the condition: [(h(u) − h(v))/(u − v)] ≥ � > 0 for any u, v ∈ R with � = 2. The Laplacian
coupling matrix is

L =

⎡
⎢⎢⎢⎢⎢⎣

−5 4 1 0

4 −6 0 2

1 0 −1 0

0 2 0 −2

⎤
⎥⎥⎥⎥⎥⎦
. (4.2)

The uncoupled canonical Lorenz system ẏ(t) = f(y(t)) is described as

ẏ1 = 10
(
y2 − y1

)
,

ẏ2 = 28y1 − y2 − y1y3,

ẏ3 = y1y2 − 8
3
y3,

(4.3)

and the respective double-scroll attractor is shown in Figure 1.
In this case, we can prove that the coupled Lorenz system satisfies the QUAD condition

with P = I, Δ = diag{10, 19,−5/3} and σ = 1, which can be verified in the following:

xT
i (t)

(
f(xi(t)) −Δxi(t)

)

= xT
i (t)

(
10xi2 − 10xi1, 28xi1 − xi2 − xi1xi3, xi1xi2 − 8

3
xi3

)
− xT

i (t)Δxi(t)

= xi1(10xi2 − 10xi1) + xi2(28xi1 − xi2 − xi1xi3) + xi3

(
xi1xi2 − 8

3
xi3

)

− 10x2
i1 − 19x2

i +
5
3
x2
i3 = −20x2

i1 − 20x2
i − x2

i3 + 38xi1xi2

≤ −x2
i1 − x2

i − x2
i3 = −xT

i (t)xi(t).

(4.4)
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Figure 1: The double-scroll attractor of the Lorenz system.
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Figure 2: Evolution of the state variable xi(t), i = 1, 2, 3, 4.

Then α = −2σ + 2 maxk{δk} = 36. If we choose average impulsive interval Ta = 0.125 and μ =
−1.1, the sufficient condition in the Theorem 3.1 will be satisfied with 2 ln(|1 + μ|)/Ta + α < 0.
The simulation results of xi(t), i = 1, 2, 3, 4 are shown in Figure 2 with the coupling strength
c = 1.

5. Conclusion

In this paper, the synchronization of nonlinearly-coupled networks has been investigated.
By using the impulsive controllers, the nonlinearly-coupled dynamical networks can be
synchronized to the original point. A criterion for the synchronization is derived by using the
stability analysis of impulsive differential equations and the concept of average impulsive
interval. A numerical example is finally given to illustrate the effectiveness and feasibility
of the proposed method and result. One of the future research topics would be extending
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the present results to the synchronization of nonlinearly coupled networks by impulsively
controlling a small fraction of nodes.
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