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This paper proposes amethod for designingH∞ fuzzy control of DC-DC converters under actuator
saturation. Because linear control design methods do not take into account the nonlinearity of the
system, a T-S fuzzy model and a controller design approach is used. The designed control not only
handles the external disturbance but also the saturation of duty cycle. The input constraint is first
transformed into a symmetric saturation which is represented by a polytopic model. Stabilization
conditions for the H∞ state feedback system of DC-DC converters under actuator saturation are
established using the Lyapunov approach. The proposed method has been compared and verified
with a simulation example.

1. Introduction

The main task of DC-DC converters is the adaptation of the voltage and current levels
between sources and loads while maintaining a low power loss in the conversion [1–3].
With the extensive use of DC-DC converters in different industry applications (e.g. power
supplies for personal computers, DC-motor drive, telecommunications equipment, etc.),
improving their performances has become an interesting problem in recent years [1–17].
Recently, different converter circuits (buck converter, boost converter, buck-boost converter,
Cuk converter, etc.) are known. According to each application purpose (increase or decrease
the magnitude of the DC voltage and/or invert its polarity), the converter circuit was chosen.
Among them, we consider here, the control of the basic Pulse-Width-Modulation (PWM)
buck converters, but it could be easily adapted for other converters.
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The DC-DC switching power converters are highly nonlinear systems [4, 5, 15,
16]. Consequently, the conventional linear controls based on averaging and linearization
techniques [12, 14] will result in poor dynamic performance or system instability. In order
to resolve this problem, the fuzzy logic approach has been proposed as an alternative
solution [4, 5, 7, 8, 11, 13, 15, 16]. Specifically, in [4, 5], the authors have reported very
significant results on the modelling and control of DC-DC converters with T-S fuzzy systems.
In [4, 5, 8, 11, 15, 16], authors have proposed methods for designing fuzzy control of DC-
DC converters. Nevertheless, in the aforementioned papers, they have not taken into account
the inherent nonlinearity of actuator saturation (duty cycle) and the external disturbance.
Motivated by this observation, our aim is to use T-S fuzzy systems in order to control a
nonlinear DC-DC converter subject to external disturbances and actuator saturation.

The actuator saturation can degrade the performance of the closed-loop system and
often make the stable closed-loop system unstable [1, 18–21]. The T-S fuzzy system in the
presence of saturation has been receiving increasing attention for control of nonlinear systems
[18–29]. In these works, the saturation effect is considered as a symmetric function. This is
not the case in DC-DC converter application where the saturation function constrained is
between 1 and 0. The solution of this problem proposed in linear control case [2] has been
leading to complexity analysis with the nonlinearity of DC-DC converter model. Here, we
proposed a simple mathematical transformation to obtain a symmetric saturation.

TheH∞ approach is used to analyze and to synthesize controllers/observers achieving
an optimal level of disturbance attenuation and to guarantee the stability of the closed-loop
system. To achieve this goal, the idea is to minimize the H∞ norm which represents the
maximum value ratio between the output signal energy (controlled output) and the input
signal energy (disturbance input). Recently, many researchers have used this approach for
control design of T-S fuzzy systems (see for example [20, 21, 30, 31] and their references). In
most cases, the quadratic Lyapunov function and linear matrix inequality (LMI) techniques
are used to analyze and synthesize of stabilization of T-S fuzzy systems [17–21, 30, 31]. Based
on these works, we address the control problem of DC-DC converters via PDC controller
with actuator saturation and external disturbance. In this paper, we will use T-S fuzzy
systems to represent the DC-DC converters. The control design is based on the parallel
distributed compensation (PDC) scheme [32]. The idea is that for each local linear model,
a linear feedback control is designed. The control problem is formulated and solved as a LMI
optimization problem [33].

This paper is organized as follows. Section 2 gives the averaged model of basic PWM
buck converter. Section 3 presents the T-S fuzzy model of the DC-DC converter. Section 4
formulates the conditions for the H∞ stabilization of fuzzy control with actuator saturation
problem in terms of LMI. The simulation results to show the effectiveness of the proposed
method are given in Section 4.
Notation 1. Ir denotes the set {1, 2, . . . , r},� denotes the set of real number and�n×m the set of
all n ×m real matrix. M > (≥, , <,≤) is used to denote a symmetric positive definite (positive
semidefinite, negative definite, negative semidefinite, resp.) matrix. ∗ denotes the symmetric
bloc matrix, X + (∗) denotes X +XT , × denotes the multiplication, co denotes the convex hull,
and
⋂r

j=1 is used to denote the intersection of r sets.

2. Averaged Model of Basic PWM Buck Converter

Figure 1 shows the basic circuit of the nonlinear PWM buck converter proposed in [4, 5]
with an external disturbance iload(t) as proposed in [1, 2]. Rm is the on-state resistance of the
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Figure 1: Schematic of a basic PWM buck converter.

MOSFET transistor, RL is the winding resistance of inductor, Vd is the threshold voltage of
the diode, and Rc is the equivalent series resistance of the filter capacitor.

By applying the Kirchhoff’s voltage law (KVL) and Kirchhoff’s current law (KCL) in
on-state of the MOSFET transistor case, we obtain
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Now, in off-state of the MOSFET transistor case and by applying of KVL and KCL, we get
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Figure 2: Membership functions of the T-S fuzzy model.

Using averaging method for one-time scale discontinuous system (AM-OTS-Ds) [9], the
global dynamical behavior of the DC-DC converter is modeled as follows:
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⎥
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(2.3)

where d(t) is the duty cycle.

3. T-S Fuzzy Model of DC-DC Converter

Our control approach is based on T-S fuzzymodels and the robustness of this control depends
on the ability of the fuzzy model to represent the real system. In this section our objective is
to show the effectiveness of T-S fuzzy model to represent the DC-DC converter.

The T-S fuzzy model has been successfully used to approximate nonlinear systems by
interpolation of numerous local linear models [34].

Ri: If ξ1(t) is about M1i and ξq(t) is about Mqi then

ẋ(t) = Aix(t) + B1iw(t) + B2iσ(t)

z(t) = C1ix(t) +D1iw(t) +D2iσ(t)
For i ∈ Ir (3.1)

in which Mji is the fuzzy set of ξi in rule Ri, r is the number of if-then fuzzy rules and ξi(t)
are the decision variable assumed measurable, x(t) ∈ �n is the system state vector, σ(t) ∈ �m

is the saturate control input, y(t) ∈ �p is the measurable output, z(t) ∈ �nz is the controlled
output variable, and w(t) ∈ �2 is the disturbance variable with �2 = {w ∈ �nw | ‖w‖2 ≤
w,w 
 0}.
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Figure 3: The nonlinear DC-DC converter responses and its T-S fuzzy representation with initial conditions
(vc(0) = 0V, il(0) = 5A).
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Figure 4: The nonlinear DC-DC converter responses and its T-S fuzzy representation with initial conditions
(vc(0) = 5V, il(0) = 0A).

The global dynamic system is inferred as follows:

ẋ(t) =
r∑

i=1

μi(ξ(t))(Aix(t) + B1iw(t) + B2iσ(t)),

z(t) =
r∑

i=1

μi(ξ(t))(C1ix(t) +D1iw(t) +D2iσ(t)),

(3.2)

where

μi(ξ(t)) =

∏q

j=1Mji

(
ξj(t)
)

∑r
i=1

(∏q

j=1Mji

(
ξj(t)
)) , (3.3)
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Figure 6: Response of the output voltage vc(t) of PWM buck converter.

Mji(ξj(t)) is the grade of membership of ξj(t) in Mji. The normalized activation function
μi(ξ(t)) in relation with the ith submodel is such that

r∑

i=1

μi(ξ(t)) = 1 0 ≤ μi(ξ(t)) ≤ 1 ∀i ∈ Ir , (3.4)

Among different methods (identification method, linearization around different operating
points, or by transformation in nonlinear sector), the method by transformation in nonlinear
sector is based on bounded function and gives a minimum number of local models. Here we
will use this method to represent the DC-DC converter.

The following Lemma will be used in the sequel of the paper.

Lemma 3.1. Let f(x(t)) : R → R is a bounded function, it always exist tow functions, η1(x(t))
and η2(x(t)) and two scalars α and β such that:

f(x(t)) = α × η1(x(t)) + β × η2(x(t)) (3.5)
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with

η1(x(t)) + η2(x(t)) = 1, η1(x(t)) ≥ 0, η2(x(t)) ≥ 0. (3.6)

In this case, the obtained T-S fuzzy model represents exactly the nonlinear system for
x ∈ Rn with 2nl locals models where nl represents the number of local models.

Assuming that, Ilmin ≤ il(t) ≤ Ilmax and by Lemma 3.1, the system described by (2.3) is
modeled with a two-rules T-S fuzzy system as follows:

Rule 1: if il(t) is about Imin then: ẋ(t) = Amx(t) + Bm1iload(t) + Bm21d(t) +Dm.

Rule 2: if il(t) is about Imax then: ẋ(t) = Amx(t) + Bm1iload(t) + Bm22d(t) +Dm.

The overall model of T-S fuzzy system can be given by the following:

ẋ(t) = Amx(t) + Bm1iload(t) + Bm2μd(t) +Dm, (3.7)

with x1(t) = il(t), x2(t) = vc(t), Bm2μ =
∑2

i=1 μi(il(t))Bm2i and
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(3.8)

The membership function is such that

μ1(il(t)) =
−il(t) + Ilmax

Ilmax − Ilmin
, μ2(il(t)) =

il(t) − Ilmin

Ilmax − Ilmin
. (3.9)

To show the effectiveness of the fuzzy model to represent the nonlinear system, we
simulate the fuzzy model and the nonlinear system for the same inputs with different initial
conditions. The simulation parameters used in this work are as follows [4]:

R = 6Ω, Rl = 48.5mΩ, Rc = 0.16Ω, Rm = 0.27Ω, Vin = 30V,

L = 98.58mH, C = 202.5μF, f = 1KH, Ilmin = 0A, Ilmax = 10A,
(3.10)

with d(t) = 0.5 and the input current iload(t) = 0.25 sin(5000t).
Figure 2 shows the membership functions of the fuzzy model. The DC-DC converter

responses of nonlinear system (2.3) and T-S fuzzy system (3.7)with initial conditions (vc(0) =
0V, il(0) = 5A) and (vc(0) = 5V, il(0) = 0A) are shown in Figures 3 and 4, respectively.

These figures demonstrate that, with different initial conditions, the T-S fuzzy system
(2.3) has the same behaviour as the nonlinear system (3.7). This means the satisfactory
approximation ability of the fuzzy model.
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4. H∞ Fuzzy Control of DC-DC Converter

In this section, we present an H∞ fuzzy approach to the control design of DC-DC converter.

4.1. Saturated Control Analysis

In order to control the output voltage of the DC-DC converter, we define the following
variables:

e1(t) = vc(t) − Vref, e2(t) = ė1(t), (4.1)

where Vref is the reference voltage of vc(t).
The time-derivative of e2(t) is as follows:

ė2(t) = v̈c(t) =
R

C(R + Rc)
i̇l(t) − 1

C(R + Rc)
v̇c(t) − R

C(R + Rc)
i̇load(t). (4.2)

Using the converter’s model defined in (2.3), we have

ẋ(t) = Ax(t) + Bww1(t) + B2(x)d(t) +D,

x1(t) = e1(t), x2(t) = e2(t), w1(t) =
[
iload(t)
i̇load(t)

]

,

A =

⎡

⎣
0 1

− (R + Rl)
LC(R + Rc)

−L + RlC(R + Rc) + CRRc

LC(R + Rc)

⎤

⎦,

B2(x) =

⎡

⎣
0

R

LC(R + Rc)
[Vin + Vd − Rmil(t)]

⎤

⎦,

Bw =

⎡

⎣
0 0

− RlR

LC(R + Rc)
− R

C(R + Rc)

⎤

⎦, D =

⎡

⎣
0

−R(Vd + Vref) + RlVref

LC(R + Rc)

⎤

⎦.

(4.3)

By Lemma 3.1, this system can be modeled with a two-rule T-S fuzzy system as follows:

Rule 1: if il(t) is about Imin then: ẋ(t) = Ax(t) + Bww1(t) + B21d(t) +D.

Rule 2: if il(t) is about Imax then: ẋ(t) = Ax(t) + Bww1(t) + B22d(t) +D.

and the global T-S fuzzy model can be given by the following:

ẋ(t) = Ax(t) + Bww1(t) + B2μd(t) +D, (4.4)
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Figure 7: Response of the inductance current il(t) of PWM buck converter.

with:

w1(t) =
[
iload(t)
i̇load(t)

]

, B2μ =
2∑

i=1

μi(il(t))B2i,

B21 =

⎡

⎣
0

R

LC(R + Rc)
[Vin + Vd − RmIlmin]

⎤

⎦, B22 =

⎡

⎣
0

R

LC(R + Rc)
[Vin + Vd − RmIlmax]

⎤

⎦,

(4.5)

The output voltage of the DC-DC converter can be controlled by means of variation of duty
cycle (Figure 1). The duty cycle is defined by the ratio Ton/Ts, where Ts is the frequency
of the PWM circuit and Ton is the time when the MOSFET is on (Figure 5). A transistor gate
driver (Figure 1) switches theMOSFET between the conducting (on) and blocking (off) states
using a binary signal ub(t). This signal is produced by the modulator. In this operation, the
duty cycle is compared with a sawtooth signal Vs(t) of amplitude equals to 1. Consequently,
the duty-cycle is constrained in amplitude between 0 and 1.

Thus, in this application, the control input is subject to actuator saturation with the
following saturation:

0 ≤ d(t) ≤ 1, (4.6)

which is not a symmetric saturation. However, most results reported in open literature have
treated the controller design analysis with symmetric saturation [18–21]. To transform this
saturation into a symmetric saturation, authors in [2] have proposed a change of variables to
the linear converter model. This idea cannot be used in our case (nonlinear converter model)
because it increases the complexity of the control analysis. Here, wewill propose another idea
that allows a simple analysis thereafter.
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The system described in (4.4) can be written as follows:

ẋ(t) = Ax(t) + Bww1(t) + B2(x)
(

d(t) − 1
2

)

+
1
2
B2(x) +D,

ẋ(t) = Ax(t) + B1w(t) + B2(x)δ(t),

(4.7)

with

w(t) =
1
2

R

LC(R + Rc)
[Vin + Vd − Rmil(t)] − RlR

LC(R + Rc)
iload(t)

− R

C(R + Rc)
i̇load(t) − R(Vd + Vref) + RlVref

LC(R + Rc)

(4.8)

is the external disturbance, B1 = [0 1]T , and δ(t) = d(t) − 1/2 is the new control input.
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This last system can be represented with the following T-S fuzzy model:

ẋ(t) = Ax(t) + B1w(t) + B2μδ(t). (4.9)

Thus, the new control input δ(t) is constrained as follows:

−1
2

≤ δ(t) ≤ 1
2
. (4.10)

In this work, the controller is a nonlinear state feedback which shares the same
activation functions as the T-S fuzzy model (3.2) of the following form [32]:

u(t) = Kμx(t),

Kμ =
r∑

j=1

μj(ξ(t))Kj,
(4.11)

where and Kj ∈ �m×n is the local controller matrix to be determined.
The control input is subject to actuator saturation the saturation function means:

σ(t) = sat(u(t), u) = [s1, s2, . . . , sm]T ,

si = sign(ui)min{ui, |ui|},
(4.12)

u ∈ Rm denotes the saturation level and ui and ui denote the ith element of u and u(t). In our
case:

ui = u = 0.5. (4.13)

The saturation obtained in (3.6) is a symmetric saturation and the following lemma can be
used to the stability analysis.

Lemma 4.1 (see [18]). Let E be the set ofm ×m diagonal matrices whose diagonal elements are 1 or
0. Suppose that |vi| ≤ ui for all i ∈ Im, where vi and ui denote the ith element of v ∈ �m and u ∈ �m,
respectively. If x ∈ ⋂r

j=1 �(Hj) for x ∈ �n, then:

sat(u, u) =
2m∑

s=1

αs

(
Esu + Esν

)
,

2m∑

s=1

αs = 1, 0 ≤ αs ≤ 1,

ν =
r∑

j=1

μjHjx,

�(Hj

)
=
{
x ∈ �n |

∣
∣
∣h

j

ix
∣
∣
∣ ≤ ui

}
,

(4.14)
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where Es denotes all elements of E, Es = I −Es,Hj ism×nmatrix and hj

i is the ith row of the matrix
Hj .

In our case m = 1, Es ∈ co{0, 1}, u1 is the saturation level (u1 = 1/2) and r(r = 2) is
the number of local models. Consequently, the saturation function in (4.10) can be rewritten
as follows:

sat
(
Kμx(t)

)
=
(
EαKμ + EαHμ

)
x(t), (4.15)

with
∣
∣
∣h

j

ix
∣
∣
∣ ≤ 1

2
, ∀i ∈ Im, j ∈ Ir , (4.16)

and Hμ =
∑2

i=1 μiHi, Eα =
∑2

s=1 αsEs and Eα =
∑2

s=1 αsEs.

4.2. Quadratic Lyapunov Stability

For a constant ρ > 0 and a symmetric positive matrix P , define an ellipsoid as follows:

ε
(
P, ρ
)
=
{
x ∈ �n | xTPx ≤ ρ

}
. (4.17)

This ellipsoid can be rewritten as follows:

ε
(
P, ρ
)
=
{
x ∈ �n | xTPx ≤ 1

}
(4.18)

ρ 
 0, this implied that P = P/ρ ∈ �n×n is a symmetric positive matrix.
We define the Lyapunov function as follows:

V (x) = x(t)TPx(t). (4.19)

An ellipsoid ε(p, ρ) is said to be contractively invariant set if V̇ (x) < 0, for all x ∈ ε(P, ρ) | {0}.
Therefore, if an ellipsoid is contractively invariant, it is inside the domain of attraction.

An ellipsoid ε(P, ρ) = {x ∈ Rn | xTPx ≤ 1} is inside
⋂r

j=1 �(Hj) if and only if for all
i ∈ Im, j ∈ Ir :

(
h
j

i

)T
Phj

i ≤ u2
i I. (4.20)

In order to design a DC-DC converter to perform adequately in the presence of external
disturbances, the H∞ attenuation performance is chosen as the performance measure, which
is defined as follows:

∫T

0
z(τ)Tz(τ)dτ < γ2

∫T

0
w(τ)Tw(τ)dτ, (4.21)

where γ is a positive scalar and small as possible, w(t) ∈ L2[0 1] and x(0) = 0.
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Figure 10: Response of the output voltage vc(t) of PWM buck converter for 1 kHz.

In our problem, the controlled output is the error e1(t), that is:

z(t) = C1x(t), (4.22)

where C1 = [0 1]. The closed-loop system composed of (4.9), (4.22), and (4.15) is given by
the following:

ẋ(t) =
(
A + B2μ

(
EαKμ + EαHμ

))
x(t) + Bm1w(t),

z(t) = C1x(t).
(4.23)

Theorem 4.2. The ellipsoid ε(P, ρ) is contractively invariant set of the closed-loop system (4.15) and
achieves in a disturbance rejection level γ , if there exist a symmetric positive definite matrix Q and
matrices Fj ∈ �m×n, solutions of the following LMI problem:

minγ

Q,Fj ,Zj
, (4.24)

⎡

⎢
⎢
⎣

1
4

z
j

i

(
z
j

i

)T
Q

⎤

⎥
⎥
⎦ ≥ 0, ∀i ∈ Im, j ∈ Ir (4.25)

⎡

⎢
⎣

AQ + B2iEsFj + B2iEsZj + (∗) ∗ ∗

B
T

1 −γI ∗

C1Q 0 −γI

⎤

⎥
⎦ < 0, ∀i ∈ Ir , j ∈ Ir . (4.26)

Then one gets

Kj = FjQ
−1, Hj = ZjQ

−1. (4.27)
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Using Lemma 3.1 for inequality (4.20), one has:

(
h
j

i

)T
Phj

i ≤
1
4
, ∀i ∈ Im, j ∈ Ir . (4.28)

Let the following change of variables:

Q = P−1, (4.29)

Zj = HjQ. (4.30)

Consequently, the inequality (4.28) can be rewritten as follows

Q

4
−
(
z
j

i

)T
z
j

i ≥ 0, (4.31)

where z
j

i is the ith row of the matrix Zj . By Schur complement [33], this last inequality can be
transformed as LMI (4.25).

Proposition 4.3 (see [30]). If the Lyapunov function defined in (4.19) satisfies the following
Hamilton-Jacobi-Bellman inequality:

V̇ (x(t)) + γ−1z(t)Tz(t) − γw(t)Tw(t) < 0, (4.32)

along (4.23) for all x(t)/= 0 andw(t) ∈ L2[0 1] � {w ∈ �nw | ∫T0 ‖w‖2dt ≤ w,w > 0}, then (4.21)
is verified. Using (4.23), one has:

V̇ (x(t)) − γw(t)Tw(t) + γ−1z(t)Tz(t)

=
[
x(t)
w(t)

]T
⎧
⎨

⎩

⎡

⎣

(
A + B2μEsKμ + B2μEsHμ

)T
P + (∗) ∗

BT
1 P −γI

⎤

⎦ + γ−1
[
CT

1
0

]
[
C1 0

]

⎫
⎬

⎭

[
x(t)
w(t)

]

.

(4.33)

By Schur complement [13], the condition (4.32) holds if

Σμ =

⎡

⎢
⎣

PT
(
A + B2μEsKμ + B2μEsHμ

)
+ (∗) ∗ ∗

BT
1 P −γI ∗

C1 0 −γI

⎤

⎥
⎦ < 0. (4.34)
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Pre- and postmultiplying this last inequality by Γ = diag(Q, I, I) one has

ΓΣμΓ =

⎡

⎢
⎢
⎣

AiQ + B2iEsKjQ + B2iEsHjQ + (∗) ∗ ∗

BT
1 −γI ∗

C1Q 0 −γI

⎤

⎥
⎥
⎦ < 0. (4.35)

Taking account (4.27) and (4.30), one gets the following LMI:

ΓΣμΓ =

⎡

⎢
⎢
⎣

AμQ + B2μFμ + (∗) ∗ ∗

BT
1 −γI ∗

C1Q 0 −γI

⎤

⎥
⎥
⎦ < 0, (4.36)

which ends the proof.

4.3. The Initial Conditions Constraint

The main purpose of the DC-DC converter control is to maintain the voltage level vc(t) equal
to the desired level Vref. The initial condition for the state vector is as follows:

x0 =
[
x1(0) x2(0)

]T
=
[
e1(0) e2(0)

]T
=
[
Vref 0

]T
. (4.37)

However, it is not possible to assure that any initial condition will belong to the ellipsoid
of stability given in Theorem 4.2. In this section, the objective is to guarantee the start up
stability with maximum elimination of external disturbances in the presence of saturation.

The point x0 ∈ ε(P, ρ) is equivalent to the following:

xT
0Px0 ≤ 1. (4.38)

Or in LMI form by the following:

[
1 xT

0
x0 Q

]

≥ 0. (4.39)

The optimization problem proposed in Theorem 4.2 can be formulated as follows:

minγ

Q,Fj ,Zj
.

LMI(4.27), LMI(4.28), LMI(4.41)
(4.40)

4.4. Simulation Results

In order to demonstrate the effectiveness of the proposed method, the DC-DC converter is
controlled by the proposedH∞-based state feedback and the PDC controller proposed in [4].
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In this simulation, the current perturbation step equals to 1A and the PWM frequency equals
to 5 kHz.

Solving the optimization problem described in (4.40) for initial condition x0 =
[12V 0]T , we have:

Q =
[

817.3975 − 6.1238 × 105

−6.1238 × 105 5.5691 × 105

]

, H1 = H2 = [−0.0354 0],

γ = 0.7255, K1 = [−1.4681 − 0.0016], K2 = [−1.5030 − 0.0017].

(4.41)

The control is defined by d(t) = sat(Kμx(t)) + 1/2.
Figures 6, 7, and 8 show the DC-DC converter responses (output voltage and

inductance current, resp.). Figure 9 shows the trajectory of the saturated control input signal
(duty cycle d(t)). Figure 8 shows, with the presence of saturation, the H∞ control can
guarantee the stability of all initial conditions in the interval e1(0) ∈ [−12V 12V ] in presence
of actuator saturation and external disturbances (see initial time and 0.1 s time).

Simulation results (Figures 6–8) demonstrate that our controller guarantees better
stabilization performance, better perturbation rejection (see initial time in Figure 6) and better
time response (see Figures 6–8) Moreover, the proposed controller is robust with respect to
frequency change. Figure 10 shows the simulation results for a frequency of 1 kHz. It shows
that our controller achieves better performance even with different frequency values.

Despite that we take into account not only the actuators saturation but also the external
disturbance in the designing control, our controller gives better stabilization performance
(perturbation rejection and better time response) of the system as reported in the open
literature [4]. Moreover, with different frequency values, our saturated control gives robust
control signal (guarantees the same performances despite the change of frequency). These
results demonstrate the effectiveness of proposed method.

5. Conclusion

This work has presented an H∞ controller design for DC-DC converters via state feedback
under actuator saturation and external disturbances. The T-S fuzzy system is first used to
describe the DC-DC converter. Then, the state controller is designed to guarantee the stability
of the closed loop system with H∞ performance. The saturation effect is represented by
a polytopic model. Based on Lyapunov approach, the problem of H∞ stabilization in the
presence of actuator saturation was formulated as an LMI optimization and solved easily
by using existing numerical tools. Finally, the simulation results on a DC-DC converter have
demonstrated the effeteness of the proposed control.

The analysis given here is applied to the buck converter; we can extend this work
to other converters (boost converter, buck-boost converter, Cuk converter, etc.). Finally, the
results developed in the paper can be extended to the case that the underlying systems are
involved with any switching dynamics such as a nondeterministic or stochastic switching
system (see [35–37]).
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