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The objective of this study is to investigate and compare the results of three data mining
approaches, the support vector machines (SVM), decision tree (DT), and Naı̈ve Bayes (NB) models
for spatial prediction of landslide hazards in the Hoa Binh province (Vietnam). First, a landslide
inventory map showing the locations of 118 landslides was constructed from various sources.
The landslide inventory was then randomly partitioned into 70% for training the models and
30% for the model validation. Second, ten landslide conditioning factors were selected (i.e., slope
angle, slope aspect, relief amplitude, lithology, soil type, land use, distance to roads, distance to
rivers, distance to faults, and rainfall). Using these factors, landslide susceptibility indexes were
calculated using SVM, DT, and NB models. Finally, landslide locations that were not used in the
training phase were used to validate and compare the landslide susceptibility maps. The validation
results show that the models derived using SVM have the highest prediction capability. The model
derived using DT has the lowest prediction capability. Compared to the logistic regression model,
the prediction capability of the SVM models is slightly better. The prediction capability of the DT
and NB models is lower.

1. Introduction

Vietnam is identified as a country that is particularly vulnerable to some of the worst

manifestations of climate change such as sea level rise, flooding, and landslides. In the recent
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years, together with flooding, landslides have occurred widespread and recurrent in the

northwest mountainous areas of Vietnam and have caused substantial economic losses and

property damages. Landslides usually occurred during heavy rainfalls in the rainy season

from May to October every year. In particular, in the Hoa Binh province during the rainy

season of 2006 and 2007, large landslides occurred frequently due to heavy rainfalls. Most of

these landslides occurred on cut slopes and alongside roads in mountainous areas. Landslide

disaster can be reduced by understanding the mechanism, prediction, hazard assessment,

early warning, and risk management [1]. Therefore, studies on landslides and determining

measures to mitigate losses are an urgent task. However, the study on landslides in Vietnam

is still limited except a few case studies [2–5]. Through scientific analyses of these landslides,

we can assess and predict landslide prone areas, offering potential measures to decrease

landslide damages [6, 7].
Spatial prediction of landslide hazard map preparation is considered the first

important step for landslide hazard mitigation and management [8]. The spatial probability

of landslide hazards can be expressed as the probability of spatial occurrence of slope

failures with a set of geoenvironmental conditions [9]. However, due to the complex nature

of landslides, producing a reliable spatial prediction of landslide hazard is not easy. For

this reason, various approaches have been proposed in the literature. Review of these

approaches has been carried out by Guzzetti et al. [10], Wang et al. [11], and Chacón et al.

[12]. In the recent years, some soft computing approaches have been applied for landslide

hazard evaluation including fuzzy logic [7, 13–20], neuro-fuzzy [3, 15, 21, 22], and artificial

neural networks [6, 23–29]. In general, the quality of landslide susceptibility models is

affected by the methods used [30]. For this reason, comparison of those methods with the

conventional methods has been carried out using different datasets. Some researchers found

that soft computing methods outperform the conventional methods [31–35]; however, other

authors find no differences in overall predictive performance [36]. In general, soft computing

approaches give rise qualitatively and quantitatively on the maps of the landslide hazard

areas and the spatial results are appealing [37].
In more recent years, data mining approaches have been considered used for landslide

studies such as SVM, DT, and NB [38, 39]. They belong to the top 10 data mining

algorithms identified by the IEEE [40]. In the case of SVM, the main advantage of this

method is that it can use large input data with fast learning capacity. This method is

well-suited to nonlinear high-dimensional data modeling problems and provides promising

perspectives in the landslide susceptibility mapping [41]. Micheletti et al. [42] stated that

SVM methods can be used for landslide studies because of their ability in dealing with high-

dimensional spaces effectively and with a high classification performance. In the case of DT,

according to Yeon et al. [43] the probability of observations that belong to the landslide

class can be used to estimate indexes of susceptibility. Saito et al. [44] used a decision tree

model for landslide susceptibility mapping in the Akaishi Mountains (Japan) and stated

that the decision tree model has appropriate accuracy for estimating the probabilities of

future landslides. Nefeslioglu et al. [45] applied a DT in the metropolitan area of Istanbul

(Turkey) with a good prediction accuracy of the landslide model. Yeon et al. [43] concluded

that DT can be used efficiently for landslide susceptibility mapping. In the case of NB,

although the method has been successfully applied in many domains [46]; however, the

application in landslide susceptibility assessment may still be limited. NB is a popular

and fast supervised learning algorithm for data mining applications based on the Bayes

theorem. The main advantage of NB is that it can process a large number of variables,

both discrete and continuous [47]. NB is suitable for large-scale prediction of complex
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and incomplete data [48]. The main potential drawback of this method is that it requires

independence of attributes. However, this method is considered to be relatively robust

[49].
The main objective of this study is to investigate and compare the results of three

data mining approaches, that is, SVM, DT, and NB, to spatial prediction of landslide hazards

for the Hoa Binh province (Vietnam). The main difference between this study and the

aforementioned works is that SVM with two kernel functions (radial basis and polynomial

kernels) and NB were applied for landslide susceptibility modeling. To assess these methods,

the susceptibility maps obtained from the three data mining approaches were compared

to those obtained by the logistic regression model reported by the same authors [2]. The

computation process was carried out using MATLAB 7.11 and LIBSVM [50] for SVM and

WEKA ver. 3.6.6 (The University of Waikato, 2011) for DT and NB.

2. Study Area and Data Used

2.1. Study Area

Hoa Binh has an area of about 4,660 km2 and is located between the longitudes 104◦48
′
E

and 105◦50
′
E and the latitudes 20◦17

′
N and 21◦08

′
N in the northwest mountainous area of

Vietnam (Figure 1). The province is hilly with elevations ranging between 0 and 1,510 m, with

an average value of 315 m and standard deviation of 271.5 m. The terrain gradient computed

from a digital elevation model (DEM) with a spatial resolution of 20 × 20 m is in the range

from 0◦ to 60◦, with a mean value of 13.8◦ and a standard deviation of 10.4◦.

There are more than 38 geologic formations that have cropped out in the province

(Figure 2). Six geological formations, Dong Giao, Tan Lac, Vien Nam, Song Boi, Suoi Bang,

and Ben Khe, cover about 72.8% of the total area. The main lithologies are limestone,

conglomerate, aphyric basalt, sandstone, silty sandstone, and black clay shale. The ages of

rocks vary from the Paleozoic to Cenozoic with different physical properties and chemical

composition. Five major fracture zones pass through the province causing rock mass

weakness: Hoa Binh, Da Bac, Muong La-Cho Bo, Son La-Bim Son, and Song Da.

The soil types are mainly ferralic acrisols, humic acrisols, rhodic ferralsols, and eutric

fluvisols that account for 80% of the total study area. Land use is comprised of approximately

7.5% populated areas, 14.5% agricultural land, 52.6% forest land, 21% barren land and nontree

rocky mountain, 0.4% grassland, and 4% water surface.

In the study area, there are heavy rainfalls with high intensity, especially during

tropical rainstorms, and with an average annual precipitation varying from 1353 to 1857 mm

(data shown for the period 1973–2002). The precipitation is most abundant during May to

October with a rainfall that accounts for 84–90% annual precipitation. Rainfall usually peaks

in the months of August and September with the average around 300 to 400 mm per month.

The climate has a typical characteristic for the monsoonal region with a high humidity, being

hot, and rainy. January is usually the coldest month with an average temperature of 14.9◦C

whereas the warmest month is July with an average temperature of 26.7◦C.

Landslides occurred mostly in the rainy season when heavy rains exceeded 100 mm

per day and continued for three days. Landslides also occurred when rainfall continued for

five to seven days with rainfall larger than 100 mm for the last day. For example, landslides

occurred in the Doc Cun and Doi Thai areas on September 2000 when the 7 days accumulated

rainfalls were 308 and 383 mm, respectively. Many landslides occurred on 5 October 2007, in
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Figure 1: Landslide inventory map of the study area.

the Thung Khe, Toan Son, Phuc San, Tan Mai, Doc Cun, and surrounding areas with 3 days

of accumulated rainfalls amounting from 334 to 529 mm.

2.2. Data

Landslides are assumed to occur in the future under the same conditions as for the past

and current landslides [10]. Therefore, a landslide inventory map has been considered to be

the most important factor for prediction of future landslides. The landslide inventory map

portrays the spatial distribution of a single landslide event (a single trigger) or multiple

landslide events over time (historical) [51]. For the study area, the landslide inventory map

(Figure 1) constructed by Tien Bui et al. [2] was used to analyze the relationships between

landslide occurrence and landslide conditioning factors. The map shows 118 landslides that

occurred during the last ten years, including 97 landslide polygons and 21 rock fall locations.

The size of the largest landslide is 3,440 m2, the smallest is 380 m2, and the average landslide

size is 3,440 m2.

Based on previous research carried out by Tien Bui et al. [2], ten landslide conditioning

factors are selected to build landslide models and to predict spatial distribution of the

landslides in this study. They are slope angle, slope aspect, relief amplitude, lithology, soil

type, land use, distance to roads, distance to rivers, distance to faults, and rainfall.
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Figure 2: Geologic map of the study area.

The slope angle, slope aspect, and relief amplitude were extracted from a DEM that

was generated from national topographic maps at the scale of 1 : 25,000. The slope angle map

with 6 categories was constructed (Figure 3(a)). The slope aspect map with nine layer classes

was constructed: flat, north, northeast, east, southeast, south, southwest, west, and northwest.

The relief amplitude that presents the maximum difference in height per unit area [52] was

constructed with 6 categories: 0–50 m, 50–100 m, 100–150 m, 150–200 m, 200–250 m, and 250–

532 m. For the construction of the relief amplitude map, different sizes of the unit area were

tested to choose a best one (20 × 20 pixels) using the focal statistic module in the ArcGIS 10

software.

The lithology and faults were extracted from four tiles of the Geological and Mineral

Resources Map of Vietnam at the scale of 1 : 200,000. This is the only geological map available

for the study area. The lithology map (Figure 3(b)) was constructed with seven groups based

on clay composition, degree of weathering, estimated strength, and density [53, 54]. The

distance-to-faults map was constructed by buffering the fault lines with 5 categories as: 0–

200 m, 200–400 m, 400–700 m, 700–1,000 m, and >1,000 m. The soil type map (Figure 3(c)) was

constructed with 13 categories. The land-use map (Figure 3(d)) was constructed with twelve

categories.
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Figure 3: Landslide conditioning factor maps (a) slope, (b) lithology, (c) soil type, and (d) landuse.

A road network that undercut slopes was extracted from the topographic map at the

scale of 1 : 50,000. A distance-to-roads map was constructed with 4 categories: 0–40 m, 40–

80 m, 80–120 m, and >120 m. A hydrological network that undercut slopes was also extracted

from the topographic map at the scale of 1 : 50,000. And then a distance-to-rivers map was

constructed with 4 categories: 0–40 m, 40–80 m, 80–120 m, and >120 m.

The rainfall map was prepared using the value of maximum rainfall of eight days

(seven rainfall days plus last day of rainfall larger than 100 mm) for the period from 1990

to 2010, using the Inverse Distance Weighed (IDW) method. The precipitation data was

extracted from a database from the Institute of Meteorology and Hydrology in Vietnam.

3. Landslide Susceptibility Mapping Using SVM, DT, and NB Models

3.1. Support Vector Machines (SVM)

Support vector machines are a relatively new supervised learning method based on statistical

learning theory and the structural risk minimization principle [55]. Using the training
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data, SVM implicitly maps the original input space into a high-dimensional feature space.

Subsequently, in the feature space the optimal hyper plane is determined by maximizing the

margins of class boundaries [56]. The training points that are closest to the optimal hyper

plane are called support vectors. Once the decision surface is obtained, it can be used for

classifying new data.

Consider a training dataset of instance-label pairs (xi,yi) with xi ∈ Rn, yi ∈ {1,−1},

and i = 1, . . . , m. In the current context of landslide susceptibility, x is a vector of input

space that contains slope angle, lithology, rainfall, soil type, slope aspect, land use, distance

to roads, distance to rivers, distance to faults, and relief amplitude. The two classes {1,−1}
denote landslide pixels and no-landslide pixels. The aim of the SVM classification is to find

an optimal separating hyperplane that can distinguish the two classes, that is, landslides and

no landslides {1,−1}, from the mentioned set of training data.

For the case of linear separable data, a separating hyperplane can be defined as

yi(w · xi + b) ≥ 1 − ξi, (3.1)

where w is a coefficient vector that determines the orientation of the hyper plane in the feature

space, b is the offset of the hyper plane from the origin, and ξi is the positive slack variables

[57].
The determination of an optimal hyper plane leads to the solving of the following

optimization problem using Lagrangian multipliers [58]:

Minimize
n∑
i=1

αi − 1

2

n∑
i=1

n∑
j=1

αiαjyiyj
(
xixj
)
,

Subject to
n∑
i=1

αiyj = 0, 0 ≤ αi ≤ C,

(3.2)

where αi are Lagrange multipliers, C is the penalty, and the slack variables ξi allows for

penalized constraint violation.

The decision function, which will be used for the classification of new data, can then

be written as

g(x) = sign

(
n∑
i=1

yiαixi + b

)
. (3.3)

In cases when it is impossible to find the separating hyper plane using the linear kernel

function, the original input data may be transferred into a high-dimension feature space

through some nonlinear kernel functions. The classification decision function is then written

as

g(x) = sign

(
n∑
i=1

yiαiK
(
xi, xj

)
+ b

)
, (3.4)

where K(xi, xj) is the kernel function.
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The choice of the kernel function is crucial for successful SVM training and classifica-

tion accuracy [59]. There are four types of kernel function groups that are commonly used

in SVM: linear kernel (LN), polynomial kernel (PL), radial basis function (RBF) kernel, and

sigmoid kernel (SIG). The LN is considered to be a specific case of RBF, whereas the SIG

behaves like the RBF for certain parameters [60]. According to Keerthi and Lin [61], the LN

is not needed for use when the RBF is used. And generally, the classification accuracy of the

SIG may not be better than RBF [62]. Therefore in this study, only the two kernel functions,

RBF and PL, were selected. According to Zhu et al. [63], the main advantage of using RBF

is that RBF has good interpolation abilities. However, it may fail to provide longer-range

extrapolation. On contrast, PL has better extrapolation abilities at lower-order degrees but

requires higher order degrees for good interpolation. The formulas and their parameters are

shown in Table 2.

The performance of the SVM model depends on the choice of the kernel parameters.

For the RBF-SVM, the regularization parameter (C) and the kernel width (γ) are the two

parameters that need to be determined, whereas C, γ and the degree of polynomial kernel

(d) are three for the case of the PL-SVM. Parameter C controls the tradeoff between training

errors and margin, which helps to control overfitting of the model. If values of C are large,

that will lead to a few training errors, whereas a small value for C will generate a larger

margin and thus increase the number of training errors [64]. Parameter γ controls the degree

of nonlinearity of the SVM model. Parameter d defines the degree of the polynomial kernel.

The process of picking up the best pairs of parameters, which produce the best

classification result, is considered to be an important research issue in the data mining

area [65]. Many methods have been proposed, such as the heuristic parameter selection

[66], the gradient descent algorithm [67], the Levenberg-Marquardt method [68], and the

cross-validation method [69]. However, the grid search method that is widely used in the

determination of SVM parameters is still considered to be the most reliable optimization

method [70] and was selected for this study. Firstly, the ranges of all parameters with a step-

size process were determined. Secondly, the grid search was performed by varying the SVM

hyperparameters. Finally, the performance of every combination is assessed to find the best

pairs of parameters. However, the grid search is only suitable for the adjustment of a small

number of parameters due to the computational complexity [71].

3.2. Decision Tree (DT)

A DT is a hierarchical model composed of decision rules that recursively split independent

variables into homogeneous zones [72]. The objective of DT building is to find the set

of decision rules that can be used to predict outcome from a set of input variables. A

DT is called a classification or a regression tree if the target variables are discrete or

continuous, respectively [73]. DT has been applied successfully in many real-world situations

for classification and prediction [74].
The main advantage of DT is that DT models have the capability of modeling complex

relationship between variables. They can incorporate both categorical and continuous

variables without strict assumptions with respect to the distribution of the data [75]. In

addition, DTs are easy to construct and the resulting models can be easily interpreted.

Furthermore, the DT model results provide clear information on the relative importance of

input factors [76]. The main disadvantage of DTs is that they are susceptible to noisy data

and that multiple output attributes are not allowed [77].
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Many algorithms for constructing decision tree models such as classification and

regression tree (CART) [78], chi-square automatic interaction detector decision tree (CHAID)
[79], ID3 [80], and C4.5 [81] are proposed in the literature. In this study, the J48 algorithm

[82], which is a Java reimplementation of the C4.5 algorithm, was used. The C4.5 uses an

entropy-based measure as the selection criteria that is considered to be the fastest algorithm

for machine learning with good classification accuracy [83]. Given a training dataset T with

subsets Ti, i = 1, 2, ..., s, the C4.5 algorithm constructs a DT using the top-down and recursive-

splitting technique. A tree structure consists of a root node, internal nodes, and leaf nodes.

The root node contains all the input data. An internal node can have two or more branches

and is associated with a decision function. A leaf node indicates the output of a given input

vector.

The procedure of DT modeling consists of two steps: (1) tree building and (2) tree

pruning [84]. The tree building begins by determining the input variable with highest gain

ratio as the root node of the DT. Then the training dataset is split based on the root values,

and subnodes are created. For discrete input variables, a subnode of the tree is created for

each possible value. For continuous input variables, two sub-nodes are created based on a

threshold that was determined in the threshold-finding process [81]. In the next step, the

gain ratio is calculated for all the sub-nodes individually, and the process is subsequently

repeated until all examples in a node belong to the same class. And those nodes are called

leaf nodes and are labeled as class values.

Since the tree obtained in the building step may have a large number of branches and

therefore may cause a problem of over-fitting [85], therefore, the tree needs to be pruned

for better classification accuracy for new data. Two types of tree pruning can be seen: before

pruning and after pruning. In the case of pre-pruning, the growing of the tree will be stopped

when a certain criterion is satisfied, whereas in the post-pruning case the full tree will be

constructed first, and then the ending subtrees will be replaced by leafs based on the error

comparison of the tree before and after replacing sub-trees.

The information gain ratio for attribute A is as follows:

GainRatio(A, T) =
Gain(A, T)

SplitInfo(A, T)
, (3.5)

where

Gain(A, T) = Entropy(T) −
s∑
i=1

|Ti|
|T | Entropy(Ti),

SplitInfo(A) = −
s∑
i=1

|Ti|
|T | log2

|Ti|
|T | .

(3.6)

A DT can estimate the probability of belonging to a specific class and therefore the probability

isused to predict the probability of landslide pixels. The estimated probability is based on a

natural frequency at the tree leaf. However, the estimated probability might not give sound

probabilistic estimates; therefore Laplace smoothing [86] was used in this study.
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3.3. Naı̈ve Bayes (NB)

An NB classifier is a classification system based on Bayes’ theorem that assumes that all the

attributes are fully independent given the output class, called the conditional independence

assumption [48]. The main advantage of the NB classifier is that it is very easy to construct

without needing any complicated iterative parameter estimation schemes [40]. In addition,

NB classifier is robust to noise and irrelevant attribute. This method has been successfully

applied in many fields [87].
Given an observation consisting of k attributes xi, i = 1, 2, . . . , k (xi is landslide

conditioning factor), yj , j = landslide,no landslide is the output class. NB estimates the

probability P(yj/xi) for all possible output class. The prediction is made for the class with

the largest posterior probability as

yNB = argmaxP(yj)
yj∈{Landslide,no-landslide}

n∏
i=1

P
(
xi/yj

)
. (3.7)

The prior probability P(yj) can be estimated using the proportion of the observations with

output class yj in the training dataset. The conditional probability is calculated using

P

(
xi
yj

)
=

1√
2πδ

e−(xi−μ)
2/2δ2

, (3.8)

where μ is mean and δ is standard deviation of xi.

3.4. Performance Evaluation

The performances of the trained landslide models were assessed using several statistical

evaluation criteria using counts of true positive (TP), false positive (FP), true negative (TN),
false negative (FN).

TP rate (sensitivity) measures the proportion of the number of pixels that are correctly

classified as landslides and is defined as TP/(TP + FN). TN rate (specificity) measures

the proportion of number of pixels that are correctly classified as non-landslide and is

defined as TN/(TN + FP). Precision measures the proportion of the number of pixels that

are correctly classified as landslide occurrences and is defined as TP/(TP + FP). Overall

accuracy is calculated as (TP + TN)/total number of training pixels. The F-measure combines

precision and sensitivity into their harmonic mean and is defined as 2 ∗ Sensitivity ∗
Specificity/(Sensitivity + Specificity) [88].

In order to measure the reliability of the landslide susceptibility models, the Cohen

kappa index (κ) [89–91] was used to assess the model classification compared to chance

selection:

κ =
PC − Pexp

1 − Pexp
, (3.9)

where PC is the proportion of number of pixels that are correctly classified as landslide or

non-landslide and is calculated as (TP + TN)/total number of pixels. Pexp is the expected
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agreements and is calculated as ((TP + FN)(TP + FP) + (FP+TN)(FN+TN))/Sqrt(total

number of training pixels).
A κ value of 0 indicates that no agreement exists between the landslide model and

reality whereas a κ value of 1 indicates a perfect agreement. If κ value is negative, it indicates

a poor agreement. A κ value in the range (0.80–1) is considered as indicator of almost perfect

agreement while a value in the range (0.60–0.80) indicates a substantial agreement between

the model and reality. For a value in the interval (0.40–0.60), the agreement is moderate and

the values of (0.20–0.40) and <0.2 indicate over fair and slight agreement, respectively [92].

3.5. Preparation of the Training and the Validation Datasets

In this study, a total of ten landslide conditioning factors were used. They are slope angle,

lithology, rainfall, soil type, slope aspect, landuse, distance to roads, distance to rivers,

distance to faults, and relief amplitude. For each conditioning factor, a map is generated.

These maps were then converted into a pixel format with a spatial resolution of 20 ×
20 m. In the next step, frequency ratio values [93] were calculated for all categories based

on the landslide grid cells. Based on these ratio values, each category was assigned an

attribute number and then was rescaled in the range 0.1 to 0.9 (Table 1) using the Max-Min

normalization procedure [94] as follows:

v′ =
v − Min(v)

Max(v) − Min(v)
(U − L) + L, (3.10)

where v′ is the normalized data matrix, v is the original data matrix, and U and L are the

upper and lower normalization boundaries.

In landslide modeling, the landslide data should be split into two parts, training and

validation datasets. Without the splitting, it would not be possible to validate the results

[95]. In this study, the landslide inventory map with 118 landslide polygons was randomly

split into two subsets: subset 1 comprised 70% of the data (82 landslides with 684 landslide

grid cells) and was used in the training phase of landslide models; subset 2 is a validation

dataset with 30% of the data (36 landslides with 315 landslide grid cells) for the validation

and estimate the prediction accuracy of the resulted models.

All of the 684 landslide grid cells in the subset 1 were assigned the value of 1. SVM may

seriously have negative effects on the model performance when the numbers of landslide and

non-landslide grid cells in the training dataset are significantly unbalanced. Therefore, the

same amount of no-landslide grid cells was randomly sampled from the landslide-free area

and assigned the value of −1. In the cases of DT and NB classifiers, no-landslide grid cells

were assigned to the value 0. Finally, an extracting process was conducted to extract values for

the ten landslide conditioning factors to build a training dataset. This dataset contains a total

of 1368 observations, ten input variables, and one target variable (landslide, no landslide).

3.6. Training of the Support Vector Machines, Decision Tree and Naı̈ve Bayes
Models and Generation of Landslide Susceptibility Indexes

3.6.1. Support Vector Machines (SVM)

In the case of SVM, the model selection with its optimal parameters searching plays a crucial

role in the performance of the model. In this study, RBF and PL kernel functions were selected.
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Table 1: Normalized classes of landslide conditioning factors used.

Data layers Class
Class pixels

(%)
Landslide
pixels (%)

Frequency
ratio

Attribute
Normalized

classes

Slope angle (◦)

0–10 42.82 0.20 0.005 2 0.26

10–20 29.13 29.93 1.028 4 0.58

20–30 20.25 54.75 2.704 5 0.74

30–40 6.84 14.31 2.094 6 0.90

40–50 0.93 0.80 0.862 3 0.42

>50 0.04 0.00 0.000 1 0.10

Slope aspect

Flat (−1) 0.06 0.00 0.000 1 0.10

North (0–22.5 and
337.5–360) 12.02 4.70 0.391 2 0.20

Northeast
(22.5–67.5) 14.56 11.81 0.811 6 0.60

East (67.5–112.5) 12.06 7.81 0.648 5 0.50

Southeast
(112.5–157.5) 12.04 14.51 1.206 7 0.70

South (157.5–202.5) 12.90 22.72 1.761 8 0.80

Southwest
(202.5–247.5) 14.60 26.33 1.804 9 0.90

West (247.5–292.5) 11.31 7.11 0.628 4 0.40

Northwest
(292.5–337.5) 10.46 5.01 0.478 3 0.30

Relief
amplitude (m)

0–50 27.00 1.10 0.041 1 0.10

50–100 23.97 25.43 1.061 3 0.42

100–150 22.98 41.04 1.786 6 0.90

150–200 14.75 20.12 1.364 5 0.74

200–250 7.06 8.41 1.190 4 0.58

250–532 4.24 3.90 0.920 2 0.26

Lithology

Group 1 4.08 6.31 1.546 6 0.77

Group 2 39.62 33.43 0.844 4 0.50

Group 3 32.55 27.13 0.833 3 0.37

Group 4 11.65 21.62 1.856 7 0.90

Group 5 1.18 0.00 0.000 1 0.10

Group 6 5.62 7.81 1.389 5 0.63

Group 7 5.29 3.70 0.700 2 0.23

Land use

Populated area 7.53 14.01 1.862 10 0.75

Orchard land 3.71 2.50 0.674 7 0.54

Paddy land 9.17 4.10 0.448 5 0.39

Protective forestland 8.58 20.32 2.368 12 0.90

Natural forestland 31.91 15.62 0.489 6 0.46

Productive
forestland

11.72 22.62 1.930 11 0.83

Water 3.97 1.00 0.252 4 0.32

Annual crop land 1.60 0.20 0.125 3 0.25

Nontree rocky
mountain

4.08 7.21 1.767 9 0.68
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Table 1: Continued.

Data layers Class
Class pixels

(%)
Landslide
pixels (%)

Frequency
ratio

Attribute
Normalized

classes

Barren land 16.95 12.41 0.732 8 0.61

Specially used
forestland

0.36 0.00 0.000 2 0.17

Grass land 0.43 0.00 0.000 1 0.10

Soil type

Eutric fluvisols 3.49 6.11 1.751 12 0.83

Degraded soil 0.03 0.00 0.000 3 0.23

Limestone
mountain

14.42 15.12 1.048 9 0.63

Ferralic acrisols 36.53 43.84 1.200 10 0.70

Rhodic ferralsols 8.97 3.40 0.379 7 0.50

Humic acrisols 30.91 28.13 0.910 8 0.57

Dystric fluvisols 0.73 2.80 3.828 13 0.90

Dystric gleysols 0.39 0.60 1.524 11 0.77

Luvisols 0.46 0.00 0.000 4 0.30

Humic ferralsols 1.15 0.00 0.000 5 0.37

Populated area 0.44 0.00 0.000 2 0.17

Water 2.41 0.00 0.000 1 0.10

Gley fluvisols 0.08 0.00 0.000 6 0.43

Rainfall (mm)

362–470 22.48 27.23 1.211 3 0.63

470–540 46.40 35.84 0.772 2 0.37

540– 610 22.18 9.01 0.406 1 0.10

610–950 8.94 27.93 3.125 4 0.90

Distance to
roads (m)

0–40 1.40 41.64 29.755 4 0.90

40–80 1.68 21.52 12.788 3 0.63

80–120 1.88 4.70 2.509 2 0.37

>120 95.04 32.13 0.338 1 0.10

Distance to
rivers (m)

0–40 3.86 14.41 3.731 4 0.90

40–80 4.52 12.41 2.747 3 0.63

80–120 4.82 8.31 1.725 2 0.37

>120 86.80 64.86 0.747 1 0.10

Distance to
faults (m)

0–200 18.09 24.02 1.328 5 0.90

200–400 15.95 11.61 0.728 2 0.30

400–700 19.89 24.22 1.218 3 0.50

700–1,000 14.31 18.42 1.287 4 0.70

>1,000 31.75 21.72 0.684 1 0.10

Table 2: RBF and PL kernels and their parameters.

Kernel function Formula Kernel parameters

RBF K(xi, xj) = exp(−γ‖xi − xj‖2) γ

PL K(xi, xj) = (γxTi xj + 1)d γ, d
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Table 3: Degree of polynomial kernel versus area under the ROC curves in the training and validation
datasets.

Degree of polynomial kernel
AUC

Training dataset Validation dataset

1 0.9432 0.9524

2 0.9489 0.9560

3 0.9575 0.9566
4 0.9643 0.9556

5 0.9717 0.9435

6 0.9827 0.9046

7 0.9905 0.8767

8 0.9946 0.8314

9 0.9985 0.8067

10 0.9996 0.8133

The training process was started by searching the optimal kernel parameters using the grid-

search method with cross-validation that can help to prevent overfitting. Since the numbers

of landslide grid cells in the study area are not large, 5-fold cross-validation was used to

find the best kernel parameters. The training dataset was randomly split into 5 equally sized

subsets. Each subset was used as a test dataset for the SVM model trained on the remaining 4

data subsets. The cross-validation process was then repeated five times with each of the five

subsets used once as the test dataset.

With the RBF kernel, the two kernel parameters of C and γ need to be determined. The

procedure is as follows: (1) we set a grid space of (C, γ), where C =2−5, 2−4,. . ., 210 and γ =
210, 29, . . ., 2−4; (2) for each parameter, pairs of (C, γ) in the grid space, conduct 5-fold cross-

validation on the training dataset; (3) choose parameter pairs of (C, γ) that have the highest

classification accuracy; (4) use the best parameters to construct a SVM model for landslide

prediction of new data. The best C and γ are determined as 8 and 0.25, respectively. The

correctly classified rate is 91.1%.

With the PL kernel, the two kernel parameters of C and d need to be determined.

Table 3 shows the results of training the SVM model using different d values. The result

shows that when the values of d increase, AUC in the training dataset is increased as well.

However, AUC in the validation dataset increases until d equals 3 and then decreases with

the increasing of the d values. And therefore, the SVM model with three degrees of the

polynomial kernel is selected. The accurately classified rate of SVM using PL kernel is 91.1%.

The best C and γ are determined as 1 and 0.3536, respectively.

A detailed accuracy assessment for RBF-SVM and PL-SVM is shown in Tables 4 and 5.

It could be seen that precision, F-measure, and TP rate are high (>90%) whereas FP rate is low

(<10%). It indicates a high classification capacity for the training dataset for the two models.

The Cohen kappa indexes are 0.822 and 0.823 for RBF-SVM and PL-SVM, respectively. It

indicates a good agreement between the observed and the predicted values.

3.6.2. Decision Tree (DT)

In the case of DT, the first step is to determine the optimal value of the algorithm parameter

such as the minimum number of instances (MNIs) per leaf and the confidence factor (CF).
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Table 4: Detailed accuracy assessment by classes of RBF-SVM, PL-SVM, DT, and NB models.

Model TP rate (%) FP rate (%) Precision (%) F-measure (%) Class

RBF-SVM
90.4 8.2 91.7 91.0 Landslide

91.8 9.6 90.5 91.1 No landslide

PL-SVM
90.2 7.9 92.0 91.1 Landslide

92.1 9.8 90.4 91.2 No landslide

DT
95.5 9.5 90.9 93.2 Landslide

90.5 4.5 95.2 92.8 No landslide

NB
83.2 11.0 88.4 85.7 Landslide

89.0 16.8 84.1 86.5 No landslide

Since a lower MNI is required to a leaf tree, the more branching will be created resulting in

a larger tree. And thus, it may cause overfitting problem. In contrast, a higher MNI required

per leaf will result in a narrow tree.

Figure 4 shows the MNI required per leaf versus the classification accuracy. In this

test, the MNI required in a leaf was varied from 1 to 25 with a step of one, and the

corresponding classification accuracies were obtained and plotted. The result shows that the

highest classification accuracy is 92.8% corresponding to a MNI of 6. Therefore, the MNI per

leaf of 6 was selected.

In order to explore the effect of the CF on the classification accuracy, the CF value was

varied from 0.1 to 1 using a step size of 0.05. The corresponding classification accuracy was

calculated. The result is shown in Figure 5. The result shows that the highest classification

accuracy occurred with the CF of 0.35. Therefore CF of 0.35 was selected. With the two

aforementioned parameters being determined, the decision tree model was constructed using

the J48 algorithm. The probability of belonging to the landslide or the no-landslide classes for

each observation was estimated using the Laplace smoothing. Using10-fold cross-validation,

the decision tree model was constructed. The classified rate is 92.9%. The Cohen kappa index

is 0.860. Detailed accuracy assessment of the decision tree model by class is shown in Tables 4

and 5. It could be observed that the TP rate, the precision, and the F-measure are greater than

90%. FP rates are 9.5% and 4.5% for the landslide and the non-landslide classes, respectively.

Figure 6 depicts the inferred DT model for landslide susceptibility assessment in this

study. It could be observed that the size of the tree is 55 including the root node, 26 internal

nodes, and 28 leafs (green rectangular boxes). In leaf nodes, value of 0.1 indicates the class of

no landslide, whereas value of 0.9 indicates the landslide class. The number in the parentheses

at each leaf node represents the number of instances in that leaf. It is clear that some instances

are misclassified in some leaves. The number of misclassified instances is specified after a

slash (Figure 6). The highest number of instances in a leaf node is 288, whereas the lowest

number of instances in a leaf node is 7. The top-down induction of the tree shows that

landslide conditioning factor in the higher level of the tree is more important. The relative

importance of the landslide conditioning factor is as follows: distance to roads (81.5% in

relative importance), slope (71.6%), land use (66.7%), aspect (61.1%), rainfall (61.5%), relief

amplitude (61.6%), distance to rivers (60.1%), distance to faults (58.7%), lithology (57.7%),
and soil type (52.8%).
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Figure 5: Confidence factor used for pruning versus classification accuracy.
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Figure 6: Decision tree model for landslide susceptibility assessment for the study area.
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Table 5: Performance evaluation of RBF-SVM, PL-SVM, DT, and NB models.

Parameters RBF-SVM PL-SVM DT NB

Accuracy (%) 91.08 91.15 92.98 86.11

Cohen’s kappa
index

0.822 0.823 0.860 0.722

3.6.3. Naı̈ve Bayes (NB)

In the case of NB classifier, the probability is first calculated for each output class (landslide,

no landslide), and the classification is then made for the class with the largest posterior

probability. The NB model was constructed using the WEKA software. The NB model

obtained an overall classification accuracy of 86.1% in average. TP rate, precision, and F-

measure are varied from 83% to 89%. The Cohen kappa index of 0.722 indicates that the

strength of agreements between the observed and the predicted values is substantial. A

summary result of the model assessment and performance is shown in Tables 4 and 5.

Once the SVM, DT, and NB models were successfully trained in the training phase,

they were used to calculate the landslide susceptibility indexes (LSIs) for all the pixels in

the study area. The results were then transferred into a GIS and loaded in the ARCGIS 10

software for visualization.

4. Validation and Comparison of Landslide Susceptibility Models

4.1. Success Rate and Prediction Rate for Landslide Susceptibility Maps

The validation processes of the four landslide susceptibility maps were performed by

comparing them with the landslide locations using the success-rate and prediction-rate

methods [95]. Using the landslide grid cells in the training dataset, the success-rate results

were obtained. Figure 7 shows the success-rate curves of the four landslide susceptibility

maps (obtained from RBF-SVM, PL-SVM, DT, NB models) in this study in comparison with

the logistic regression model. It could be observed that RBF-SVM and logistic regression

have the highest area under the curve, with AUC values of 0.961 and 0.962, respectively.

They are followed by PL-SVM (0.956), DT (0.952), and NB (0.935). Based on these results we

can conclude that the capability of correctly classifying the areas with existing landslides is

highest for the RBF-SVM (equals to logistic regression), followed by the PL-SVM, DT, and

NB.

Since the success-rate method uses the landslide pixels in the training dataset that

have already been used for constructing the landslide models, the success-rate may not

be a suitable method for measuring the prediction capability of the landslide models [96].
According to Chung and Fabbri [95], the prediction rate could be used to estimate the

prediction capability of the landslide models. In this study, the prediction-rate results of the

four landslide susceptibility models were obtained by comparing them with the landslide

grid cells in the validation dataset. And then the areas under the prediction-rate curves

(AUCs) were further estimated. The more the AUC value is close to 1, the better the landslide

model.

The prediction-rate curves and AUC of the four landslide susceptibility maps are

shown in Figure 8. The results show that AUCs for the four models vary from 0.909 to 0.955.
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Figure 7: Success-rate curves and area, under the curves (AUCs) of RBF-SVM, PL-SVM, DT, and NB
models in comparison with the logistic regression model.
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Figure 8: Prediction-rate curves and areas under the curves (AUCs) of RBF-SVM, PL-SVM, DT, and NB
models in comparison with the logistic regression model.

It indicates that all the models have a good prediction capability. The highest prediction

capability is for RBF-SVM and PL-SVM with AUC values of 0.954 and 0.955, respectively.

They are followed by NB (0.935) and DT (0.907). Compared with the logistic regression (AUC

of 0.938) that used the same data, it can be seen that the prediction capability of the two SVM

models may be slightly better whereas the prediction capability of DT and ND is lower.
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Figure 9: Percentage of landslides against percentage of landslide susceptibility maps using of RBF-SVM,
PL-SVM, DT, and NB models.

4.2. Reclassification of Landslide Susceptibility Indexes

The landslide susceptibility indexes were reclassified into four relative susceptibility classes:

high, moderate, low, and very low. In this study, the classification method proposed by

Pradhan and Lee [8] was used to determine landslide susceptibility class breaks based on

percentage of area: high (10%), moderate (10%), low (20%), and very low (60%) (Figure 9).
Landslide density analysis was performed on the four landslide susceptibility classes

[97]. Landslide density is defined as the ratio of landslide pixels to the total number of

pixels in the susceptibility class. An ideal landslide susceptibility map has the landslide

density value increasing from a very low- to a higher-susceptibility class [32]. A plotting

of the landslide density for the four landslide susceptibility classes of the four landslide

susceptibility models (RBF-SVM, PL-SVM, DT, and NB) is shown in Figure 10. It could be

observed that the landslide density is gradually increased from the very low- to the high-

susceptibility class. Figure 11 shows landslide susceptibility maps using RBF-SVM, PL-SVM,

DT, and NB models.

Table 6 shows the characteristics of the four susceptibility classes of the four maps of

the study area. It can be observed that the percentages of existing landslide pixels for the high

class are 87.2%, 87.5%, 90.7%, and 81.3% for RBF-SVM, PL-SVM, DT, and NB, respectively.

In contrast, 80% of the pixels in the study areas are in the low- and very-low-susceptibility

classes. These maps are satisfing two spatial effective rules [98], (1) the existing landslide

pixels should belong to the high-susceptibility class and (2) the high susceptibility class

should cover only small areas.

5. Discussions and Conclusions

This paper presents a comparative study of three data mining approaches SVM, DT, and

NB for landslide susceptibility mapping in the Hoa Binh province (Vietnam). The landslide

inventory was constructed with 118 polygons of landslides that occurred during the last ten

years. A total of ten landslide conditioning factors were used in this analysis, including slope
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Figure 10: Landslide density plots of four landslide susceptibility classes of RBF-SVM, PL-SVM, DT, and
NB models.

Table 6: Characteristics of the four susceptibility zones of the four landslide susceptibility models obtained
from RBF-SVM, PL-SVM, DT, and NB models.

Landslide susceptibility classes Percentage of area
Landslide density

RBF-SVM PL-SVM DT NB

High 10.0 8.719 8.749 9.069 8.128

Moderate 10.0 0.740 0.660 0.571 0.791

Low 20.0 0.221 0.241 0.115 0.371

Very low 60.0 0.017 0.018 0.022 0.057

angle, lithology, rainfall, soil type, slope aspect, landuse, distance to roads, distance to rivers,

distance to faults, and relief amplitude. For building the models, a training dataset was

extracted with 70% of the landslide inventory, whereas the remaining landslide inventory

was used for the assessment of the prediction capability of the models. Using the three data

mining algorithms, SVM, DT, and NB, the landslide susceptibility maps were produced.

These maps present spatial predictions of landslides. They do not include information

“when” and “how frequently” landslides will occur.

In the case of SVM, the selection of the kernel function and its parameters play an

important role in landslide susceptibility assessment. For the RBF function, the best kernel

parameters of C and γ are 8 and 0.25, respectively. For the PL function, it is clear that the

degree of polynomial function had significant effect in the model. The SVM model with a

polynomial degree of 3 has the highest accuracy. The best kernel parameters of C and γ are

1 and 0.3536 respectively. In the case of DT, the probability that an observation belongs to

landslide class using Laplace smoothing was used to calculate the landslide susceptibility

index. For building the DT model, the selection of MNI per leaf tree and CF has largely

affected the accuracy of the model. In this study, the best decision tree model is found with

MNI per leaf tree as 6 and the CF as 0.35. Relative importance of landslide conditioning

factors are as follows: distance to roads, slope angle, landuse, slope aspect, rainfall, relief

amplitude, distance to rivers, distance to faults, lithology, and soil type. In the case of NB, the

application for landslide modeling is relatively robust. This is not a time-consuming method,
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Figure 11: Landslide susceptibility maps of the Hoa Binh province (Vietnam) using: (a) RBF-SVM; (b)
PL-SVM; (c) DT; and (d) NB.

and techniques required to use are simple. The result of this study shows that NB gives

relatively good prediction capability.

Qualitative interpretation of the high landslide susceptibility classes of the four maps

shows that they agree quite well with field evidence and assumptions. High probability

of landslides distributes in areas with active fault zones and road-cut sections. Using the

success-rate and prediction-rate methods, the landslide susceptibility maps were validated

using the existing landslide locations. The quantitative results show that all the landslide

models have good prediction capability. The highest area under the success-rate curve (AUC)
is for the RBF-SVM (0.961), followed by PL-SVM (0.956), DT (0.938), and NB (0.935). The

highest prediction-rate result is for RBF-SVM and PL-SVM with areas under the prediction

curves (AUC) of 0.954 and 0.955, respectively. They are followed by NB (0.932) and DT

(0.903). When compared with the results obtained from the logistic regression (Figure 8),
the prediction capabilities of the two SVM models are slightly better. On contrast, DT and NB

models have lower accuracy. The quantitative results of this study are comparable to those

obtained in other studies, such as Brenning [99] and Yilmaz [35]. The findings of this study

agree with Yao et al [100] who states that SVM possesses better prediction efficiency than
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the logistic regression. Additionally, the findings also agree with Marjanović et al. [101], who

reported that SVM outperformed the logistic regression and DT. Similarly, the results also

agree with Ballabio and Sterlacchini [102], who concluded that SVM was found to outperform

the logistic regression, linear discriminant, and NB.

The reliabilities of the landslide models were assessed using Cohen kappa index (κ).
In this study, the kappa indexes are of 0.822, 0.823, and 0.860 for RBF-SVM, PL-SVM, and DT,

respectively. It indicates an almost perfect agreement between the observed and the predicted

values. Cohen kappa index is 0.722 for NB indicating substantial agreement between the

observed and the predicted values. The reliability analysis results are satisfying compared

with other works such as Guzzetti et al. [91] and Saito et al. [44].
Landslide susceptibility maps are considered to be a useful tool for territorial planning,

disaster management, and natural hazards’ mitigation. This study shows that SVMs have

considered being a powerful tool for landslide susceptibility with high accuracy. As a final

conclusion, the analyzed results obtained from the study can provide very useful information

for decision making and policy planning in landslide areas.
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