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Fault or health condition prediction of the complex systems has attracted more attention in recent
years. The complex systems often show complex dynamic behavior and uncertainty, which makes
it difficult to establish a precise physical model. Therefore, the time series of complex system is
used to implement prediction in practice. Aiming at time series online prediction, we propose a
new method to improve the prediction accuracy in this paper, which is based on the grey system
theory and incremental learning algorithm. In this method, the accumulated generating operation
(AGO)with the raw time series is taken to improve the data quality and regularity firstly; then the
prediction is conducted by amodified LS-SVRmodel, which simplifies the calculation process with
incremental learning; finally, the inverse accumulated generating operation (IAGO) is performed
to get the prediction results. The results of the prediction experiments indicate preliminarily that
the proposed scheme is an effective prediction approach for its good prediction precision and less
computing time. The method will be useful in actual application.

1. Introduction

Prediction technique is essential to ensure the operational safety of complex systems.
However, the complex systems are not easy to establish their precise physical models. In
the practice, time series-based prediction methods have attracted increased attention [1–7].

Compared with other reported methods, Support Vector Regression (SVR) is based
on statistical theory and structural risk minimization principle [8–10], and it has a global
optimum and exhibits better accuracy in nonlinear and nonstationary time series data
prediction via kernel function. However, aiming at the large sample data, the quadratic
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programming (QP) problem becomes more complex. Thus, Least Squares Support Vector
Regression (LS-SVR) was proposed by Suykens et al. [11] In LS-SVR, the inequality
constrains are replaced by equality constrains, which can reduce the calculation time
effectively. Thus, LS-SVR has more attention in time series forecasting [12–16].

Because a great number of uncertain elements exist in practical application, online
prediction scheme [17, 18] is applied to meet the actual training and prediction condition,
and then achieve better prediction results. Moreover, the incompleteness, noisiness, and
inconsistency existing in the raw time series sample data will reduce the prediction accuracy.
In these cases, two problems should be considered simultaneously, one is how to improve
prediction accuracy, the other one is how to reduce the training time and prediction time.

Some researchers combined several methods to improve prediction performance [19,
20], which can fuse their advantages and avoid their drawbacks. Using this idea, we propose
a scheme to fix the above problems. In the new scheme, we integrate accumulated generating
operation (AGO) [21] with a modified LS-SVR-based model. It includes the following two
aspects.

(1) Based on the grey system theory [21], we conduct AGO with the raw time series to
improve the data quality and regularity, and finally we can obtain the results using
inverse accumulated generating operation (IAGO).

(2) We set up a new adaptive online prediction model based on LS-SVR, which utilizes
incremental learning algorithm to enrich information and modifies the LS-SVR
model with more simple form to reduce prediction calculation time.

The remainder of the paper is organized as follows. Section 2 gives a brief introduction
of LS-SVR; Section 3 proposes the new scheme in detail, which includes the AGO-based
prediction strategy and the simple modified prediction model based on incremental learning
algorithm; Section 4 shows experiments and results analysis; conclusions are given in
Section 5.

2. A Brief Introduction of LS-SVR

Consider a training sample data set {(xk, yk)}Nk=1 with input data xk ∈ Rn and output yk ∈ R,
where N denotes the number of training samples. The goal of LS-SVR is to obtain a function
as follows:

y(x) = wTφ(x) + b, (2.1)

where the nonlinear mapping function φ(·) maps the input data into a higher dimensional
feature space. It means that the method makes the nonlinear fitting problem in input feature
space to be replaced by a linear fitting problem in high-dimensional feature space. w is the
weight vector and b is the bias constant.

According to the structure risk minimization principle, w and b can be found via a
constrained convex optimization as follows:

min J(w, e) =
1
2
wTw +

1
2
c

N∑

k=1

e2k,

s.t. yk = wTϕ(xk) + b + ek, k = 1, 2, . . . ,N,

(2.2)



Mathematical Problems in Engineering 3

where J is the loss function, ei ∈ R is the slack variables, and c is a regularization parameter.
Equation (2.2) can be transformed into dual form with Lagrange function as follows:

L(w, b, e, α) = J(w, e) −
N∑

k=1

αk

{
wTϕ(xk) + b + ek − yk

}
, (2.3)

where αk are the Lagrange multipliers.
It is obvious that the optimal solution of (2.2) satisfies Karush-Kuhn-Tucker (KKT)

conditions, then the optimal conditions are shown as follows:

∂L

∂w
= w −

n∑

i=1

αiϕ(xi) = 0 =⇒ w =
n∑

i=1

αiϕ(xi),

∂L

∂b
= −

n∑

i=1

αi = 0 =⇒
n∑

i=1

αi = 0,

∂L

∂αi
= wTϕ(xi) + b + ei − yi = 0 =⇒ yi = wTϕ(xi) + b + ei,

∂L

∂ei
= cei − αi = 0 =⇒ ei =

1
c
αi.

(2.4)

After eliminating w and ei from (2.4), we can obtain the solution by the following
linear equations:

⎡

⎣
0 1Tn
1n K +

I
c

⎤

⎦
[
b
α

]
=
[
0
y

]
, (2.5)

where K(i, j) = k(xi, xj) = ϕ(xi)
Tϕ(xj), α = [α1, α2, . . . , αn]

T , 1n is an n-dimensional vector of
all ones, I is a unite matrix, and y = [y1, y2, . . . , yn]

T .
In LS-SVR, the optimization problem is simplified to a linear equations instead of more

complex quadratic programming problem in SVR. Therefore, the computational complexity
is decreased significantly. Obviously, (2.5) can be factorized into a positive definite system
[22]. Thus, the solutions of αk and b could be easily obtained. Then the LS-SVR model for
function estimator can be expressed as follows:

y(x) =
N∑

k=1

αkK(x, xk) + b. (2.6)

3. Proposed Adaptive Online Prediction Scheme for Time Series

3.1. AGO-Based Prediction Method for Time Series

Time series prediction models employ the historical data values for extrapolation to obtain
the future values. If a time series has a regular pattern, then a value of the series should be a
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function of previous values. If Y is the target value that we are trying to model and predict,
and Yt is the value of Y at time t, then the goal is to create a prediction model f as following
form:

Yt = f(Yt−1, Yt−2, Yt−3, . . . , Yt−n) + et, (3.1)

where Yt−1 is the value of Y for the previous observation, Yt−2 is the value two observations
ago, and et represents noise that does not follow a predictable pattern. This way, the good
prediction accuracy always depends on the high quality of time series data.

In 1982, a famous Chinese scholar Deng [21] proposed the grey system theory, which
has already been used widely in all kinds of fields. As the core of the grey prediction
theory, the accumulated generating operation (AGO) and inverse accumulated generating
operation (IAGO) are the main methods which provide a manageable approach to treating
disorganized evidence, that is, AGO has a main advantage that it can reduce the disturbance
with the stochastic factors. AGO makes the rules hidden the raw time series to be presented
fully and enhances the law of time series data.

Consider a raw time series x(0) = (x(0)(1), x(0)(2), ..., x(0)(n)), and take the AGO with
x(0) as follows:

x(1)(i) =
i∑

r=1

x(r), i = 1, 2, . . . , n. (3.2)

Then x(1) = (x(1)(1), x(1)(2), . . . , x(1)(n)) will be the new time series.
After the new time series x(1) is formed, it can be used to predict the future values

based on the previous and current values. The previous and the current values of the time
series are used as input for the following prediction model:

{
x(1)(t + 1), x(1)(t + 2), . . . , x(1)(t + h)

}
= F

(
x(1)(t), x(1)(t − 1), . . . , x(1)(t −m + 1)

)
, (3.3)

where h represents the number of ahead predictions, F is the prediction model, and m is the
size of repressor. According to (3.3), we can obtain the training sample.

In this paper, we use the following prediction strategy to predict the next data-point
value. The strategy is that the prediction data will join into the sample data set as known
data. This prediction process is called incremental algorithm. The model can be constructed
with one-step prediction:

x(1)(t + 1) = F
(
x(1)(t), x(1)(t − 1), . . . , x(1)(t −m + 1)

)
. (3.4)

The regressor of the model is defined as the vector of inputs (x(t), x(t − 1), . . . , x(t −m + 1)).
After getting the prediction values sequence, we can compute the real prediction

results by IAGO:

x̂(0)(t + 1) = x̂(1)(t + 1) − x̂(1)(t). (3.5)
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3.2. Modified LS-SVR Model Based Incremental Learning

For adaptive online prediction, real-time is the basic requirement, that is, in the adaptive
online prediction based on incremental learning algorithm, the new predicted data is
constantly added, and we hope that the total computing time of training and prediction
should be less than the sampling period. In this case, the most important issue is to compute
Lagrange multipliers α and bias term b, which has effect on the computing time because they
need recalculate when the new sample data is added in. After analyzing the research results
of Yaakov et al. [23] we develop a simple prediction model based on LS-SVR to solve the
problem.

Suppose the training sample data are described by the input {(xi, yi)}i=ti=1, (xi ∈ Rd, yi ∈
R). In time t, give the sample data set {(x(t),y(t)}, x(t) = [x1(t), x2(t), . . . , xt(t)], y(t) = [y1(t),
y2(t), ..., yt(t)]. As time t goes on, the new sample data joins. We give a new approach to
eliminate the bias term b.

Let w(t) =
[
w(t)
b/λ

]
and φi(t) =

[
ϕi(t)
λ

]
, where ϕi(t) is the mapping function of the ith

input data at time t and λ is a constant. Then rewritten optimization problem of (2.2) as
follows:

min J(w, e) =
1
2
w(t)Tw(t) +

c

2

t∑

i=1

ei
2(t),

s.t. yi(t) = w(t)Tφi(t) + ei(t), i = 1, 2, . . . , t.

(3.6)

The solution of (3.6) is also obtained after constructing the Lagrange function:

L(w, e, a) =
1
2
w(t)Tw(t) +

1
2
c

t∑

i=1

e2i (t) −
t∑

i=1

ai(t)
(
w(t)Tφi(t) + ei(t) − yi(t)

)
, (3.7)

where ai(t) is the ith Lagrange multiplier. The new optimal conditions are shown as follows

∂L

∂w(t)
= w(t) −

t∑

i=1

ai(t)φi(t) = 0 =⇒ w(t) =
t∑

i=1

ai(t)φi(t),

∂L

∂ai(t)
= w(t)Tφi(t) + ei(t) − yi(t) = 0 =⇒ yi(t) = w(t)Tφi(t) + ei(t),

∂L

∂ei(t)
= cei(t) − ai(t) = 0 =⇒ ei(t) =

1
c
ai(t).

(3.8)
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After eliminating ei(t) and w(t), the solution of (3.8) is given by the following set of linear
equations:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

ϕ1(t)
Tϕ1(t) + λ2 +

1
c

ϕ2(t)
Tϕ1(t) + λ2 · · · ϕt(t)

Tϕ1(t) + λ2

ϕ1(t)
Tϕ2(t) + λ2 ϕ2(t)

Tϕ2(t) + λ2 +
1
c

· · · ϕt(t)
Tϕ2(t) + λ2

...
...

...
...

ϕ1(t)
Tϕt(t) + λ2 ϕ2(t)

Tϕt(t) + λ2 · · · ϕt(t)
Tϕt(t) + λ2 +

1
c

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

a1(t)
a2(t)
...

at(t)

⎤
⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎣

y1(t)
y2(t)
...

yt(t)

⎤
⎥⎥⎥⎦
.

(3.9)

Let

a(t) =
[
a1(t) a2(t) · · · at(t)

]T
,

y(t) =
[
y1(t) y2(t) · · · yt(t)

]T
,

kij(t) = ϕi(t)Tϕj(t),

Hij(t) = kij(t) + λ2,

H(t) =
{
Hij(t)

}t
i,j=1 +

I
c
,

(3.10)

where I is an identity matrix with t × t. Equation (3.9) can be rewritten as follows:

a(t) = y(t)H(t)−1. (3.11)

The new regression function is presented as follows:

yt+1(t) =
t∑

i=1

ai(t)
(
k(xi(t), xt+1(t)) + λ2

)
. (3.12)

According to (3.11) and (3.12), when the new sample data yt+1(t) is added, the calculation
only needs to compute parameter a.
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At time t + 1, a can be calculate via (3.11), that is, a(t + 1) = y(t + 1)H(t + 1)−1. Here,

y(t + 1) =
[
y(t)T yt+1(t)

]T
,

H(t + 1) =

[
H(t) V(t + 1)

V(t + 1)T v(t + 1)

]
,

V(t + 1) =

⎡
⎢⎢⎢⎢⎣

ϕt+1(t)
Tϕ1(t) + λ2

ϕt+1(t)
Tϕ2(t) + λ2

...
ϕt+1(t)

Tϕt(t) + λ2

⎤
⎥⎥⎥⎥⎦
,

v(t + 1) = ϕt+1(t)Tϕt+1(t) + λ2 +
1
c
,

xt+1(t) = xt+1(t + 1),
yt+1(t) = yt+1(t + 1),
ϕt+1(t) = ϕt+1(t + 1).

(3.13)

H(t + 1)−1 can be fast computed with block matrix approach [24, 25].
From above description, it is obvious that the modified prediction model is a simple

model, and it is maybe applied to reduce the computing time for its less number of parame-
ters.

4. Experiments and Results Analysis

We perform two simulation experiments and an application experiment to evaluate the
proposed scheme. All the experiments adoptMatlabR2011b with LS-SVMlab1.8 Toolbox (The
software can be downloaded from http://www.esat.kuleuven.be/sista/lssvmlab) under
Windows XP operating system.

In this paper, we use the prediction Root Mean Squared Error (RMSE) [26] as
evaluation criteria, which is defined as follows:

RMSE =

√√√√ 1
n

n∑

k=1

(x(k) − x′(k))2, (4.1)

where n is the number of training sample data, x′(k) and x(k) are the prediction and the
actual value, respectively.

4.1. Simulation Experiments and Results Analysis

In order to validate the performance of the proposed AGO-based method described
in Section 3.1 and the modified LS-SVR model-based incremental learning described in
Section 3.2, we perform two simulation experiments. In the experiments, the sample time
series data of variable x has 75 sample data values, which come from one complex avionics
system (shown in Figure 1, omit dimension).

The data points from 1 to 50 in time series are taken as 45 initial training sample data.
The first sample data set consists of points 1 to 6, with the first 5 as the input sample vector
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Figure 1: Sample time series of a certain avionics system.

Table 1: Prediction results of Experiment I.

Method TrTime/(s) PrTime/(s) PrMR
Traditional LS-SVR in [4] 0.0632 0.0200 2.4411
Proposed AGO-based method in Section 3.1 0.0706 0.0209 2.1569

and the 6th point as the output. The second sample data set consists of points 2 to 7, with
the point 2 through 6 as input sample vector and 7th point as the output. This way we have
45 training data out of the first 50 data points. And then we predict the no. 51 to no. 75 time
series data using the trained model. The performance is measured by the prediction mean
RMSE (PrMR), training time (TrTime), and prediction time (PrTime). The experiments are
repeated 100 times and the average results are obtained.

In the simulation Experiment I, we compare the proposed AGO-based method with
traditional LS-SVR presented in [4]. Here, Gaussian RBF kernel k(x, y) = exp(−‖x − y‖2/2σ2)
is adopted as kernel function, and the parameters are jointly optimized with traditional
gridding searchmethod, where the search rang of c and σ2 is [10, 3000]. The prediction results
are shown in Figure 2 (ALS-SVR presents the proposedAGO-basedmethod in the figure) and
Table 1.

From Table 1 and Figure 2, we can see that the proposedAGO-basedmethod has better
prediction accuracy. This is may be due to that the proposed AGO-based method can avoid
the random disturbances existing in the raw time series and improve the regularity of the
time series.

In simulation Experiment II, we compare the two incremental learning-basedmethods:
one is the proposed modified LS-SVR model, the other one is the traditional LS-SVR model.
The other selections are the same as Experiment I. The prediction results are reported in
Table 2.

The results in Table 2 show that the modified LS-SVRmodel can reduce the computing
time more with the same prediction accuracy as the traditional LS-SVR model. Compared
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Table 2: Prediction results of Experiment II.

Incremental learning-based method TrTime/(s) PrTime/(s) PrMR
Traditional LS-SVR model 0.1872 0.0206 2.2142
Proposed modified LS-SVR model in Section 3.2 0.1186 0.0205 2.2142

50 55 60 65 70 75
11

12

13

14

15

16

Raw data
LS-SVR
ALS-SVR

Prediction results ofx

Figure 2: Prediction results of x.

with the results of traditional LS-SVR in [4] (shown in Table 1), the incremental learning-
based methods have better prediction accuracy, which is increased by 10.25%. This may be
due to that the prediction information is used more fully by incremental learning algorithm.

4.2. Application Experiment and Results Analysis

In the application experiment, the experimental sample time series with 2000 sample data
values, which come from a certain complex electronic system, shown in Figure 3.

We set the first 1000 time series data as training samples, and any continuous 11 are
taken as a sample, where the data of the first 10 data compose an input sample vector and
last one as the output vector, that is, in the application experiment, we have 990 training data.
And then we predict the no. 1001 to no. 2000 time series data using the trained prediction
model. The test is also repeated 100 times.

The application experiment is executed using the proposed method presented in
Section 3 (called Proposed Method) and traditional incremental learning based LS-SVR
method (called Traditional Method). The prediction performance is measured by training
time (TrTime), prediction time (PrTime), and prediction mean RMSE (PrMR). The results are
shown in Figures 4 and 5 and Table 3. In addition, we also utilize traditional gridding search
method to joint optimized all the parameters, and the search rang of c and σ2 is [0.1, 200].
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Figure 3: Sample time series of a certain complex electronic system.
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Figure 4: Prediction results of the application experiment.

Table 3: Prediction results of application experiment.

Method TrTime/(s) PrTime/(s) PrMR
The traditional method 1.2921 0.2208 3.1941
The proposed method 0.8245 0.2289 2.0963

Figures 4 and 5 and Table 3 show that the proposed method has better prediction
accuracy with lower computing time. This may be due to that we modify the LS-SVR model
to reduce the parameters of the model, and the data quality and regularity are improved by
AGO. Thus, the proposed method maybe has higher application value.
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Figure 5: Prediction error of the application experiment.

5. Conclusions

In this paper, we address the issue of adaptive online prediction method based on LS-SVR
model. We utilize two approaches to gain better prediction accuracy. Firstly, we make the
accumulated generating operation (AGO) with raw time series to reform the quality of
raw time series, which avoids the random disturbances and improves the regularity of the
time series. Secondly, we modify the traditional LS-SVR model with simple form to simplify
incremental learning, which helps to reduce the computing time in the process of adaptive
online training and prediction.

We conduct three prediction experiments to demonstrate the effectiveness of the
propose method. The results show that the prediction method has better prediction
performance, and it is suitable for the adaptive online prediction in practice.
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