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The problem of a hydromagnetic hot two-dimensional laminar jet issuing vertically into an
otherwise quiescent fluid of a lower temperature is studied. We propose solutions to the boundary
layer equations using the classical Fourier series. The method is essentiall to transform the
boundary layer equations to a coupled set of nonlinear first-order ordinary differential equations
through the Fourier series. The accuracy of the results has been tested by the comparison of the
velocity distributions obtained by the Fourier series with those calculated by finite difference
method. The results show that the present method, based on the Fourier series, is an efficient
method, suitable to solve boundary layer equations applied to plane jet flows with high accuracy.

1. Introduction

The behavior of a two-dimensional symmetric plane jet that spreads out from a nozzle into a
fluid at rest is of basic fluid dynamics interest with many applications in engineering.

Several authors have applied the boundary layer equations to jet flows with very
good results [1, 2]. The exact analytical solutions found by these authors consider that the
size of the nozzle is infinitely small. Crane extends the problem to jets in an atmosphere
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of different densities [3, 4]. Pozzi and Bassano [5] introduced the Padé approximants to
the study of plane jets. Revuelta et al. [6] discussed the idea of the virtual origin of the
jet as a first-order correction for the far-field description, with the idea of obtaining better
agreement between the observed flow field and the one predicted in [1, 2] when the size
of the nozzle is finite. More recently, Wilks et al. studied the development of a jet into
uniform and nonuniform external stream [7–9]. Brand and Lahey [10] studied the effect of
the buoyancy in axisymmetric and plane jets using the self-similar solution of the boundary
layer equations. Sánchez-Sanz et al. [11] studied the hydrogen laminar jet using asymptotic
methods. Martynenko et al. [12] presented an analysis of the buoyancy effects on momentum
and heat transfer in vertical jets and plumes. The works mentioned above are based on
self-similar solutions of the boundary layer equations. The self-similar solutions allow for
the transformation of the boundary layer equations into ordinary differential equations [8].
When the width of the nozzle is finite, generally it is not possible to find self-similar solutions
to the boundary layer equations; in this case it must resort to numerical solutions [13–15]. In
1992 Yu et al. [16] presented a rigorous numerical solution for free and wall two-dimensional
buoyant jets. More recently, Aissia et al. [17] have performed a numerical analysis for the
aiding buoyancy on a vertical round jet. In 2007 Ali et al. [18] gave a detailed numerical
study of the influence of the Prandtl number on the hydrodynamic and thermal behaviour of
a laminar buoyant free jet. Recently, the plane jet problem was revisited by Rosales-Vera and
Valencia [19].

Concerning the application of spectral methods to boundary layer flow problems,
Kumar and Yajnik [20] studied a channel flow problem including a sudden expansion, using
an expansion in the eigenfunctions of the Poiseuille flow development, and the problem is
reduced to solve nonlinear first-order ordinary differential equations that have a tendency
to decouple rapidly. In 1982 Plotkin [21] solved the same problem, specifically by applying
the Fourier series, getting solutions for a sudden channel expansion, channel entry flow,
and slowly diverging cannel, which agree well with the results of previous investigations.
More recently, Figueira Da Silva and Cotta [22] solved the entrance channel flow problem by
applying integral transform techniques to the boundary layer equations. Khabibrakhmanov
and Summers [23] resolved the Blasius equation, using a spectral method with generalized
Laguerre polynomials.

In 2004, Rosales and Frederick [24] solved the classical Graetz problem by applying
the Fourier series. This solution has the virtue of delivering very precise numerical results
for the Nusselt number in the area near the entrance to the channel. Ma et al. [25] develop a
Hermite spectral method for parabolic equations in unbounded domains. Recently, Rosales
and Valencia [26] studied the Blasius equation by the Fourier series finding a solution
with very high accuracy. The same authors applied the Fourier series to the Falkner-Skan
equation [27]. The results show that the pseudospectral method has a very high accuracy. A
complete review of spectral methods applied to fluid dynamics can be found in [28]. About
the pseudospectral methods applied to jet flow, Rosales-Vera and Valencia [19] applied the
Fourier series to study the fluid dynamic of the free plane jet.

In this paper, a spectral method using the Fourier series expansions is used to solve
the buoyant two-dimensional laminar vertical jet of a conducting fluid in a magnetic field
(hydromagnetic jet) with the width of the nozzle being finite. The method is essentiall,
through the Fourier series, to transform the boundary layer equations to a coupled set of
nonlinear first-order ordinary differential equations.
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2. Analysis

Consider the steady, laminar, hydromagnetic flow combined with heat transfer by natural
convection of a vertical jet flow, where a magnetic field of uniform strength B0 is applied in
the Y direction which is normal to the X axis of the jet direction.

In this case the momentum and energy equations of the hydromagnetic vertical
buoyant plane jet flow derived from the Boundary layer approximation are

u
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+
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where the dimensionless coordinates are
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where a is the width of the nozzle, U0 is the velocity flow in the nozzle, U and V are
the velocities in the X and Y directions, T is the temperature flow, and T0 and T∞ are the
temperature flow in the nozzle and the temperature of the fluid far of the jet, respectively. The
Reynolds number is given by Re = ρU0a/μ, ρ and μ are the density and the viscosity of the
fluid,M = B0a

√
σ/

√
μ is the Hartmann number, B0 is the magnetic field, σ is the conductivity

of the fluid, Gr = (ρ2/μ2)gβ(T0 −T∞)a3 is the Grashof number, Ri = Gr/Re2 is the Richardson
number, Pr is the Prandtl number, and β is the thermal diffusivity. The boundary conditions
are
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The following solution for the velocity field and temperature is considered:
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where the number of wavelength ki is given by ki = (π/2L)(2i − 1).
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The y dependence is built on cosine functions that automatically satisfy the boundary
conditions at the y = L and at the symmetry plane for u. These functions form an orthonormal
basis, as follows:
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Replacing (2.6) in (2.1),
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Multiplying (2.8) by cos(kpy) and integrating from y = 0 to L, the following system of
equations is obtained:
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where
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The following set of equations (p = 1, . . . ,N) is gotten, where N is the number of equations
used to approximate the solution with a finite number of terms in the Fourier series. Equation
(2.9) can be expressed as follows:
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Doing a similar analysis to (2.3), the following set of equations is obtained:
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Equations (2.11) and (2.13) represent a first-order nonlinear system of equations. The
functions f and g, which account for the axial dependence of velocity field and temperature
field, can be determined as follows.

3. Numerical Solution

Equations (2.11) and (2.13) are discretized in the variable x, being the following system of
algebraic equations:
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The numerical solution of the systems (2.11) and (2.12) is for each station x. To solve the
system of algebraic equations for the coefficients fp(x) and gp(x), where the values of the
coefficients fp(x − Δx) and gp(x − Δx) are known from the station (x − Δx), the solution is
found through an iterativemethod for coefficients of the Fourier series, defining the following
vectors:
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So, the functions fi(x) and gi(x) of the Fourier series may be recursively determined by the
following equations:
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where the Jacobian matrixes are given by
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and the vectors 
f (n), 
g(n) represent the values of 
f , 
g in the n iteration. The iterations for

f (n), 
g(n) from (2.11) may be repeated until ‖
a(n+1) − 
a(n)‖ ≤ ε, for some prescribed error
tolerance ε.

The boundary condition at x = 0 is considered a uniform profile and a profile of
parabolic shape.

In the uniform initial profile, one has
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In the space of Fourier, the vectors fi(x = 0) and gi(x = 0) are obtained from the previous
condition:
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In the parabolic initial profile, one has
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In the space of Fourier, the vectors fi(x = 0) and gi(x = 0) are obtained from the previous
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Figure 1: Velocity field for a free jet with a uniform initial velocity profile (Pr = 1, Re = 1250).

4. Results

4.1. Free Plane Jet

The case of the free plane jet is obtained when M = 0, Ri = 0, and Pr/= 0. Figure 1 shows the
velocity field obtained for a uniform initial velocity profile with Pr = 1 and Re = 1250, in
different x position.

In this case, the velocity field is not coupled with the temperature field. In the far
field, the velocity field is the similarity solution of Bickley [1], where the centerline velocity
is given by uc(x) = C/x1/3, where C = 0.4543 for a rectangular initial profile (Bickley [1,
Figure 2])with Ri = 0. The case of a parabolic initial profile using, Fourier series was reported
by Rosales-Vera and Valencia [19].

4.2. Buoyant Vertical Jet

The case of a buoyant two-dimensional laminar vertical jet is obtained when M = 0, Ri /= 0,
and Pr/= 0. The Reynolds number was kept constant (Re = 1250) to validate the numerical
results in [18]. Figure 2 shows the evolution of the centerline velocity profile as function of the
x distance from the nozzle exit for several Richardson numbers with a uniform initial velocity
profile. The Richardson number varies from 0 to 0.2, considering the forced convection case.
This, in reality, with Re = 1250, considers Gr between 0 and 312500 for Pr = 0.71 (air).
The centerline velocity u distribution obtained from the Fourier series solution (solid line)
is compared with the solution reported in [18] using finite differences (points). The results
coincide very well.

For the field near to the exit of the nozzle, the jet velocity remains constant with a value
equal to the initial velocity, which represents the length of the potential core. For Richardson
number less than ∼10−3, the length of the potential core is x ∼ 10Re 2h. When Ri > 10−3, the
length of the potential core is drastically reduced. In this case the effect of the buoyancy is
present from distances x ∼ 0.1Re 2h very near to the nozzle.

Figure 3 shows the evolution of the dimensionless centerline temperature profile as
function of the x distance from the nozzle exit, for several Richardson numbers. For the field
near to the exit of the nozzle, the centerline temperature remains constant with a value equal
to the initial temperature. This is the length of the potential core of the temperature field, and
no dependence on the Richardson number exists. The length of this region is x ∼ 10Re 2h.
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Figure 2: Centerline velocity profile as function of the distance from the nozzle exit for several Richardson
numbers, with uniform initial velocity profile. The Fourier series (solid line), finite differences (points)
[18].
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Figure 3: Centerline temperature profile as function of the x distance from the nozzle exit, for several
Richardson numbers. The Fourier series (solid line), finite differences (points) [18].

Figure 3 shows that the jet core temperature falls faster by increasing the Richardson
number. This is because the central jet velocity increases with the increase in the Richardson
number; thus, the heat exchange is more efficient.

The results and analysis of a jet for a parabolic initial velocity profile can be found in
[18]. The general behaviour of the jet does not depend on the initial velocity profile.

4.3. Hydromagnetic Buoyant Vertical Jet

The case of a hydromagnetic buoyant two-dimensional laminar vertical jet is obtained
when M/= 0, Ri/= 0, and Pr/= 0. The case Ri = 0 was studied by Moreau [29], finding
similarity solutions for the velocity field in the far field. A numerical study was conducted by
Vlachopoulos [30].

Figure 4 shows the evolution of the centerline velocity profile as a function of the x
distance from the nozzle exit for Ri = 0.01 and several Hartmann numbers with a uniform
initial velocity profile. The results show that in the near-field region, the centerline velocity
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Figure 4: Centerline velocity profile as a function of the distance from the nozzle exit for several magnetic
numbers with uniform initial velocity profile.
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Figure 5: Centerline temperature as a function of the distance from the nozzle exit for several magnetic
numbers with uniform initial velocity profile.

remains constant with a value equal to the initial velocity, as in the case of pure buoyant
jet. However as x is increased, the centerline velocity of the jet is considerably shortened
by increasing the Hartmann number. The effect of the magnetic field is effective to start at
x ∼ Re 2h. The deceleration of the jet makes the decrease of temperature in the jet axis slower,
weakening the heat transfer between the colder jet and the cold atmosphere (Figure 5).
However the effect of the magnetic field on the temperature is less intense than in the velocity
field.

Figure 6 shows the effect of the magnetic field in the velocity profile in x = 0.8 (far
field), for several values of Hartmann number. The magnetic field intensifies so the central
velocity of the jet decreases making the velocity profile wide and less intense. Then, if the
magnetic field continues to increase, it will reach the point where the buoyancy vanishes.
This is because the Hartmann number reached a value such that M2 ∼ Gr/Re; considering
in particular the case Pr ∼ 1, (2.1)–(2.3)with initial conditions (2.5) become the equations for
a free jet with the solution u(x, y) = θ(x, y); then, in this case the magnetic field completely
cancels the effect of buoyancy. This phenomenon is shown in Figure 6, where the dashed line
represents the velocity profile for a free jet. The profile is very similar to the velocity profile
obtained for M = 3, where M2 ∼ Gr/Re.
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for a free jet.
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Figure 7 shows the effect of magnetic field on the temperature profiles for x = 0.8.
The temperature profile is widening, for a fixed distance x, to the extent that the magnetic
field increases. The temperature in the jet is more homogeneous, and the core temperature,
as mentioned above, will generate increasing jet cooling.

Results obtained in the previous case remain valid for other Richardson numbers.
Figure 8 shows the evolution of the centerline velocity profile as function of the x distance
from the nozzle exit for Ri = 0.1 and 0.01. In the figure, the continuous line represents
a uniform initial velocity profile and the dashed line represents a parabolic initial profile.
When increasing the Richardson number, the central velocity increases due to increased
jet buoyancy. However, the centerline velocity is also reduced when the magnetic field is
increased, reducing the effect of jet buoyancy. Concerning the influence of the initial velocity
profile on the development of the central jet velocity, Figure 8 shows that there are differences
only in areas very close to the inlet, since for relatively small distances (x ∼ 0.8) the central
velocity acquires the asymptotic solution. Both cases, the uniform and the parabolic profile,
converge to a solution of the far field where the initial profile has no influence.
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Figure 9: Centerline temperature profile as function of the distance from the nozzle exit for several
Hartmann numbers and Richardson number 0.1 and 0.01. Continuous line corresponds to uniform initial
velocity profile, while dashed line corresponds to parabolic initial profile.

Figure 9 shows that the initial velocity profile has little effect on the centerline
temperature, both in the near field and the far field. Regarding the influence of magnetic
field, like in Figure 4, when the Hartmann number increases, the temperature tends to fall
more slowly, slowing the cooling jet. This effect is reduced when the Richardson number is
increased. For example, for Ri = 0.1, the effect of the magnetic field is much less important
than in the case of Ri = 0.01, as in the case where the Richardson number is equal to 0.1,
the axial temperature profile remains virtually unchanged with increasing the Hartmann
number.

Figure 10 shows the evolution of the centerline velocity profile as function of the x
distance from the nozzle exit for Ri = 0.1 and 0.01. In both cases the Prandtl number was
Pr = 9. The figure shows a similar behaviour to the case Pr = 0.71 (Figure 8). This shows that
the Prandtl number has little effect on the center velocity of the jet. However, this is not true
in the temperature field. Figure 11 shows the temperature profiles at x = 0.8, for Ri = 0.01,
and the Prandtl number values Pr = 0.71 and 9. As expected, the Prandtl number has a great
influence on the temperature profiles. To increase the Prandtl number, the temperature profile
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Figure 10: Centerline velocity profile as function of the distance from the nozzle exit for several Hartmann
numbers, Richardson number 0.1 and 0.01, and Prandtl number 9.
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Figure 11: Effect of the magnetic field on the temperature profile in x = 0.8 (far field), for several values of
Hartmann numbers with a uniform initial velocity profile. and Prandtl number 0.71 and 9.

becomes narrow, so that the jet maintains its center temperature for longer distances, slowing
the cooling of the jet. Thus the buoyancy stays longer and central jet velocity is increased
slightly.

Figure 12 shows the evolution of the centerline temperature profile as function of the
x distance from the nozzle exit for Ri = 0.01 and 0.1. The results show a similar result in
Figure 9; when the Hartmann number increases, the temperature tends to fall more slowly,
slowing the cooling jet. This effect is reduced when the Richardson number is increased. For
example, for Ri = 0.1, the effect of the magnetic field is much less important than in the case
of Ri = 0.01.

5. Conclusion

This paper demonstrates that the Fourier series is a suitable method to solve the boundary
layer problem applied to jets. The hydromagnetic buoyant two-dimensional laminar vertical
jet was analyzed. In particular, we studied the combined effect of the Hartmann number
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Figure 12: Centerline temperature profile as function of the distance from the nozzle exit for several
Hartmann numbers, Richardson number 0.1 and 0.01, and Prandtl number 9.

and the Prandtl number, showing that the magnetic field could vanish the effect of natural
convection. The results obtained show a high accuracy. The present method can be easily
extended to more complex flows, for example, jets with heat and mass transfer including
multiphase flow and combustion problems.
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