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The authors study a single-server queueing system with bulk arrivals and batch service in accordance to the
general quorum discipline: a batch taken for service is not less than r and not greater than R (=r). The server
takes vacations each time the queue level falls below 7 (=1) in accordance with the multiple vacation discipline.
The input to the system is assumed to be a compound Poisson process. The analysis of the system is based on
the theory of first excess processes developed by the first author. A preliminary analysis of such processes
enabled the authors to obtain all major characteristics for the queueing process in an analytically tractable form.
Some examples and applications are given.
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1. INTRODUCTION

In this paper we study a general M/G/1-type queue with multiple vacations and
nonexhaustive service. A basic M/G/1-vacation queue refers to a queueing system with a
Poisson input stream of customers, generally distributed service times, and a single server
processing customers one at a time. When the inventory of available customers in the
system is exhausted, the server, instead of waiting for new customers, leaves the system
for vacation. Systems with vacationing servers were first introduced in the sixties.
However, they were not regarded practical enough and were largely ignored. In the
seventies and eighties they were referred as T-policy queues [1] or queues with
continuously operating server [2]. The latter name was an apt description. Indeed, the
server pretended to process a phantom customer, and did not interrupt its service even
when new customers arrived and waited. Only in the seventies, did systems with
“nonwaiting” servers become more accepted and gained in popularity.

One came to realize that there were practical situations in which the server does not
wait. He may arrange some preventive maintenance or even physically leave the system
to perform other jobs of second priority. It was logical to assume that they should not be
interrupted if during such work new customers arrive. The maintenance jobs could be
adjusted in such a way that their durations are distributed differently from the usual service
times. There are also a large variety of queues with priority customers and server
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breakdowns which, in recent surveys on vacation models (¢f Doshi [3]), may be
interpreted as systems with vacations. However, these are preemptive and probably should
not be included in an already broad class of “true” vacation systems with nonpreemptive
disciplines.

During the eighties, other variants of vacation policies were introduced and explored
including those with single or multiple vacations. In the first case, the server leaves the
system when the queue becomes empty for a single vacation segment. Thus, if during his
vacation no customer arrives at the system, he assumes the policy of a waiting server. In
the second case, the server starts a vacation consisting of multiple segments. At the end
of the nth segment, the server returns to the system to check its status, and, if no customer
is present, he begins his (n + 1)st vacation segment, and so on. In both cases, the policy
of starting a vacation is referred to as exhaustive.

A more general scenario is one in which the server leaves on vacation when the queue
drops below some fixed level, say, r = 1. It would also make sense if the server takes more
than one customer for service at a time. In addition, it would make sense to interrupt the
server’s sequence of vacation segments when the queue returns to its “critical” length of
at least r customers. This policy is referred to as nonexhaustive, and more specifically, as
quorum. (Note that systems on quorum do not necessarily assume vacationing servers. The
same policy of exiting and entering busy periods can be applied to a “dormant” server, see
for example [4] and [5].) The analysis becomes more difficult if one allows the input to
be bulk, since in this case it is not easy to determine when (first passage time) the queue
hits (i.e., reaches or exceeds) that critical level r, and what its size (excess level) would
then be. Although a few papers [6—8] did consider this general scenario, their works did
not analyze first passage times and first excess levels in its general form. The first result
on first excess level processes appeared in 1992 [9] which made it possible to analyze a
broad class of bulk input quorum systems with or without vacations [4, 10, 11, 12].
Another paper with vacationing server appeared soon thereafter in Dshalalow [13], where
the first excess level analysis was applied to an r-quorum system.

In the present paper, we further generalize such a system by allowing a more flexible
service discipline. In this system, the server starts a multiple vacation (i.e., a sequence of
vacation segments) whenever the queue drops below level r, and it resumes service at the
end of a vacation segment when the queue accumulates to at least r customers. Here we
assume that the server capacity is R = r, and that the server takes any number of customers
available between r and R. We also incorporate the latest results on first excess level theory
and present some important special cases and applications.

The paper is organized as follows. In Section 2 we formally define the system’s arrival,
service and vacation disciplines. The system under study is one with bulk Poisson arrival
flow, generally distributed service and vacation times, (r,R)-quorum service discipline,
and multiple nonexhaustive vacations. It is also assumed that distributions of service and
vacation segments are different. In Section 3 we consider a process embedded in the
queueing process over the times of service completions. It is closely related to another
process embedded in the queueing process over the first passage times. An explicit
relationship and a necessary and sufficient condition for the ergodicity- of the embedded
process are established. Under this condition, the probability generating function of the
limiting distribution of the process, obtained in an analytically tractable form, appears in
Section 6. In Section 4 we give all pertinent results on the first excess level theory applied
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to our system, and in Section 5, all related preliminaries. Section 7 concludes with some
applications (conservation law of the system).

2. NOTATION AND PRELIMINARIES

The system involves three different point processes on the time axis, representing times of
arrivals (of batches), times of service completions, and ending times of vacation segments.
We will refer to these three processes by using 17, 7°, and 1", respectively.

Arrivals Discipline

7 will denote the arrival time of the kth batch of customers and X, its size. Let A, =

2: | X,. Therefore, A, is the total number of customers arrived at the system in the time

interval [0, 77]. We assume that (1°,4) = >~ | X,€.2 is a compound Poisson process with
n=

intensity N\ obtained from position independent marking, where €, is the point mass
concentrated at a. We also assume that the set of marks A = {A,,A,,...} forms a
discrete-valued renewal process. For all X, we denote by a(u) their common probability
generating function (PGF) E[uX*], k = 1,2,..., with mean «.

Service Discipline

We assume that the server capacity is R and the server takes any group of customers for
service whose size is between r and R inclusive, r = R. If the queue is less than r, then
the server leaves the system (“goes on vacation”) until the waiting room has at least r
customers. This service discipline, referred to as “(r,R)-quorum,” was introduced by M.
Neuts [5] in 1967, and later surveyed by Chaudhry and Templeton in their monograph [2]
in a number of special cases. The practicality of this discipline attracted many authors
since, such as [4, 14, 6-8, 11, 12]. 7} will denote the time of the nth service completion,
n = 0,1,..., and &; its duration for n = 1. 7 will be taken to be zero. Assume that 3;’s are
independent, identically distributed random variables that are independent of (1%, A) and
let F() = P{d] =<t} be their common distribution function (DF) with finite mean p’.

Vacation Discipline

If, upon service completion, the queue size is less than r, the server leaves on vacation.
Each vacation consists of a sequence of segments whose durations are assumed to be
independent and identically distributed random variables. We also assume that the
distributions associated with any two vacations are identical. Our analysis will not require
us to distinguish between two different vacations, and to simplify our notation, we will
suppress the index referencing a particular vacation. Thus, 7, will denote the time that the
kth segment of a particular vacation ends and 3, will be its duration with F'(f) =
P{3] =t} and finite mean p". Let A be the random variable representing the number of
segments of that vacation. We assume that the server will be required to take A vacation
segments if at the end of the Ath segment the queue length hits (i.e., reaches or exceeds)
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level r for the first time. Observe that no particular vacation segment is interrupted should
the queue hit r during that segment. The described vacation discipline for » = 1 is referred
to as a non-preemptive multiple vacation discipline. To distinguish this standard notion
from ours we add “r-quorum” to this name. Although this addition appears to resemble a
well-known “N-policy” discipline (combined with vacations), the two systems are
different. A basic N-policy discipline is one where the server takes exactly one customer
at a time for service, and leaves on vacation (or, alternatively, idles) whenever the queue
is empty. The sequence of vacation segments is terminated when the queue hits level N.
Such a system was considered by [7, 8, 11, 12]. A generalized discipline with r-quorum
and N-policy would thus be one where r and N are generally different (r = N). (See Muh
[11, 12].) In our system, r = N, but it includes vacation segments.

3. EMBEDDED QUEUEING PROCESS

Let Q(2) be the number of customers in the system at time ¢ including those in service, and
assume that Q(f) is a process with a.s. right-continuous paths. Let Q; and Q) denote
O(t;) and QO(t}), respectively. By definition of A, we have Qy <r for 1 = k < A, and
or=r.

Let X, denote the number of arrivals during the nth service and let X} be the number of
arrivals during a particular vacation’s kth segment. Then,

E[/] = f : O DgEs(s) and E[u’] = f : PCORYY) 20}

We denote these two transforms by ¢*(u) and ¢”(u), respectively.

We will call the time interval between two successive service completions a service
cycle. The first service cycle starts at time ¢ = 0. If the queue length at zero, O, is at least
r, then the server takes a group of customers for service not exceeding its capacity R and
the first service ends at time 7}. In this case, the length of the first service cycle coincides
with the service duration 8] (i.e., 7] = ). If 0} is less than r, the server goes on vacation,
which consists of A segments, at which time the queue accumulates to Q) customers. In
this case, the service cycle consists of the vacation interval [0, T;], where T} is the
so-called first passage time, and the interval of service (1), Ty, + 8]]. Thus, if we denote
the queue length at the beginning of the first service by bs, then

bs __ QVA’ Q3<r
1 —{ 0, O,=r. 3.1

In light of the above notation, our service and vacation disciplines imply that

0 =07 + X, (3.2)
where

:es — (Ql;s _ R)+ (33)
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(y" A max{y,0}) represents the rest of the customers waiting for next service at the
beginning of the first service period. Relation (3.2) defines recursively the sequence
Q@ = {Q;;n = 0,1,...} of random variables which under current assumptions imposed on
the input stream forms a homogeneous Markov chain (MC). Let P be its transition
probability matrix with P,(u) being the PGF of the ith row. Then, P,(u) = Ei[uQsi], where
E' is the expectation with respect to the probability measure P' = P(:1Q}, = i).

Using a sequence of standard arguments one can confirm that P is a Ay, z-type stochastic
matrix which satisfies necessary and sufficient conditions established by Abolnikov and
Dukhovny to insure that the process Q° is ergodic. The reader is referred to articles [4, 13,
10] where such analysis is done in great detail. According to Abolnikov and Dukhovny
criterion, the MC Q° is ergodic if and only if

p’ & Nayf <R, (3.4

where \ is the mean number of arriving batches per unit of time, « is the average size of
an arriving batch, and p° is the expected duration of a service period. The value p°
represents the average number of arrivals per service time. The ergodicity condition states
that this number should necessarily be strictly less than server capacity. Under this
condition, the stationary distribution of Q° exists and coincides with the unique
normalized fixed point, p, of the operator P (known as the “invariant probability
measure”):

p =p*,p> 0 (vector), and 1 = p1 (scalar productof p = (p;; i = 0)" and vector 1). (3.5)

The latter can routinely be shown to yield the equivalent functional equation

P(u) = 2iZo P(wp;, P(1) = 1, (3.6)

where P(u) is the z-transform of vector p and p; is its ith element. The evaluation of P(u)
is crucial to obtain P(u) in an analytically tractable form. The next section is devoted to
a special case of the first excess level theory initiated in Abolnikov and Dshalalow [9] and
further developed in a few subsequent articles [10, 15-17]. This treatment involves P(u)

after which we return to the probability generating function P(x) of the stationary
distribution p.

4. ELEMENTS OF FIRST EXCESS LEVEL THEORY

Consider again the arrival compound process (1°, A) and the point process T° =

{T: k = 0,1,2,- - -}. Suppose that both 7* and 7* are independent of each other and start
from the same origin 0 = 15 = 7;. We now construct the following compound process
based on the arrival marked process (7%, A). Let X” be the sequence of increments X, of
(7%, A) taken over the subsequent points T}, k = 1,2,.... In Section 3 it was shown that the
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elements of X" are independent and identically distributed discrete-valued random
variables with common PGF E[uxz] = ¢"(u). Thus,A” = {A;k = 1,2,...}, where

v k v
4=3F X,

is a renewal process whose inciements form position independent marks for the marked
point process (7°, A”). For future needs we define Aj to be a discrete-valued random
variable independent of A" having, in general, a different distribution, given by
E[qu‘] = @y(u). We extend (1*, A”) by augmenting the mark Ay to the existing sequence
of marks {A}} and assigning it to the point 7; = 0. We will use the same (17”, A”) to denote
this delayed compound renewal process. In practice, Ay = Qp will be the initial value of
the queue (in our case strictly less than r) when the server goes on vacation.

The following terminology and notation is essentially due to [17]. The vacation
sequence ends at time T), when the cumulative queue length hits r. This instant is called
the first passage time of (7°, A”). The queue level at T, previously denoted by Oy, is called
the first excess level of (¥, A”). In our case, it is convenient to extend the notion of the
“first excess level” as follows. We set the first excess level to be equal to Q%° consistent
with definition (3.1). This will allow us to use a more compact notation. The random
variable A is said to be the termination index of (1%, A*). Formally, A = A(r) =
inf(k: A} = r}. In our applications, we will be interested in the queue length, Q° defined
in (3.1), at the beginning of the first service, which, as noted, coincides with the first
excess level or initial queue length.

We seek an analytic representation of the functional

E = E[g% "5 @.1)
to which we apply the transformation
D,()x) = (1 = x) X, o) 12 <1. 4.2)
Denote

€ = €(£,0,u,; x) = D(E)(x). 4.3)

The functional E can be retrieved from € by the application of the operator

) = limy o~ L () m =0, 44)
T 0 e = T '
@7(-) = 0, form <0, “4.5)

to €. (Note that, in the above notation, both p and x are dummy and are used to emphasize
the variables to which they are applied.)
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For various special cases throughout the remainder of this paper we state a few
elementary properties of the operator 2™:
P1) 925;,“ is a linear operator with fixed points at every constant function.
P2) For any function g, analytic at zero,

0, m<k

me k —
BO0) {@;""%g(y», m=k

The following statement, due to Dshalalow [17], is expressed in terms of the current
notation and is adapted to our system.
Proposition 1 The functional €satisfies the formula

1 — £r(6)9"(v)

€ = @o(u) — po(ux) 1= @)’ @)’ (4.6)
which yields
E[EAe_eTXuQ ‘1”]
= o) — (1 — Er@e @ | 20
o) — (1 — ER(B)Q"(u)D] {1 — §h(6)<p"(ux)}’ (CH))

where h(0) = E[e_oﬂ] is the Laplace-Stieltjes transform of the first vacation segment. One
special case applies directly to our system. We will consider E'[u®']. In this case, Ay =
Qp = iand consequently, py() = u'. By properties P1 and P2, formula (4.7) reduces to

E[g'e ")

N S 72 \J r—i—1 1
=u' — u(l — ErO)¢ ()P, {———1 - gh(e)¢”(ux)}' (43

Observe that the last expression is consistent with the functional’s initial value when
Q" = Q) = i.In particular, the PGF of Q%", denoted L,(u), is given by

L) = E® = & — (1 — ¢" )@, { 4.9

1- ¢”(ux)}'

The conditional PGF of the termination index is

irgdy 1 _ r—i—1 1
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which yields

A, = E[A] =9t {1—;4;@)} 4.11)

From (4.7) it also follows that the Laplace-Stieltjes transform of the first passage time,
Th, i8

Ele™®] =1- (1 — h()A, 4.12)

Therefore, the mean value of the first passage time is

E[7}] = /A, 4.13)

Interestingly, this result appears to follow directly from the well-known Wold’s
equation; however, the use of Wold’s equation is not applicable here, since A obviously
depends on the length of each vacation segment.

From (4.9) and (4.13) we have that the conditional mean value of Q’l’“‘ is
L(1) = E1QY] = i + NaE[1}] = i + p"A, 4.19)
(where we denoted p* = Aap”), which gives the average number of arrivals per one

vacation segment.
incr

Next we introduce Q7" = 0% — Qf and call it the increment of the first excess level
above the initial value of the queue. Note that Q)" is equal to zero if @y = r. From (4.14)
it follows that the conditional mean value of the total increment,

ETQ 1 =EQ¥—i=pA, (4.15)

where Ao is the average number of arrivals per unit of time, and p“A; is the average
number of arrivals per one full vacation. Again it’s tempting to arrive at this result from
Wold’s equation but again it does not apply.

5. MORE PRELIMINARIES

Formula (3.3) precludes the necessity to treat special transformations of PGFs. Suppose
that a nonnegative random variable X valued in {0,1,...} has its PGF f{iz) = E[«*]. For a
nonnegative integer p define the operator

KR u) = E[u® "] (5.1)
Lemma 2 ¥#? is a linear operator with fixed points at constant functions and such that

HRu) = u™Pfu) + DL {fx) — u PRux)}. (52)
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Proof Let Py = 2‘”_0 f.€, and denote

T,(w) = 2f=p uf,. 5.3)
Then,
Hfu) =1 — T,(1) + uPT,(w). 54
Now we apply the transformation D, defined in (4.2) to 7,(x) and get
D,T,(ux) = flu) — xflux). (5.5)

To extract T, from (5.5), we apply operator 9” to D,T,,(u,x). Then, because of property P2
we have

T,(w) = flu) — B {f(ux)}. (5.6)

The latter, after substitution into (5.4), yields the lemma. Od
‘We now return to the evaluation of Py(u), defined in Section 3. From (3.1-3.3) it follows
that

P(u) = E[u?] = Eu? 1E W ], i=0,1,....
Specifically, for i = r,
Pw) = Eu?] = u“ P ELX.

By Lemma 2,

Eu%] = #*Lw) = u *L(w) + DFYLx) — u PL(ux)}, 5.7
From which it follows that

ETQ] =i — R+ p"A; + B {RL(x) — xLx)} (5.8)

Thus, we have

P(u) = ¢"WFHL(u), i = 0. (5.9)

and hence

HRLw) = u" P i=r. (5.10)
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6. STATIONARY PROBABILITY DISTRIBUTION OF THE EMBEDDED
PROCESS

From (3.6), (5.7), (5.9) and (5.10), it is easy to obtain a variant of the Pollaczek-
Khintchine formula:

R-1

S p KL (w) — u'}
P(w) = ¢"() =

W — () @D

By Rouché’s theorem, the denominator, D(u) = u® — ¢"(u), of P(u) has exactly R zeros
in the closed unit disk, B(0,1) (including ¥ = 1). Since P(u) is analytic in B(0,1) and
continuous on its boundary dB(0,1) (because P(u) is absolutely convergent here) the
numerator, N(u) = 2’:}1 p,.{uR%RLi(u) - ui}, of P(u) must also vanish at all those zeros.

It is also known that roots on the boundary are simple. Let z, be all zeros of D(u) (ordered
arbitrarily), with their respective multiplicities m,, s = 0,1,...,S, with z, = 1, m; = 1, and

such that > M = R — 1. Then, for each s, N(u) vanishes at z; and so do its m; — 1
=

derivatives. This gives us R linear equations in unknowns p;, i = 0,1,...,R — 1: For s =
1,...,S we have that

d .
El.i_—lpizi {uR%RL,-(u) —u'} | =0,j=0,.,m—1,s=1,..8 6.2)
i=0 umz,
and for z, = 1,
2P AR~ i+ EIQI"} =R~ p’ 6.3)
or
S pie” A+ B HRLG) — <L) =R — ¢, 6.4)

The uniqueness of the solution p,...,pg_; follows by arguments similar to those in [10].

The results of this section are summarized in the following theorem.

Theorem 3. In the M*/G™®/1-type quorum vacation model with nonexhaustive service
and multiple vacations the embedded queueing process selected over the instants of
service completions is ergodic if and only if p°* = Aoy’ < R. Under this condition, the PGF
P(u) satisfies formulas (6.1-6.4).
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7. APPLICATIONS

Define p; = AaE'[1}], i = 0. E'[t}] is the conditional mean value of the first service cycle
which, for i = r, coincides with p°, the mean service time. For i < r, it is the sum of p’
and the mean first passage time. Therefore, p; gives us the expected value of arrivals
during the first service cycle, given that the initial queue length was i. Let p = (p;; i = 0).
Then, the value pp gives the expected number of arrivals during a service cycle in the
steady state. Following [10], we call pp the system intensity, which, in our case, equals

pp=p' +p" 3 pA. .1
Define
I = lim E'[min{ Q% R}] (7.2)

where Q is the queue length at the beginning of the nth service, and call it the server
load. This is the mean batch of customers taken for service in the steady state. Using
standard probability arguments and formulas (4.13), (4.14), (5.8), and (6.3) one can show
that the system intensity and the server load coincide. (See, for example, Dshalalow [10].)
This gives the so-called “conservation law of the system” in equilibrium.
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