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The author studies an M/G/1 queueing system with multiple vacations. The server is turned
off in accordance with the K-limited discipline, and is turned on in accordance with the
T-N-hybrid policy. This is to say that the server will begin a vacation from the system if
either the queue is empty or K customers were served during a busy period. The server idles
until it finds at least N waiting units upon return from a vacation.

Formulas for the distribution generating function and some characteristics of the queueing
process are derived. An optimization problem is discussed.
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1 INTRODUCTION

Today, queueing systems with vacations are a popular object of research.
These models are applied to the modelling of local area networks, data
communication networks, and flexible manufacturing systems.

The large number and variety of systems which have been studied
prompted researchers to classify them. As such, queueing systems are
divided into systems with T-, N-, and D-policies of switching on (see [4]
and [9]). As to switching off, systems are divided into exhaustive, semi-
exhaustive, gated, T-, and K-limited (see [10]). There are papers on sys-
tems with the T-N-hybrid policy ([3],[5],[7],[9]) and papers on systems
with K-limited service discipline ([2],[6],[8]) which study various modifi-
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cations of the input stream, service distribution, and so on. The present
paper is the first that combines this service discipline and this
switching-on policy. The server under the K-limited discipline turns off if
either the queue becomes empty or K customers have been served from the
beginning of a busy period. Then the server goes on vacation (idle time
begins). Each vacation lasts a random time. The queue length is examined
after each completion of a vacation. If this length is more than or equal to
a preassigned value N, the server turns on; otherwise, the idle period
continues.

This paper is a generalization of [3] and [8]. The present system and the
system in [3] have the same policy of switching on and results of [3] may
be obtained for K — . The system in [8] and the one we study have the
service discipline in common. The results of article [8] and those of this
paper coincide for N = 1.

The embedded Markov chain approach is used to obtain the steady state
distribution of queue length. The embedded moments are not only mo-
ments of service completion, but also moments of vacation completion.

A sufficient condition of the steady state is given. The Laplace-Stieltjes
transform of the sojourn time, the generating function of the distribution,
the mean queue length, the mean busy period length, and other character-
istics are obtained. The search for optimal values of K and N is discussed.

2 THE MODEL

Customers arrive at the system in accordance with a Poisson process with
intensity . Service times and vacation times are independent random
variables with distribution functions B(f) and H(f), their respective
Laplace-Stieltjes transforms (LST) B(s) and A(s), and finite moments
b, = f : "dB(1), h,, = f : "dH(t), m = 1, 2. The server begins a vaca-
tion in either of the two cases: 1) there are no waiting customers; 2) K
units have been served from the beginning of a busy period. The server
turnes on if the queue length is equal to or greater than N upon return from
a vacation.

Let #; be the k-th moment of service (vacation) completion, i, be the
number of customers at moment 7, and /, be the number (from the begin-



M/G/1 VACATION MODEL 245

ning of a busy period) of a customer whose service was finished at the
moment f. Obviously, {i,, [, } is a Markov chain.

Suppose that the system is in the steady state. The following theorem
provides a sufficient condition for the existence of this state.

THEOREM 1. The inequality

K
A< —— 1
Kb, + h, M)

is the sufficient condition for the stationary queue length distribution ex-
istence.

Proof. This theorem will be proved with the help of the ergodic
Moustafa’s theorem. For the studied system it assumes the following form.
The irreducible and aperiodic Markov chain is ergodic and the ergodic
dlstrlbutlon c01nc1des with the stationary one if & > 0, natural iy, x\ =

0(=0,.,K,i=0,1,...) exist, and the following inequalities hold true:
pfjl” n) <x(’) —efori>iy,l=0,...,K,
0=n=K,j=0
S pa < 4wfori=<iyl=0,...,K, )
0=n=K,j=0

where p () s the probability of the transition from a state with i customers
after ﬁmshing the I-th service (vacation) to a state with j customers after
completion of the n-th service (vacation).

The probabilities p(l " are defined by

aj_i+1,ifn=2,...,K,l=n—1,i21,j2i—1
orn=1,1=0,i=N,j=i—1;
(n) _ dj—,', ifn=0,andl=0,i<N,j2i

Pi orl=1,.,K-1,i=0,j=0 3
orl=K,i=0,j=1i
0 otherwise,
where a, = f (n‘ “MaB(?), d, f e MdH(1).
0 0
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Let i, = N — 1. Substitute i, and (3) into (2) to arrive at

x

S g V=x—e 1=0..,K-1
jSim1

. for i > iy, 4
Ed ,xjo) <xK) — &,
j=
S g <H® 1=2.,K(0>0)
o . for i < i (5)
0
3 d g <+,
Jj=i
Let x,(l) = i + g, where g, are some real values, formulas for which

will be provided later. By substituting the expression for xgl) and (3) into
(4) and replacing addition and integration there, expression (4) assumes
the following form:

N+ qy,—q—1=-¢ [=0,..,K—-1
My + qo — g = €.
By summing up these inequalities we get K(1 — Ab;) — ANhy = (K +

1)e. Obviously, this is equivalent to (1) and it allows us to assign param-
eters of Moustafa’s theorem:

K{ = Aby) = My I(1 = Nb 1=0,..K
e= X+ 1 = ,—¢€), [=0,.,K

It is easy to see that ¢ > 0 and ¢; = 0 due to (1), and consequently,
xf') = 0. The validity of (4) and (5) is verified by substituting the expres-
sions of & and xﬁ'). Likewise, the conditions of Moustafa’s theorem are
satisfied and the steady state exists. The theorem is proved.

Suppose that the condition of theorem 1 is satisfied. The steady state
distribution will be targeted. Let fn-ﬁ') be a stationary probability of a state
of the process {i,, [, }, where i is the number of customers in the system at
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the embedded moment ¢, (return from a vacation (! = 0) or from a service
(7=1,

K)) and [ is the number (from a busy period beginning) of
customers, whose service was finished at the embedded moment
Obviously,

W>0forl+i=N,(=1,..,K) andi=max{0, N — K}, (I = 0).

Suppose, for convenience, that N = K; though all formulas are correct
for N > K, too (see Remarks, Section 3)

Define the generating functions as

x

(l)

2 w0 1=0,.,K m()= é 70(z) @
THEOREM 2.
o) = BN — A2)(h(A — A\z) — 1)
(z = B\ = M) = h(A = A2)B (N — \2))
Jz,) 70 2K — KO — \o) + iz_; 70 2K — BEIN = \2))
(®)
where ', j = 0, .

-1, ﬂg),j =N, ..., K — 1 is a unique solution
of the lmear equatlon system'

rdl: N—-1 ©) s K K
PRGNS OR
Z°Lj=0

4 + 2 ) 2257 — XN — \2) |l

09
J=N . )
s=1,... t,ls=0,...,i -1,

s

K—)\(h + Kb,)
\ j=0 Jj=N 1

b, + My
where z,,..., z, are roots of zX —

RO\ — A2)BX(N — A\z) = 0iin |z| < 1 with
multiplicities iy,..., .
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Proof. For the probabilities ’1T,(-1) the following Chapman-Kolmogorov
equations take place:

i+1
W= 3 aqum Y, i=N-LN-I+1..,l=1..K
j=K—I+1

min{i, N—1} i k-1
0= 3 %4 +3X"d_+d T, i=01..,
j=0 j=0 j=N (10)

where a,, and d, were defined in theorem 1.
By multiplying each equality of (10) by 7’ respectively, and summing
them up, we have:

K-1  N-l )
0@ = kA =) (70 + 3 mf + 3 w2,
Jj=N j=0

() =

A=\
[-312—1)“”“”@), I=1,..,N, (11)

N— Az
() = &Z——) (@) =™, I=N+1,...K

Formula (8) is obtained from (11) by using formulas for the generating
functions and (7).

Determine the probabilities m\”, j = 0,..., N = 1, @, j = N,..., K — 1
which are used in (8). Rewrite the first part of (8):

B\ — AZ)(A(N —Az) — 1) 1
(z = B\ = \2)) & — B\ = \)BKN — \2))

The first factor of this expression is bounded in the region |z| = 1. Due
to theorem 4.1 in statement A of [1], the denominator of the second factor
has K roots (counting multiplicities) in the region {|z| = 1} under condition
(h(N — N)BE(N — 7\z)))’|:=1 < K (this is the assumed condition of steady
distribution existence). It is easy to see, that only the simple root z = 1 lies
on the boundary of the region, and therefore other K — 1 roots, say zi,...,
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z,, with multiplicities i,,..., i, (i; +...+ i, = K — 1), lie inside. As long as
m(z) is regular in the region {|z| < 1}, then the expression in the square
brackets in (8) has the same roots z;,..., z, with the corresponding multi-
plicities. ~ Equate  this  expression and its  derivations

ld/dz,....d"" "] dz"‘_ll to Zero in points z,,..., z,. Therefore, equations in
(9) for probabilities 1'r ) and 11' ) are given. The last equation in (9) is a
normalization condmon m(1) + w9(1) = 1. The theorem is proved.

3 SOME CHARACTERISTICS

Having determined the generating function m(z), we can derive some char-
acteristics of the system.

The LST and the average value of the sojourn time.

Let V(¢) and v(s) be the distribution function and LST of the sojourn
time (the waiting and the service time). The probability that a customer,
who has already been served, leaves i units in the system (that is, i units
came into the system during the sojourn time) is equal to the probability
that i customers are present in the system at the embedded moment under
the condition that the moment is the end of a service. This can be rewritten
as

0

M>:

1

—)\r .
dav(t) = , =0,1,...
f ® 'rr(l) :

0

By multiplying these equalities by z', respectively, and summing them
up we get:

B w(l — s/\)
B (1)

Consequently, the mean sojourn time, say V|, is

()
Vl = -V (0) = F(l) (12)
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Values of (1) and 7'(1) are determined by (8) and (11) as

)=— "1 and
"= o

N—-1 - - K-1 . -
(1) = 20 ¥ (DI + DE) + }%’ w{ (DIy_; + DF,_),
-

j =
where

A,

D=——— A=K-\h, + Kb,
e (hy + Kby)

N2(2b,h, + hy) \h,C . Nhyb,

D’~ = )
2(1 = NbA (1 —AbDA?  2(1 — \b))*A

KK —1) )2 ,
C=-—F—+73 (hy + Kb, + K(K — 1)b] + 2Kb,h,),

I, =11 —\b)), and E=ji(1 — \b)) + %(1 — 1= N{b, + (1 — 1)bI).

The average number of customers in the system.
Denote this characteristic by L and determine it by Little’s formula:

The mean busy period.

The number of units that have been served between vacation periods is

a random variable, say £ valued / = N,..., K with probabilities #:

S (K)
s
() 2 i ,.n.(K)(l)

I=N...K—1, %0 =20

~ 0
a0 =2
¥ ¥ ¥

s
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where m* = K3 @l + w%)(1) is a probability that an embedded mo-
ment is the completion of a busy period. Rewrite the expression for m*
with the aid of (11):

N-1 K-1
A, 20 ™% + (1 = \by) zN wd (K — j)
J= J=

=
K — N\(h, + Kb))

Denote the mean of § as L, L,, = . 170, After some elementary
algebra it can be rewritten as L,, = (1) / w*.

Let T,, be the mean busy period length (the average time from the
moment the server finished a vacation to the moment when the server
finished the last service before a vacation). Obviously, T, = b,L;,. There-
fore,

(1)

Ty = b1— (13)

The average number of switches from service to vacation per unit time.

Denote this characteristic by Q.. It is easy to see that Q; is equal to the
average number of busy period completions per unit time. As long as A is
the average number of customers served per unit time and 7* / w(1) is the
probability that a current service finishes a busy period, the expression for
Q, can be written as

_ ATT*
(1)

0, (14)

Remarks. Formulas for generating functions and characteristics can be
rewritten for N > K in the following way. The sum >X5! 7§ will be
dropped in them not only due to the rule that the sum is equal to zero if the
lower limit is greater than the upper one, but also because of the zero
value of probabilities 'n'g); (see (6)). The lower limit of the sum
SNt m® is replaced by j = N — K, because m” = 0,j = 0,...,N — K —
1 due to (6).
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4 THE SEARCH OF OPTIMAL VALUES OF K AND N

The problem consists of determining the optimal values of K and N to
minimize the total cost function.

In any optimization problem utilizing queueing theory it is necessary to
minimize the sojourn time. Besides, it may be desirable to reduce the
number of switches from service to vacation. For systems, which describe
databases with dynamic information, it is desirable to impose a limitation
to the mean and maximal values of the busy period length, because large
intervals of time between reorganizations of data (between vacations in the
present system) can destroy the data base. The following problem takes
into account all these requirements.

¢, ViV, K) + ¢, O((N, K) — min (15)
NK
TN, K) = T, (16)
K=K

- max
where ¢, ¢, are linear holding costs; T,,,,., K, are constraints on the busy
period length; Vi, Q;, T, are defined by (12), (13), (14). Due to the
complexity of these formulas it is difficult to obtain explicit expressions
for N and K. However, the following remark helps searching for them:
optimal values of K and N should satisfy the inequality N,,, = K,,.

because for N > K V(N, K) > V(K, K), Q,(N, K) = Q(K, K) and T,,,(N, K)
= T,,(K, K).

Numerical example. Problem (15) with the limitations (16) was numeri-
cally solved for ¢, = 0.05, ¢, = 10, T,,,, = 1.87, K,,,,, = 8, B(t) = 1 —
e, G(t) =1~ e, \ = 0.3. The optimal values K,,,, and N,,,, are equal

pt
to 8 and 4, respectively.
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