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A numerical method for solving linear quadratic optimal control problems with control
inequality constraints is presented in this paper. The method is based upon hybrid
function approximations. The properties of hybrid functions which are the combinations
of block-pulse functions and Legendre polynomials are first presented. The operational
matrix of integration is then utilized to reduce the optimal control problem to a set of
simultaneous nonlinear equations. The inequality constraints are first converted to a
system of algebraic equalities, these equalities are then collocated at Legendre—Gauss—
Lobatto nodes. An illustrative example is included to demonstrate the validity and
applicability of the technique.
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1. INTRODUCTION

Orthogonal functions, often used to represent an arbitrary time func-
tion, have recently been used to solve various problems of dynamic sys-
tems. Typical examples are the Walsh function [1], block-pulse functions
[2], Laguerre polynomials [3], Legendre polynomials [4], Chebyshev
series [5] and Fourier series [6].
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The design of optimal feedback was obtained by Kleinman [7].
Similar problems for linear systems have been studied either by means
of the Walsh functions [1] or by means of the block-pulse functions [2].
Due to the nature of these functions, the solutions obtained were piece-
wise constant. Most of these methods successfully solve the uncon-
strained problem, but the presence of inequality constraints often
resulted in both analytical and computational difficulties. Theoretical
aspects of trajectories inequality constraint have been studied in [8,9].
Early contribution to the numerical computation were due to [10,11].
Mehra and Davis [11] described that difficulties arising from handling
trajectories inequality constraints are due to the exclusive use of
control variables as independent variables and presented the so-called
generalized gradient technique.

In the present paper we introduce a new direct computational
method for solving linear quadratic optimal control with control
inequality constraints. The method consists of reducing the optimal
control problem to a set of nonlinear algebraic equations by first
expanding the candidate function as a hybrid function with unknown
coefficients. The hybrid functions which are the combinations of
block-pulse functions and Legendre polynomials are introduced. The
operational matrix of integration is then utilized to evaluate the hybrid
function coefficients. The control inequality constraints are first
transferred into a system of algebraic equalities. The given system
are collocated at Legendre—Gauss—Lobatto (LGL) nodes [12]. When
the optimal control inequalities constraints are not satisfied in the
whole desired interval, in each subintervals for which the constraints is
violated, we change the given LGL nodes with the extremum of the
solution in that subinterval. An illustrative example is given to
demonstrate the application of the proposed method.

2. PROPERTIES OF HYBRID FUNCTIONS

2.1. Hybrid Functions

Hybrid functions b(n, m, t),n=1,...,N,m=0,..., M defined on [0, t;),
have three arguments, m and » are the order for Legendre polynomials
and block-pulse functions respectively and ¢ is the normalized time and
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is defined as

b(n,m,g:{f’m(z%-znﬁ)’ e [ ) mZbEE
0 elsewhere.

)
Here, P,(t) are the well-known Legendre polynomials of order m

which are orthogonal in the interval [—1, 1] and satisfy the following
recursive formula:

Py(t) =1, (2)
P(t)=1t (3)

and
P (1) = %mm—:—Tlth(t) BP0 @)

Since b(n, m, ) is the combination of Legendre polynomials and block-
pulse functions which are both complete and orthogonal, thus the set
of hybrid functions are complete orthogonal set. Figure 1 shows the
hybrid functions for M =2 and N=4.

The hybrid representation of a function f(¢) defined over [0, ) is
given by a finite series as

M N

02N " c(n,m)b(n,m, 1) = C"B(1), (5)
m=0 n=1
where
n/tf
cnm) =Dy F(O)b(n,m, ) dt,
It (n—=1)/1s

n=1,....N, m=0,...,.M (6)

and

C =1[e(1,0),...,¢(N,0),¢(1,1),...,¢(N,1),...,e(1,M),...,e(N, M)]",
()
B(ty = [b(1,0,1),...,b(N,0,1),b(1,1,1),...,b(N, L,1),...,
b(1,M,1),...,b(N, M, )] . (8)
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FIGURE 1 Hybrid functions for N=4 and M =2.

The orthogonality property is given by

/” BB (1) dr = diag|1,L, ... L 9)
A TN o)

2.2. Operational Matrix of Integration

The integration of the vector B(¢) defined in Eq. (8) can be approxi-
mated by

/tB(t’)dt’ ~ PB(1), (10)
0
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where P is the NM x NM operational matrix for integration and is
given by

Py £ 0 0 0 0 0
-0 L0 0 0 0
I I
t - 0 1 0 0 0
P== e 0 0 0
0 0 0 0 2(2A§+1) 01 2(2A§+1‘)
_0 0 0 0 0 ~ 3@ 0 |
(11)
In Eq. (11), I'is an N x N identity matrix and
I 11
o 1 11
Po=|... ... 1 1], (12)
0 0 11
0 0 (U

3. OPTIMAL CONTROL PROBLEM

Consider the following class of linear systems with control inequality
constraints:

(1) = Ax(e) + Eu(t), x(0) = xq, (13)
(D) <ujy j=1,....s (14)

with the cost functional

=3 /O (XT()Qx(t) + u" (1) Ru(1)) dt. (15)

Here, x(f) and u(¢) are r x I and s x [ state and control vectors res-
pectively, A, E, Q and R are matrices of appropriate dimensions, f; is
the final time which is given, Q and R are symmetric semidefinite and
positive-definite matrices respectivity. The problem is to find the
optimal control u(¢) which minimizes Eq. (15), subject to the constraints
of Eq. (13) and the control inequality constraints of Eq. (14).
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4. HYBRID FUNCTION APPROXIMATIONS

4.1. The Approximation of the System Dynamics

By expanding each of the s control vectors and the derivative of each
of the r state vectors by hybrid functions, we get

M N

xi(t) = ZZc,nm Ybo(n,m,t) = CIB(t), i=1,2,....r, (16)
m=0 n=1
M N

w(t) =Y yinmb(n,mt) =Y B(t), j=1,2,....5, (17)
m=0 n=1

where

= [¢(1,0),...,¢i(N,0), ..., ei(1,M),...,ci(N, MY, i=1,...,r,
(18)

Yi = [pi(1,0), ..., p:(N,0), ..., y:(L, M), ..., p:((N, MY, i=1,...,s
(19)

Using Eqgs. (16)—(19), the state rate variable x(¢) and the control vector
u(t) can be represented as

x(1) = [CT,CL,...,CNB(t) = CTB(1), (20)
u(t) = (YT, YT, ..., YT B(r) = YTB(2), (21)

where
1) =[B™(1),B"(¢),..., B (1)]". (22)

Using Eq. (20), x(¢) can be represented as

x(f) = /0 CETB(Y A + x(0) = ETPB() + CTB() = (CTP+ CTYA(),
(23)

where

Co = [x1(0),0,...,0,0,x,(0),0,...,0,0,...,x,(0),0,...,0]". (24)
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Substituting Eqgs. (20), (21) and (23) in Eq. (13) we get the following
algebraic equations:

C=YE"+ (PTC+ Cp)A™. (25)

Now, the inequality constraints (14) are incorporated into the above
scheme. Equation (14) can be replaced by the finite number of alge-
braic equalities as

u}(t) —I—zj?(t) = uj’.‘z, j=1,2,...,s, (26)

where z;(f) is an auxiliary function.
By expanding each z;(¢), j=1,...,s in hybrid functions we get

zj(z)zfizj(n,m)b(n,m, n=2/B(t), j=12....s5 (27

m=0 n=1
Using Egs. (17), (26) and (27) we obtain

YIB(O)B"(1)Y;+ Z B()B Z;(1) = u?, j=1,2,...,s. (28)

4.2. The Performance Index Approximation
The performance index J can also be expressed as a function of the

unknown C and Y. Using Egs. (15), (21) and (23) we obtain

% [CY+CTP] (/Otr B(1)QB" (1) dt) [Co+ PT(]

+ % 4 ( /0 " BORET(1) dz) . (29)

J =

By applying Kronecker product [13] we have

B(QB" (1) = (B(r) ® B(1)Q, (30)
B()RE"(1) = (B(1) ® B(1)R., (31)
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where Q, and R, are the vector form for the matrices Q and R and ®
denotes Kronecker product. Equation (29) can be written as

J =3CY + CTPID,Q,[Co + PTC) + [¥TD,R, Y], (32)

where D, is the vector form for the matrix D in Eq. (9).

4.3. Replacing the Inequality Control Constraints
Using Collocation Method

To satisfy the inequality constraints in the desired interval we first
collocate Eq. (28) at M x N points; thus we get

Y B(tx)B" (1) Y; + Z] B(1) B" (1) Z; = u}?,
k=1,2,...,MxN, j=1,2,....s. (33)

For a suitable collocation points #;, k=1,...,M x N we use the LGL
nodes in [0,z;/N] which are defined in [12] as follows.

Let P(f), —1 <t <1 denote the Legendre polynomials of order M,
then the LGL nodes are defined by

to=—1, tyy =1, 1 are the zeros of PM(Z), 1<k<M-1, (34

where Pj(t) denotes the Ist derivative of P,,(f). No explicit formula
of the nodes in (34) is known. However, they can be computed
numerically.

In order to use LGL nodes for Eq. (1) we transfer [—1, 1] into

n—ll nt
N el

It is noted that Eq. (1) has an extremum point at LGL nodes. Once the
optimal control for Eqgs. (13)—(16) is obtained the intervals for which
the inequality constraints (14) are violated would be considered again.
The new collocation points in these intervals are obtained from the
extremum of the pervious solution. This process is continued until the
inequality constraints (14) are satisfied in the whole interval.
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The minimization problem of Eq. (15) subject to Egs. (13) and (14)
is reduced to a parameter optimization problem which can be stated as
follows. Find C, ¥ and Z which minimizes the following equations:

L(C,Y,Z,\) =J(C,¥) + NT[YET + (PTC + Cp)AT - €],  (35)

where ) is the Lagrange multiplier. The determining equations for the
unknowns C, ¥, Z and \ are

0 PO

§§L(C, ,Z,\) =0, (36)
§,L(é, Y,Z,\) =0, (37)
6—ZL(6, Y,Z,\) =0, (38)
%L(C’, Y,Z,\) =0. (39)

Equations (36)—(39) are nonlinear equations which can be solved by
Newton’s iterative method.

5. ILLUSTRATIVE EXAMPLE

Consider the linear system with inequality control constraint [14],

x(t):[o l]x(t)—i—[o]u(t), x(0)=[0 10]",  (40)

1 -1 1
u(n)] < 1, (41)
with the cost functional
1 1
J= 5/ (xf(z) + uz(t)) dz. (42)
0

The problem is to find the optimal control u(f) which minimizes
Eq. (42) subject to Egs. (40) and (41). The exact solutions for this
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example are

-1 0<1r<0.29115

(V3 . st -1 V3 )\ .t
u(t) = 6.26s1nh(7t sm(§+1.14) — 031 cosh | =1 sm(§+0.19>
029115< 1< 1
(43)
and

J = 7.99455. (44)

We determine the hybrid functions approximation for N=3 and
M=2. Let

> ci(n,m)b(n,m,t) = CIB(t), i=1,2, (45)

3
=1

n

M- 1

iy b(n,m,t) = YTB(r). (46)

0 n=1

3
Il

Using Eq. (25) we get
Ci=P'C+Cp, Cr=-PC—Cp+7Y. (47)
By applying Eq. (32) we obtain

J:%{cl(l,O)[%l(l,O) +0.5¢,(1,1) — 0.1¢;(1,2) + 9¢1 (2, 0)

—¢1(2,1) +3¢1(3,0) — ¢1(3,1)] + ¢1(2,0)[4¢1 (2,0)
—0.5¢1(2,1) = 0.1¢1(2,2) + 3¢1(3,0) — ¢1(3,1)]
+0.01¢1(1,2)% +0.01¢1(2,2)* + 0.01¢,(3,2)*
+0.1¢1(1,1)2 4+ 0.1¢;(2,1)* 4+ 0.1¢(3,1)* + ¢1(3,0)

x [¢1(3,0) — 0.5¢1(3,1) — 0.1¢1(3,2)]}
2

DRy )

m=0 n=1
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By using LGL nodes in [0, 1] and Eq. (33) the inequality constraints in
Eq. (41) is replaced by

— 1+ [p(m,1) + p(n,2) — y(n,0)]* + [z(n, 1) + 2(n, 2) — z(n,0)]> = 0,
n=1,2,3,

— 1+ [»(n,0) — 0.59(n,2)]* + [z(n,0) — 0.52(n,2)]* =0, n=1,2,3, (49)

— 1+ [p(n,0) + y(n, 1) + y(n,2)]* + [z(n, 0) + z(n, 1) + z(n, 2)* = 0,
n=1,2,3.

Further, Eqgs. (36)—(39) give five nonlinear algebraic equations from
which x(?), x»(¢) and u(¢) can be calculated. The computational results
for x1(f), x»(f) and u(¢) together with the exact solution for u(¢) are
given in Fig. 2. The curves of exact and computational solutions for
x1(f) and x,(¢) are the same. In this case the minimum value for J is

J = 8.05035. (50)

It is noted that the inequality constraint is not satisfied in the
interval [0, 0.2]. In this interval we replace the LGL nodes #, =0.16667
with ¢} = 0.0825, where 7} is the minimum u(7) in [0,0.2]. Figure 3
shows state vector and control input together with the exact solution
for u(f) for new collocation points. The curves of the exact and
computational solutions for x;(#) and x,(7) are the same.

It is seen that Eq. (41) is satisfied in [0, 1]. In this case the minimum
value for the J is

J = 8.03060. (51)

x(1)

Approximate

;l(t)

° -2
© 0y 02 03 04 05 08 07 08 09 1 o o1 02 03 04 05 08 07 08 08 1

sec sec

FIGURE 2 Approximate and exact solutions for x;(¢), xx(f) and u(f) for LGL
nodes.
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FIGURE 3 Approximate and exact solutions for x(¢), x»(f) and u() for new collo-
cation points.

6. CONCLUSION

In the present work the hybrid functions which are the combinations
of block-pulse functions and Legendre polynomials are used to solve
the optimal control of linear systems subject to a quadratic cost
criteria with control inequality constraints. The problem has been
reduced to a problem of solving a system of algebraic equations. The
control inequality constraints are adjoined into the optimization
problem by using LGL nodes. An example is given to demonstrate
the application of the proposed method.
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