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We consider a bulk arrival, bulk service queueing system. Customers are served in
batches of  units if the queue length is not less than r. Otherwise, the server delays the
service until the number of units in the queue reaches or exceeds level r. We assume that
unserved customers may get impatient and leave the system. An ergodicity condition and
steady-state probabilities are derived. Various system characteristics are also computed.
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1. INTRODUCTION

We consider a bulk arrival, bulk service queueing system. Customers
arrive in batches of random size but are served in batches of a fixed
size r. The server follows a delayed service discipline in which the
processing of customers does not start unless at least » of them are
waiting in the queue. We also assume that some (or all) of the unserved
customers may get impatient and leave the system.

Queueing systems where the server has to wait for the queue length
to accumulate to a fixed level are called service delayed queueing
systems. They have been introduced by Abolnikov et al. [2]. Various
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extensions of these systems were subsequently suggested: for a thor-
ough review see Dshalalow [4]. Transportation systems are examples
of such systems since servicing small groups may cause high main-
tenance costs.

The process of interest is the number of customers in the system at
an arbitrary instant of time. We first consider the process embedded
over the times of service completions, then we study the general
queueing process as a semi-regenerative process. In both cases we
establish a necessary and sufficient criterion for ergodicity and find the
stationary distribution and various system characteristics. Illustrative
examples are provided.

The next section describes the model formally and introduces the
notation. Section 3 reviews some theorems and definitions needed in
the analysis. Section 4 is concerned with the discrete time parameter
queueing process while Section 5 contains the results of the continuous
time parameter process.

2. MODEL DESCRIPTION AND NOTATION

Assume that there is a single-server queueing system with an unlimited
capacity waiting room. All stochastic processes will be defined on the
probability space (2, §, P).

(a) Input. At time 7,, a batch of size X, arrives to the service
facility. We assume that {X,} is a sequence of iid random variables
independent of 7,, with probability generating function

a(z) = E[z%] 2.1)

and with finite first moment

a = E[Xy]. (2.2)

Let {N(¢), t > 0} denote the Poisson process associated with the
point process {7,,} whose jumps occur at a rate A >0. Then the input
Z(t) = Zfi(f) X; is a compound Poisson process.

(b) Service: Let {Q(¢), t > 0} be a stochastic process describing the
number of units in the system at time ¢ and let {7,} be the sequence of
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successive service completions. Also, let 0, = Q(T,,+0). At time T,
the server takes a batch of units of size r from the queue and serves it
during a random length of time o,, , | if the queue length Q,, is at least r.
Otherwise, the server idles until the queue length, for the first time,
reaches or exceeds the level r. If 0, > r, T, 1— T, is equal to o, ;. If
Q. <r, the length of the time interval (7}, T, ] is the sum of an idle
period and the actual service time o, , ;. In both cases we assume that
0,41 has a probability distribution B with finite mean b.

(¢) Impatience: When the number Q, of units waiting in line at a
service completion is larger than r, only r of them will be taken by the
server. Then some or all of the remaining (Q, —r) customers may leave
the system. We denote by A,(Q,—r) the number of those that stay in
the queue. Assuminga “stableimpatience” of arriving customers once the
queue length exceeds some (perhaps large) number N, introduce the
following conditional probability generating function

1, . ‘ i<r,
gi(2)={ Yt el ™25, r<i<n, (2.3)
zr i> N,
where gﬁ"_') = Pi{s customers out of (i—r) stay in the system and wait
for the next service}, 0 <s<i—r, i > r. The first moment
gir = E[Ao(Qo —1)] (2.4)

is assumed to be finite.
We recall that the Laplace—Stieltjes transform (LST) B* of a
probability distribution function B, is defined by

B (u) = /0 Yo B(dy), Re(w) >0, (2.5)

where Re(u) stands for the real part of u.

3. PRELIMINARIES

3.1. Fluctuation Theory

Because customers arrive in batches, the queueing process is more
likely to exceed rather than hit exactly level r. This special feature
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requires a knowledge of the critical behavior of a delayed renewal
process about a certain level, which is different from the analysis of
orderly processes. This problem, known as the first passage problem,
was treated by Abolnikov and Dshalalow [1]. We give below some
results from [1] that are needed in the analysis.

Consider the delayed renewal process S, = > ¢ | X;, (So=Xo) and
assume that the processes {7,} and {S,} are independent. For a fixed
integer r > 1, we will be interested in the bahavior of {S,} and other
related processes.

DEFINITION 1 (Abolnikov and Dshalalow [1]) For each n, the ran-
dom variable:

(i) v,=inf{k: Sy > r} is called the index of the first excess (above
level r—1).
(ii) S,, is called the level of the first excess (above r—1).
(iii) 7, is known as the first passage time of S above level r.
@iv) n, =S, —ris called the total increment.

Let
¥(2) = Ez"), G (2) = E'[z).
Also let

) =Ew], 70=ETm,), $O=ES,], 7°=ETm

and define the operator
k

10
k .

PROPOSITION 1 (Abolnikov and Dshalalow [1])

(i) The probability genérating function v(z) of the index of the first
excess level satisfies the following formula:

r—i—1 l_a(x) .
7O (z) = {”’x {(l—xm—za(x)]}’ <t (32

1, i,
where a(x) is given by (2.1) and D,’f is defined in (3.1).
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(ii) The probability generating function GP(z) of the first excess level is
determined by the following formula:

z', i>r.

ryr—i— d(Z) - a(x) .
G9(z) = {Z_D" ]{(Z—x)[l —a(x)]}’ < (33)

COROLLARY 1 (Abolnikov and Dshalalow [1])

(1) The mean value of the index of the first excess:

- 1 .
a(z‘):{p" l{m} ST 3

0, i>r.
(i) The mean value of the first passage time:
70 = % o, (3.5)
(iii) The mean value of the level of the first excess:

SO =i 4 apl) (3.6)

with a defined by (2.2).
(iv) The mean value of the total increment:

7% = av®. (3.7)
Of interest also is the generator of the first excess level defined by

r—i—1

Giz) = Y_ E'l%1y,, (),

j>0

where U,={0,1,..., p} and Iy is the indicator function of a set U.
It can be shown that G,(z) is a polynomial of (r—1)th degree that
can be determined from the following formula:
z"D'—H{ ! } i<r
G()=4 * l1-xl~-alx)]) T (38)

0, i>r.
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It is related to the generating function G)(z) (of the first excess level) by
GV (z) = z' = [1 — a(2)]Gi(2). (3.9)
3.2. Delta Matrices

We will be proving that the embedded process {Q,} is an ergodic
Markov chain. In order to do that, we shall be using the concept of
delta matrices introduced by Abolnikov and Dukhovny [3] and some
related results.

DEFINITION 2 (Abolnikov and Dukhovny [3]) A finite or an infinite
stochastic matrix A4 =(ay; i,j > 0) is called a A, ,-matrix, n >
m2> 1, if ay=k;i_;, for i>n, j>i-m; ay=0 for i>n, j<i—m,
where {k;, i > 0} is a given probability mass function.

PrROPOSITION 2 (Abolnikov and Dukhovny [3]) Let {Q,} be an
irreducible aperiodic Markov chain with transition probability matrix
A in the form of a A, ,-matrix and let A;(z) be the generating
Sfunction of the ith row of A and K(z) :Z;iokaj- Then {Q,} is
recurrent-positive if and only if

d .
aAi(z)|Z:1< o0, i=0,1,...,n (3.10)

and

d
&K(z)lz:1< m. (3.11)
ProPOSITION 3 (Abolnikov and Dukhovny [3]) Under condition
(3.11) the function z'—K(z) has exactly r roots that belong to the
closed unit ball B(0,1) = {z € C:||z|| < 1}. Those of the roots lying on
the boundary 0B(0,1) are simple.

4. EMBEDDED PROCESS

4.1. Probability Generating Function

The queueing process (Q,) is a Markov chain. Indeed, let V,, = Z(o,),
n > 0, where Z(-) is the input process. Then using the notation of the
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previous section, we have

Sv, =T+ Vi, n <1,
Orn1 = {A,:(Qn ) :Vn+1, gn >r. @
It follows that
"= {g<c);;<(>)F() i 2
where
F(z) = B* (A — Xa(2)) (4.3)

and g;(z) is given by (2.3) and G?(z) by (3.3).

It can be shown that the transition probability matrix 4 of the
Markov chain {Q,} is a A, y-matrix. The following is the main result
of this section.

PROPOSITION 4
(1) The Markov chain {Q,} is ergodic if and only if
p=Xxab<r, (4.4)

where a is given by (2.2) and b is the mean service time.

(i) Let P=(p;, i > 0) be the invariant probability measure of operator
A and let P(z) be the generating function of vector P. Then under
condition (4.4):

P(z) = Zi:O[Z';i(_Z)F?ZA)Z’F @)lpi

(i) The unknown probabilities py,pi, . . .,pn form the unique solution
of the following system of equations:

(4.5)

N dk )
Z@[Ai(z) — i, =0, k=0,....k—1s=1,..,S+1,
i=0

(4.6)

r—1 N

ay Mpi+Y (r—i+tgpi=r—p, (4.7)

i=0 i=r
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where z, are the roots of z’—F(z) =0 in the region B(0,1)|{1} with
their multiplicities kg such that 2;9:0 ks=r—1and zg,1=0is of
multiplicity N+ 1—r. Here 7)) is the mean index of the first excess,
g, is given by (2.4), and p by (4.4).

Proof

®
(i)
(i)

We use Proposition 2. Relation (3.10) is satisfied and relation
(3.11) is equivalent to (4.4).

Formula (4.5) follows from the fact that P(z) = > 2 4;(z)p; and
relation (4.2).

System (4.6)—(4.7) is derived as follows. First, rewrite (3.10):
1 i
EN: iz () Soih [iz) - Zlpi. 48)
=N+1 Nz — F(z))

The left-hand side of the above relation is analytic in B(0,1)\{1}
and therefore so is the right-hand side. Now the denominator of
the right-hand side has r—1 simple roots in B(0,1)\{1}
(Proposition 3) and therefore these roots are also roots of the
numerator. Call z,, s=1,..., S, these roots. Let k,, s=1,...,.S, be
their respective multiplicities such that Els_: oks=r—1 and
zs4+1=0 be the (S+ 1)th root, of multiplicity (N+ 1—r). These
considerations yield system (4.6) of N equations with (N+ 1)
unknowns po, .. ., py. One more equation is necessary to obtain a
system of (N + 1) equations with (N + 1) unknowns. We derive it
from the identity P(1)=1. For z=1, both the numerator and
denominator in (4.5) are zero. Using L’Hopital’s rule and relation
(4.2) we get the last equation, (4.7), of the system.

The uniqueness of {po,...,pn} can be shown using similar
arguments to that of Dshalalow and Tadj [6].

4.2,

Examples

(1) Consider a special case of the queueing system where the service
time has an exponential probability distribution function with
parameter 1/b. Then F(z) = {1 + bA[1—a(z)]} "'. Different distributions
may be assumed for the size of arriving batches.
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(i) Assume a(z) =z (i.e., single arrivals). In this case a=1,

@ ={7 13" A= {0 sn

2, Q> gi(2)F(z), i>r,

and formula (4.5) reduces to

F(Z) < r i > r i
P(Z) = ;—_ F(Z) {Z(z -z )pl + Z[Z g,'(z) -z ]pl}

i=0 i=r

Also in this case

P ) =

so that
r—i, i<r,
:{0, i>r,
_(,:{(r A
0, i>r,
r, i<r,
B 0, i>r,
) _ r—i, i<r,
1 _{0, i>r.

(i) Assume a(z) =2 (i.e., customers arrive by groups of 2). In this
case a=2,

z', i>r,

6(z) = {%z’{z(l FEDT A= )T i<,

_ {%[zu DY) (1 - ()R, i<,
gi(2)F(z2), i>r,
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and formula (4.5) reduces to

r—1 r—1
P(z) = Zr*l_’(zﬁ)_(z_) {z’( Z (z—2pi + Z (1- z’)p,-)

i=0 i=0
r—i—1=21 r—i—1=2/+1

N
+> IZgiz) - Z’]Pi}-
Also in this case

r—i—1 1 =lr—i 1 _ r—i—1
D {(l—x)[l—a<x>1} =gl =T

so that

S0 43 =D+ (=D, i<,
0, i>r,
. _1y-i-l .
=) — %%+%——1+( ;) , i<r,
09 lZ r,
s _ Jral 0T i<
0, lZ r,

o _ Jr—i e (-, i<,
0, i>r.

(iii) Assume a(z) = pz/(1 —qz) (i.e., the group size follows a geometric
distribution with parameter p). In this case a=1/p,

. Py oich —Lra), i<,
G z)(z) ={1—-qgz Ai(z) = —qz

z i>r, gi(z)F(z), i>r,

and formula (4.5) reduces to

r—1 N
P(z) =~ Ij(;)(z) {2(1 fzqzzr - Zi)l’i + ;[Z'g,-(z) - Zi]Pi}-

i=0
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Also in this case

Dt {U——mﬂ} =p(r—i)+gq,

so that

.. 9 .
s r—i+-=, 1<r,
n(’): )4
0, i>r.

(2) In example 1 above, P(z) is fully determined only after py, ..., pn§
have been computed by solving system (4.6)—(4.7). As an illustration,
let r=2 and N=4 in example 1. According to Proposition 4, the
denominator on the right-hand side of (4.8) is z°[z* — F(2)]. It has z; =0
as a root of multiplicity k; = 3. Finding the roots of z* — F(z) reduces to
solving

2?2 —1—22bAa(z) — 1] = 0. (4.9)

Since a(1) =1, then a(z)—1 can be factored into (z— 1)R(z). Equation
(4.9) becomes

bAZ*R(z) —z—1=0. (4.10)

In example 1(i) above, R(z)=1 and Eq. (4.10) has root zy =
(1 —+/1+4+4p)/(2p). Substituting z; with k=0, 1, and 2 and z, in
(4.6) yields 4 equations which along with (4.7) yield a system of 5
equations in 5 unknown probabilities p, ..., ps. A similar system is
obtained in example 1(iii)). In this case R(z)=1/(1—¢z) and
z0=(p—/P* +4(bA+q))/(2(bA + q)).
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4.3. System Characteristics

We compute the following system characteristics: the stationary mean
service cycle, the mean number of impatient customers, and the system
intensity.

(i) Let B=(B;i>0)and p=(p; i > 0) such that 8;=E'[T,,, —T,]
and p;=aMp;. Then it can be shown that
; 150 46, i<y
/81' — EI[TI] — )\ » )
b, i>vr,

and

o= ai'd +p, i<r,
' i3 i>r,

1 .
=350,
Pﬂ_)\ i<r it
Pp=a\PB=a) p;+p. (4.11)

i<r

P is called the stationary mean service cycle.
(ii)) Let d denote the stationary mean number of disappointed
customers. Then

d=E[Qn"r—An(Qn_r)]

N
= (i—r—g-)p: (4.12)
i=r
(iii) Let Z denote the system intensity. Then
I=Pp—d (4.13)
N
= az 7p; + Z(r — i+ gir)pi + p. (4.14)
i<r i=r

Note that given the equilibrium condition p < r, the system intensity
and the server capacity r are equal:

Z=r. (4.15)
This follows directly from (4.7), (4.12) and (4.14).
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5. CONTINUOUS TIME PARAMETER PROCESS

5.1. Probability Generating Function

The process Q(f) is a semi-regenerative process with conditional
regenerations at points 7, n > 0. As in Dshalalow and Tadj [6], it is
ergodic if and only if p < r. Let 6;(f) = P{Z(t) =i, T, > t}, where Z() is
the input process. Then direct probability arguments give the elements
of the semi-regenerative kernel K(r)

Kij(t) = §-4(1), 0<i<j<r, (5.1)

Z/¢,s+tt Sj—i—s(u)[1 — B(u)] du, 0<i<r<j,

o (5.2)
K;(t) = Zoé“H Nl - B()g' ", r<i<y, (5.3)
Kj(t) = 6i.i()[1 - B(1)], N<i<j, (54)
Kj(t)=0, 0<j<i, (5.5)

where ¢; denotes the density of the joint probability distribution
function of the random variable S, and the instant 7,, of the first
excess above level r by the queueing process {Q(¢)}. The following is
the main result of this section.

PROPOSITION 5 Denote by m = (m;, i > 0) the steady-state vector of
probabilities for the semi-regenerative process {Q(t)} and let ©(z) be
the probability generating function of the vector w. Then w(z) is given
by

APBr(2) = P()AR) + F() S G2,
i=0

+ D 1D 8l (z2) - ZA(2) | pi (5.6)
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where
Az) = i :fg)) ’ S
0e) = D 186 - xA(xz)l}, (538)

and the operator D" is defined by (3.1).
Proof By the main convergence theorem for semi-regenerative

processes

Ph(z)
Pg

n(z) = (5.9)

where h(z) = (h;(z), i > 0) and h;(z) is the generating function of the
ith row of the integrated semi-regenerative kernel. So having already
computed the elements K;(¢), we find the elements h; = [;° K;(¢) dr
of the integrated semi-regenerative kernel (by routine calculus). We
then find the generating functions 4;(z) and use relation (5.9) to get
relation (5.6).

5.2. Example

Assume that customers arrive singly, i.e., a(z) =z. Then

(1 1 L BEm()) i—m
D A(z) — xA(xz)] = - -\
a6 - xaca) [;(l_ &

1—x l1—z m)!

Also,

B Z—z
Gi(z): I—Z, l<r,

0, i>r.
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Applying some algebraic transformations to formula (5.6) we get
A1 = 2)PBr(z)

=1 = FQP(2) + F(z) ) [z = Z&i(2)lpi

i=0

N i—r *(s—p)
PSS ey BN

i=r s=0 p=0 (s—p)!

5.3. System Characteristics

We compute the following system characteristics: the mean idle period,
the mean busy period, the mean output rate, the mean (actual and
total) input rates, and the mean impatience rate.

(i) By probability arguments, the expected length of an idle period
in equilibrium

YT

s (5.10)
Z:‘:(i Pi
The probability that the server idles in the stationary mode is
r—1 7
1
. 5.11
,.Z:; TIY B (5.11)

where B is the busy period which can be expressed therefore as

R Zoir Ti 5
B=%&==7
dico Ti

(i) The mean output rate defined O = lim,, E/[S([0, 7])]/¢, where
S([0, 7]) is the number of customers completely processed during
the time interval [0, ¢]. It can be shown by considerations similar
to ones in Dshalalow [5], to be

(5.12)

0=p5 (5.13)
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(iii) The (actual) mean input rate x of any random process is (see
Dshalalow [5])

K== (5.14)

N=1P (5.15)

It follows that the mean impatience rate § = X — & is given by

d

5= 5 (5.16)

Note that given the equilibrium condition p <r, the (actual) mean
input rate x and the mean output rate O are equal, that is k = Q. This
follows from (4.12), (4.13) and (4.15).

In this paper we considered a queueing system where customers
arrive in batches of random size and are served in batches of a fixed
size. Impatience of unserved customers is taken into consideration. An
ergodicity condition and steady-state probabilities are derived.
Various system characteristics are also computed.
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