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For a class of Markov processes on the integer multidimensional lattice, it is shown that the
evolution of the mean values of some random variables can be approximated by ordinary dif-
ferential equations. To illustrate the approach, a Markov model of a chemical reaction is con-
sidered.
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1 A SEQUENCE OF MARKOV PROCESSES

Consider a sequence of bounded point sets, GN, N =1,2,..., which belong
to an /-dimensional integer lattice, Z!, and define a sequence of continuous
time Markov processes, MY, as follows:

Let AS = (A§, ..., Af), s=1,.., r, be a fixed set of r vectors which
belong to Z and nV (), N = 1,2,..., be a sequence of r functions (s = 1,..., )
which are defined for & € GV and which satisfy the conditions

' (€) >0, ifEe GV, (1)

m(§) =0, ifEeG,E+A¢GY. (2)

* Address for correspondence: L. I. Rozonoer, 61 Moraine Street, #4, Belmont, MA
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100 L. 1. ROZONOER

Assume that the transition probability PN (m | E;7) from state  to state m)
during time v satisfies the conditions

PY(n|&,1) =0, ifn #Eandn # E+ A’ forall s,

PY(m | &1) = (E)t+O(7?), if E € GV, = E+ A’ for somes,
P’ |gr)=1- énf(%)r%—O(tz), ifn=5ecGV.
s=1

Thus, AL,..., A7, are possible jumps and =} (E)dt,..., wY (E)dt are the
probabilities of the jumps in the infinitesimal time, d¢. This means that the
following equality is satisfied:

r

(OPY(n|E,1)/07)e0 = 3 [(B(n~E~A%) —8(n - E)I (§), 3)

s=1
where 8(C) =1ifC=0,and 8(T) =0if T = 0.

One can deduce from (3) that the probability of a state & € GV at time ¢,
wh (&,1), satisfies the equation

W (E,1) /ot = i(niv E— AW (E- A1) —wV (1) (B)), (4)
s=1

where it is postulated that w¥(E— A% =0 if E—A® & GV. Taking into
account this convention, one can deduce from (4) that

d[ S wV(g,1)]/dt =0. (5)
[EEEGN ]

If a sequence of initial probabilities w"(E,0) is given, the sequence of
probabilities w (§,¢) is determined by (4). Thus, Markov process EN on
the state space GY C Z' is defined.

For a given function ¢ : R' — R, let EJ (1), d}) (1) denote the mean value
and the variance of a random variable ¢(EN /N), that is

EY(T) =3 o(E/NW (&),
EeGN

()= llo(&/N) —Eg 0)|IPW" 1)

E€GN

(6)
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Here || denotes the Euclidean norm. In the case ¢(x) = x denote

EY(T)= 3 E/NW D),
EeGN

A0 =3 llE/N) - EN Q)P 0>
EeGN

(7)

2 MAIN RESULTS

Consider the sets Q¥ = {x ER": x = &/N, E€ GV} and suppose that there
exists such a compact set Q C R that Q" C Q for all N. In addition, sup-
pose that functions 7Y (€) obey the following condition : There exist func-
tions ay(x), x € Q, and a sequence {sN X N> 0, such that

|7 (8) ~as(&/N) < e 5 € G, lim ¢V =0. ®)

In the following, we assume that all a (x) belong at least to C2.
Consider the system of differential equations

r
dx;/dt = 2 Nas(x), i=1,...,L 9)
s=1

Denote by x(x°, £) the solution of the system with an initial condition
x(0) = x°. Our main problem is to demonstrate a close relation, in the limit
as N — o, between Markov process £V and the solution of (9). For this
reason, we need the following condition:

Condition A

1. There exists a constant L such that for any pair of points x' €Q and
x? € Q, there exists a smooth curve I' C Q with ends in x! and x? and
its length, L(x', x?), obeys the inequality L(x", x?) = L|Lx1 —xzw;

2. Functions a(x) belong to C2;

3. Ifx° €Q, thenx(x°, t) € Q for all ¢ > 0;

4. System (9) has an unique equilibrium point x*, which is an asymptoti-
cally stable and is an inner point of Q; the convergence,
x(x°, f) = x™(¢ — ), is uniform with respect to all x° € Q.
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Our main result is contained in Theorem 1 below. There is a similarity
between this theorem and the well-known results on the so-called density
dependent population processes, see [1]-[4]. General approaches to the
convergence of Markov processes based on a semi-group characterization,
on stochastic equations and on the martingale theorems were considered in
the book [4]. Markov processes for discrete time were considered in [5],
[6], [7]- Our approach is not based on the above approaches ; it relies on a
possibility to introduce " hidden" random variables whose mean values
obey — asymptotically — a closed (in the sense that no other variables are
involved) system of ordinary differential equations and whose variance is
negligible. Such a method is conceptually similar those used in statistical
physics. The theorem is applicable to problems of population dynamics,
chemical kinetics, and others, allowing the deterministic approximation of
the stochastic dynamics.

THEOREM 1 Assume that the sequence of random processes, MV, obeys
(8) and that Condition A is satisfied. Then the following is true:
1. For any sequence of initial distributions, w"(E,0),
. TN —®l = . TN —0
Jim Lim[[E (1) —x7(| =0, lim limd,’ () = 0;
2. If for a sequence of initial distributions, w"(€,0), and for some x° € Q

lim [IEY(0) ~x%| =0,  lim 4Y(0) =0,

then

lim [|EN () —x(x°,8)]| =0, lim d¥(r) =0

N—o N—oo

uniformly for ¢ € [0,00} and x° € Q.

THEOREM 2 Let the conditions of Theorem 1 be satisfied. Then there
exists an injection ¢ : Q — $(Q) C Rl,y = ¢(x), $(x) =0, which belongs
together with its inverse to the class C!, such that

1. For any sequence of initial distributions, wh &, 0),
. T N _ . T N —N.
lim hm||Eg ()| =0, lim limdy(r) =0;
2. If for a sequence of initial distributions, wh &,0),

: N _ o — : N —
Jim [[EY(0) 00,0l =0, lim a (0) =0,
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then, uniformly for ¢ € [0, ©) and x° € Q,
N o . : N _
IEY (1) — 0,0l =0, lim d (1) =o0.

The assertions of the Theorems can be improved at the price of strength-
ening Condition A.

lim
N—o

Condition B

The items 1)-4) of Condition A are satisfied and, in addition,

5. The linearization matrix of system (9) has eigenvalues Ay,..., A; (ReA; < 0)
such that there does not exist a set of natural numbers ..., my, Zm]- =2,

i
for which the equality A; = 2‘ )»jmj takes place for some i = 1,..., [;
j =

6. Functions a(x) belong to the class C"where n = 2 and
n > max{|A\1l,..., M|}/ min{|Ai],. .., | M|}
7. Informula (8), eV < b/N where b > 0 is a constant.
The following Theorems 1B and 2B are analogous to Theorems 1 and 2.

THEOREM 1B  Assume that the sequence of random Markov processes,
MV, obeys conditions (1)-(4), (8) and Condition B is satisfied. Then the
following is true:

1. There exist constants, ¢; > 0, ¢;> 0, such that uniformly for any
sequence of initial distributions

Tm|[EY () ~ x| < e1/VN, Tmd¥(e) < c2/N;
2. For any b; > 0, by > 0 there exist constants c¢3 > 0, ¢4> 0 such that if for
any sequence of initial distributions, w"(£,0), and for x° C Q
IEY(0) —x°l| < b1/VN, d&'(0) <b2/N,
then for all £ € [0,0)
|EN(t) —x(x°,)| < ¢3/VN, d¥(t) < ca/N.

THEOREM 2B Let the conditions of Theorem 1B be satisfied. Then there
exists an injection ¢ : Q — ¢(Q) C R, y = ¢(x), ¢(x™) = 0, which belongs
together with its inverse to the class C" and such that

1. There exist constants, ¢; > 0, & > 0, such that for any sequence of ini-
tial distributions w"(E, 0)

TN A T N AN
,IH?OHE¢ ()] < é1/N, tlggdq, (1) < é/N;
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2. For any by > 0, by > 0, there exist constants & > 0, ¢; > 0 such that if
for a sequence of initial distributions w"(E,0) with x° € Q

IES (0) — o(x*)|| < b1/N*, dg (0) <ba/NY;0<pu<1,0<v<1,
then for all ¢ € [0,%0)
IEg (£) — d(x(x>,0))|| < &3/N*,  dg () < &a/N".

3 PROOFS

Proof of Theorem 2 and Theorem 2B

The arguments are based on the work of Hartman and Steinberg who strength-
ened the well-known results of Grobman-Hartman asserting the existence of a
mapping that transforms a nonlinear system of differential equations to a linear
one [8]. Denote by A the linearization matrix of system (9) at point x*.

LEMMA 1 Let Condition A hold. Then there exists an
injection ¢ :Q — ¢(Q) C R, y = ¢(x), ¢(x*) = 0, belonging together with
its inverse to the class C!, such that on each trajectory, x(¢), of the system
(9), function y(7) = ¢(x(¢)) obeys the linear equation

dy/dt = Ay. (10)

LEMMA 1B Let Condition B hold. Then the mapping y = ¢(x), the exist-
ence of which is guaranteed by Lemma 1, belongs together with its inverse
to the class C".

To prove Lemmas 1 and 1B, note first that the existence of a mapping,
®(x), which transforms system (9) into (10) in a sufficiently small neigh-
borhood, E, of point x™ is guaranteed by Hartman theorem, if Condition A is
satisfied, and by Steinberg theorem, if Condition B is satisfied [8]. To com-
plete the proof of the lemmas, we have to construct an extension of the map-
ping (T)(x) from E to Q. There exist ¢ such that x(x°, 1) E E for all x° € Q,
because x(x°, f) converges to x” uniformly for x°. The theorem on depend-
ence of solutions of differential equations on initial data says that the
mapping W(x°) = x(x°, 1) belongs to class C 1 if Condition A is satisfied and
to the class C" if Condition B is satisfied. The extension, y = ¢(x), is con-
structed now as ¢(x) = exp(—A7)$ (¥(x)). It belongs to the class C! if Con-
dition A holds and to the class C" if Condition B holds. The last step of the



APPROXIMATION OF MARKOV PROCESSES 105

proof is to show that function y(f) = ¢(x(x°, #)) can be represented in the form
exp(AH)P(x°) = exp(A£)y(0), i.e., as a solution of equation (10) for all x° € Q.
We can conclude from the linearization theorem that function ¢ (x) has such
property, i.e.,  (x(x°,£)) = exp(A?)§ (x°) if x° € E. The stationary property of
system (9), and the fact that its solutions form a semi-group of mappings,
lead to the equalities x(x(x°, £), 1) = x(x(x°, 1), £) and ¥ (x(x°, 1)) = x(¥(x°),
f). Therefore, using the definition of function ¢(x), we have the following
chain of the equalities for all zand x° € Q :

O(x(x°,1)) = exp(—ADG(W(x(x,1)))
= exp(—AD(P (), 1))
= exp(—A¥) exp(A1)$(P(x°))
= exp(At) exp(~Af)P(¥(x°))

= exp(A1)§(x°).
This implies that
y(#) = exp(At)y(0).
The lemmas are proved.
We can conclude from the lemmas that the function ¢(x) obeys the identity

] r I
a0 /0x; 3 Alag(x) = S A i, 11
21 b;/ x;l as(x) 21 jkPk (11)

=

r
where z Ajay(x),i = 1, ..., 1, are the right sides of the equations (9),
s=1

L
and 2 AjdpJ = 1,..., I are the right sides of the equations (10).
k=1

Consider the evolution in the time ¢ of the mean values of the random
quantity A(EN /N) using the equation (4). Taking into account (2) and the
convention w¥ E-AHN=0,ifx—AS¢& GV, we come to the equation

dEN fdi=" " SHE/N+8/N) - WM ©W (),  (12)
EEGN s=1

where E (1) is a mean value of the quantity A(E/Y/N), and Z' stands for a
sum over & € GV such that € + A* € GV for some S. If h(x) belongs to the
class C 1, then
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Hx-+ 85JN) — ) = 1NTS, o] + 3, (13)
=1

where o (x) = 0 if N — oo uniformly for x € Q. If h(x) belongs to class
C?, then for x € Q, the inequality |aN(x)|< o;/N holds, where oy > 0 is a
constant. From (12) and (13), taking into account the boundedness of con-
tinuous functions on the compact Q, we have

I r
dE}) /dt = E{ Zl[ah/ o 21 Afas(x)]eg/n } +1" (0), (14)

where the E is the symbol of the mean value of the expression in the braces
in which the substitution x = &/N is made, and [n™(¢)]— 0 when N — 0.
Besides, if €V < b/N in (8), then (W™(2)|| < o/N, where o is a constant.

Applying formula (14) to functions ¢;, we obtain:
l
dEy (1) /di = kzlA wEg + f1 () (15)

where Ef; is a mean value of ¢;(EN/N) and fV(#) =0 as N — o uni-
formly in ¢. Besides, if the ¢; belongs to the class C?and if €V < b/N in (8)
(i-e.,. if the conditions of Theorem 2B are satisfied), then

1Y )] < o/N,
where o. is some constant.

Analogously, apply the formula (14) to the products ¢;¢,, taking into
account (11). After some calculations, we obtain:

[ l
dEN{jm}/dt = ; AREN {ogdm} + ;AmkE{q)m} +,. (16)
=1 =1

For the correlation matrix VW with the elements
VY = EN{¢y9;} — EJ.E}) , we can obtain, using (15), the equation:

dv¥ jdt = AVN + VNA' + FV, (17)

where the prime denotes the transpose and FY is a vector-function for
which [FN] — 0 as N — co, uniformly in ¢ Besides, if the ¢; belongs to
class C? and if € < b/N in (8) (i.e., if the conditions of Theorem 2B are
met), then |F"] <const/N.

Note. By definition of the matrix V¥, we have TrV= dy (cf. formula (6)).



APPROXIMATION OF MARKOV PROCESSES 107

LEMMA 2 Consider two systems of linear equations:
dy/dt = Ay,
dz/dt =Az+ f(t).
where the A is a Hurwitz matrix, with initial conditions y(0) = y°, z(0) = z°. Then
there exist constants ¢; > 0, ¢, > 0, u > 0 such that if [f{7)] = 8, |[y° — 2°] < €, then
lIy(t) = z(#)]| < creexp(—ut) + 20
For the proof, write down the solutions of the equations in the form:

y(t) = exp(At)y°,
z(t) = exp(At)z° + [y exp(A(t — 7)) f(v)dT.

From this we have:
Ily(6) —z()|| < lexp(AD)|l[ly° —2°|| + | /Ot exp(A(t — 7)) f(v)dr|l,

Taking into account that Jexp(At)| = c! exp(—ui), for the Hurwitz matrix
A, where c¢; and p are some positive constants, and taking into account the
inequalities

t t
Bull < B[l 1| [ @@l < [ le@liveiids,
we obtain the assertion of Lemma 2 (with ¢, = ¢q/).

LEMMA 3 Let a positively definite matrix V() obey the equation
dv/dt =AV +VA'+F

with the initial conditions V(0) = V°, where the A is a Hurwitz matrix.
Then there exist constants ¢' > 0, ¢" > 0, u> 0 such that, if TrV° <e,
and |F(¢)| < 9, then

TrV (t) < c'eexp(—ut) +c"d.

For the proof, write down the solution of the equation for the V(¢) in the
form:

V(t) = exp(At)V°exp(A't) + /Ot exp(A(t —1))F (t) exp(A’(t — 1) )dr.

Estimating the norm |V(£)| and taking into account that
lexp(Af)| = ¢, exp(—ut), where ¢; and w are some constants, we can obtain
(analogously to the proof of Lemma 2):

IVl < cf exp(—2un)|[V°]| + 8¢t/ 2u.
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For a positive-definite matrix, the inequality takes place:
VI < Trve <KV,

where k is the dimension of the matrix. This follows from the observation
that the norm coincides with the maximal eigenvalue and the trace is equal
to the sum of all eigenvalues. Therefore, [V°| < TrV° < ¢, TrV(z) < V()]
and we have TrV(1) < kc? exp(—2ut)e + dkc? /2u. Lemma 3 is proved.

To complete the proof of Theorem 2, we use Lemma 1, Lemma 2 together
with formula (15) and the assertion that f¥ (1) = 0 as N —> oo uniformly for
t, Lemma 3 together with the note after it, formula (17), and the assertion
that [FN| — 0 as N — oo uniformly for .

To prove Theorem 2B, use Lemma 1B, Lemma 2 together with formula
(15) and the estimate |f¥ (t)| < o/N, Lemma 3 together with the note after
formula (17), formula (17) and the estimate [F"| <const/N. Theorems 2 and
2B are proved.

Proof of the Theorems 1 and 1B
To prove these Theorems we need the following lemmas.

LEMMA 4 Let¢:: Q — ¢(Q)C R ¥ = ¢(x) be an injection of a compact
Q to a compact ¢(Q) C R’ which belongs together with its inverse to the
class C1. Also, let the assumption 1 of Condition A hold. Then there exist
constants a and 3 such that for each pair x’ € Q, and x”€ Q

Bl —x"II < llo(+') — oI < atll’ —x"]].

Proof Assumption 1) of Condition A says that there exists a curve,
x =x(\), A € [0,1], such that x(0) = x’, x(1) = x”

and f:) ldx/dNan < L) 0 (dx/d\)dN where the L is a constant. Denoting
y(\) = d(x(\)), we have dy/d\ = ®(x(N))dx/d), where matrix ®(x), with
the elements ®@;; = d¢;/dx; is non-singular and continuous with respect to
x € Q. Its elements are boounded on the compact, and therefore there exist
positive constants vy, y, such thaty; s |®(x)| <y,. Therefore, we have:

1 1
o) = 8GNl =11 [ (dy/ananl| < [ ldy/anjan <
1
Ll | (dx/dr)dn] =Ll |,

Thus, the right hand side of the required inequality is proved. The left
side is proved analogeously by considering the inverse mapping. Lemma 4
is proved.
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LEMMAS Let¢: Q—¢(Q)C R, y = ¢(x) be a mapping which obeys
the inequality

Bl = "Il < [lo() — o(")| < el —x"]]
and p(x) be a measure with the support Q. Then for any x! € Q the follow-
ing inequalities hold:

dy < 1/B*(dy +[1Eg — 0(xN)I?),
1Ex = x|} < (1/B)(dg + 1Ep — o) [12)'/2,
dy < @ (dy+||Ex—x|]?),

IEs— 0G| < ody + ||Ex —x1||2)1/2.
Here E,, E¢, d,, d¢ denote the mean values and variances of the random
quantities x and ¢(x) with respect to the measure u(x):

E"’:/Q"’(x)dﬂ(x), dy = /Q 0(x) — Eoldus(x).

Proof Consider the quantity:
E{II¢(x)—¢(x1)|lz}:/(glld)(x)—d)(xl)llzdﬂ(X),

and estimate it, using the inequality in the Lemma condition. Besides, tak-
ing into account that

E{[lo(x) = 6CcHII7} = E{10(x) = EglI”} + IEg ~ o)1,
one can come to the inequality
B2 (dy + |Ex = '[1%) < (dg+ IEg ~ o) || < 0(de + [|Ex x|,

which gives the assertion of the Lemma.

For the proof of Theorems 1 and 1B, take ¢(x) from Theorems 2 and 2B
and put x! = x(¢) in Lemma 5 and choose measure u(x) corresponding to
the distribution w¥(€, ) with x =E/N. Then from the inequalities in
Lemma 5 we have:

d (£) < 1/B(dy (6) + |EQ (£) — ¢(x(1)|I*), (18)
IEN () = x(6)]) < 1/B(d} (1) + |[EY () — o(x(e)) )2, (19)
dy (1) < (@Y () + |EY (1) — x(0)|1?), (20)

I (1) = (1)) | < aldy (1) + IR (£) — x(2) 1) /2. (21)
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Putting x! = x°, = 0 in Lemma 5, we obtain the inequalities:

IEY (0) =%l < 1/B(dy (0) + IEQ (0) — 6(x*)I[) 2, (22)
143 (0)]] < o (0) +[|EY (0) —x°||%) /2, (23)
dy'(0) < 1/pa(dy (0) + IEF(0)I[%), (24)

IES (O] < e(dy (0) +[|EY (0) —x°]I) /2. (25)

Inequalities (18)-(25) give the possibility to transform the conditions and
the assertions of Theorems 2 and 2B to the conditions and assertions of
Theorems 1 and 1B and vice versa. Now Theorems 1 and 1B become cor-
ollaries of Theorems 2 and 2B (one has to put w=1,v = 1/2 in Theorem
2B). For example, let us prove Theorem 1 from Theorem 2. If the
assertion 1) of Theorem 2 is true, then (dyf (£) + UE{I," &) - ox@)P) = 0 as
t — oo, Inequalities (18) and (19) then lead directly to assertion 1) of Theo-
rem 1. If the conditions (EY (0) —x°) — 0 and d¥ (0) — 0 as N — o are sat-
isfied, then inequalities (22), (23) guarantee that “E{g’ (0)—<|)(x°)” — 0 and
"dq[}’ (O)i’ — (0 as N — oo. Then assertion 2) of Theorem 2 gives that
“EQ’ (&) — d(x(®)) = 0 and dy () — 0 as N — . The inequalities (18) and
(19) then lead directly to assertion 2) of Theorem 1.

4 AN EXAMPLE: A MARKOV MODEL OF THE CHEMICAL
KINETICS AND ITS ASYMPTOTIC DESCRIPTION
BY ORDINARY DIFFERENTIAL EQUATIONS

A Markov model of chemical kinetics gives an example of a Markovian
process for which an asymptotic description by ordinary differential equa-
tions is possible (see, for example, [4] [9]). Consider some reversible
chemical reactions taking place in a volume. The reversibility of the reac-
m m
tions means that together with a direct reaction, E(xjA i~ ZBJA ; the
j=1 j=1
m

m
inverse reaction, E BA; — E a;A; takes place. Here A; is the symbol of
=

j=1
a j—th substance, aj,ﬁj are stoichiometic coefficients (j = 1,..., m). For an
i-th reaction, the stoichiometric coefficients are supplied by an index i :
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m m
a;j, B;j- Consider first one direct (irreversible) reaction 2 A — 2 BA;.
j=1 j=1
Suppose that the probability of a single act of the reaction per time in a
unit volume is proportional to a probability of the event that all molecules
of the reacting species come together in volume V". Denote by n; a

number of molecules j-th substance. The probability for o;; molecules to
come together into the volume, V", is set equal to

Pj = nj(nj~ 1) ---(nj—aj+ 1)(V*/V)aj,
where the factor n;(n; — 1) -..(nj— a; + 1) is equal to the number of ways to

choose o; elements from the n; elements. Supposing the independence of

the molecules, the probability, P, of a reaction act is proportional to the
m

product of probabilities P = HP].. Therefore, the probability of one

j=1
reaction act in all volume per time is equal to
m
kVP:kVIIn,-(nj—1)~~(n,--(1,~+1)(V*/V)“1, (26)
]:

where k is a coefficient. The numbers nj(t) are the variables of a Markov
process, but the process is not obviously ergodic because 7,(f) depend on
the initial data. Introduce in the usual way a coordinate of the reaction,
E(f), i.e., a number of the reaction acts up to time ¢ Then
nj(t) = ni0) +v; &(), where vj = Bj — a;. Therefore, it is more convenient to
consider random process §(f) and to express from the beginning n(f)
through E(t). If / reactions take place, it is convenient to introduce coordi-
nates of the each, E(f), i = 1,..., I. When the direct reaction takes place,
E,(?) increases by 1, and for an inverse reaction E4f) decreases by 1. Acts
of reactions are assumed to be independent. The numbers of molecules of
each species are given by

!
nj(t) = n;(0) + ZIYUEz(t), Yij = Bij — 0j- (27)

Variables &,(¢) form a Markov process on the lattice Z' of the kind which
was defined in Section 1. Each reversible reaction corresponds to two vec-
tors from the set A%(s = 1,..., 2[): a direct reaction corresponds to the odd s,
its inverse to the even one. Components of the vector A® can be written
down as

Af: (_1)S+1(6S(2i—1)_6s(2i))7 §= 17"'721, i= 17"'717 (28)
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where §;; is the Kronecker’s symbol. This formula shows that the
coordinate E(f) increased by the direct reaction, and decreased by the
inverse one.

Transition probabilities must be expressed through E;. It can be made by
the same suppositions which lead to formula (26). A sequence MY is the
corresponding sequence of reactions with large volume and numbers of
molecules. Let V= NV". For an odd s=2i—1 (the direct reaction), a;
must be substituted instead of ;. For an even s = 2i (the inverse reaction),

B;; must be substituted instead of a;. If we put V' = NV” then:

g =koi VN ﬁ”i(nj = 1)+ (nj— oij+ 1)(1/N)*, (29)
L
;= kaVN ﬁ”f(nj = 1)+ (nj = Bij + 1)(1/N)Pi. (30)
L

In (29), (30) numbers n; must be expressed through §; with help of (27).
Denoting z; = /N, x; = §;/N and putting n;(0)/N =v; , we have from (27):

1
zj(t) = vi+ 2 Yijxi(t), (31)
=1
where y;; = B;; — a;; The system of inequalities
I
V(} + zlYijxi >0 (32)
1=

defines a set Q from Section 2 of the paper.

Taking into account (29) and (30), for functions ay(x) from Section 1
(formula (8)), we have

m

1) =& [T, ant) =k [, (33)
azi—1 ]I__IZ] 2i(X JI:IZ]

where z; must be expressed through x;, and £} = k2i_1V*, k; = kZiV* are
the constants of direct and inverse reactions of type i. Besides,
|8N| < const/N. Taking into account (28) we can write down the system of
differential equations, (9), from Section 2, in the form:
m m
difdi = [ T (@)™ =k T )™, (34)
= =

where again z; must be expressed through x; with help of (31).
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Equations (34) together with (31) are the phenomenological equations of
chemical kinetics based on the law of action masses. If there exists a solu-
tion of equations,

m
2 viR; = In(kf /k;), (35)
then there exists an equilibrium point, i.e. the system of equations

m m ]
G e =k ], 20 =i+ S (36)

1=

has a solution x™, and, moreover point x™ is an asymptotically stable equi-

librium point of (34) (see, for example [10]). By the way, point x™ is the
m
maximum point of the function S(x) = —2 z(Inz;—1) + 2 Rjz; (where
j=1 j=1

z; must be expressed through x;) on a linear manifold which is determined

J
by coefficients aj, ;. Function S(x) is the Liapunov function for (34), see
[10]. Thus, if a solution of equation (35) exists, then all conditions of The-
orem 1 are fulfilled, and the phenomenological equations provide an ade-
quate approximation (in the sense of Theorem 1) of random chemical
reactions.

5 CONCLUDING REMARKS

The results of the paper demonstrate that Grobman-Hartman mappings
(¢(x) above) play an important role in deterministic approximation of
Markov processes considered. An interesting future direction is the con-
sideration of their role in stochastic asymptotic approximations. To this
point, a comparison of Theorems 2 and 2B leads to the idea of a connec-
tion between fluctuation amplitude and a tangential property (smoothness)
of Grobman-Hartman mappings. Another direction is the consideration of
the mappings for phenomenological equations of chemical kinetics.
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