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The distribution of the queue-length in the stationary symmetrical GI/G/s queue is given
with an application to the M/G/s queue, particularly in the case of the combination
of several packet traffics, with various constant service times, to dimension the buffer
capacity.
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1. INTRODUCTION

In a recent paper [1], we studied and evaluated the queueing delay in
the stationary G/G/s queue, and particularly in the GI/G/s queue. In
this paper we propose to evaluate the queue length in the stationary
symmetrical GI/G/s queue only, to avoid the impact of some possible
dependence between the arrival process and the queueing process.

From a practical point of view, we will consider the symmetrical
M/G/s queue, with a numerical application to the packet traffic with
various constant packet lengths (i.e. various constant service times), to
dimension the buffer capacity.
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2. NOTATION, ASSUMPTIONS AND PRELIMINARY RESULTS
FOR THE SYMMETRICAL GI/G/s QUEUE

21. Notation and Assumptions
2.1.1. The Arrival Process

The arrival process is a renewal process of successive arrivals X, the
successive arrival intervals Y, being mutually independent and identi-
cally distributed, with Fy(¢) for distribution function. We let, for
Re(z) < 0:

eo(z) = E[e¥], and on(z) = Amez’-p(t)-dt=1%, (1)

where p(7) is the arrival rate at time (¢+ fo) if an arbitrary arrival
occurred at time . We assume (g(z) to be holomorphic at the origin.
From Paul Levy’s theorem, we deduce that ¢y(z) exists for Re(z) <6
where 6 is a positive real number. The stationary assumption and the
Abelian theorem give that lim,_4z- o (z)=A, where A is the mean
total arrival rate.

2.1.2. The Service Times

The successive service times 7, are mutually independent and indepen-
dent of the arrival process. The service times are identically distributed
with a distribution function F;(f) and we let: p;(z2)=F [T, for
Re(z) < 0. As for py(z), we assume ¢;(z) to be holomorphic at the origin
and, consequently, we deduce the existence of ¢1(z) for Re(z)<§
(6>0).

2.1.3. The Service Discipline

The servers are indistinguishable for the service discipline which is “first
come-first served”. In fact, we will use this assumption for clarity in
the reasoning but we know that there is no impact on the results in the
queue-length.
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2.1.4. The Traffic Handled

The traffic intensity (per server) is denoted by p=(A/s)- T=X-T
(p < 1), where T is the mean service time and ) is the mean arrival rate
per server.

2.1.5. Queueing Delay

Since the term “waiting time” means “sojourn time” in Little’s formula,
for clarity we prefer to use the term “queueing delay” for the queueing
process only.

2.1.6. Contour Integrals

In this paper we use (Cauchy) contour integrals along the imaginary
axis in the complex plane. If the contour (followed from the bottom to
the top) is to the right of the imaginary axis (the contour being closed
at infinity to the right), we write [ 0. If the contour is to the left of
the imaginary axis, we write [_o. Unless it is necessary to specify
whether the contour is to the right or to the left of the imaginary axis,
we write [o.

2.2. Preliminary Results for the Symmetrical GI/G/s Queue

In [1] we presented the following results for the symmetrical GI/G/s
queue (=multiserver queue), in a stationary regime, except for the
GI/D/s queue. This latter case has to be excluded because of a deter-
ministic mechanism for the choice of arrivals.

2.2.1. Behavior of Each Server and Delayed Customer

Each server behaves as a GI/G/1 server, as if an arbitrary arrival is
chosen with probability (1/s) of being handled by the considered server.
Consequently, in [1] the arrival rate p(¢) becomes [ p(7)/s] per server, and
expression (1) becomes for each server:

Ll w2
(z) = - @~ 5 2
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If wy is the queueing delay due to this server, Pollaczek’s formula [2]
gives, for Re(g) > 0:

—qWo] — _:l ___._1 _1 . .
s =enh et e ).

with K(¢) = 1~ 25 1,0 - 1), ()
We may note that
(= 7)== @

where ) is the mean arrival rate per server. When |q| increases indefi-
nitely, we obtain the following expression giving the probability of no
delay of the considered server:

d
0 =exp{ - [ 0wk F =1 ©)

n being the mean busy period size (= mean number of customers served)
of the considered server. If Py (=1 — Q) is the probability of delay of
this server, the distribution function of the queueing delay wy may be
deduced from expression (3) and may be written as:

Wo(t) =1 — Py - Go(1), (6)

where G(?) is the complementary distribution function of the delayed
customer.

Finally, the complementary distribution function of the queueing
delay due to the multiserver is, for a delayed customer,

G(1) = [Go(0)]". (7)

We deduce the distribution function of the queueing delay due to the
multiserver, for an arbitrary (delayed or not) customer:

W(t)=1-P-G() =1-P-[Go(1)]", (8)

where P is the probability of delay due to the multiserver.
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2.2.2, Probability of Delay

During the busy period of the multiserver (= congestion state) server’s
behavior has been defined in a quite independent way of partial occu-
pancy states. For these states, it follows that a busy period (per server)
appears exactly as a unique congestion state in the lost call model,
handling n successive service times as if it was for a unique arrival but
to be evaluated as n arrivals congested, » being the mean busy period
size per server, as defined by expression (5). Consequently, the probabil-
ity of delay due to the multiserver and used in expression (8) is:

n-P,
P_1+(n—l)-Pa’ ®)

where P, is the probability of loss in the lost call model.

2.2.3. The M/G/s Queue

For the M/G/s queue, we have Poisson arrivals with expression (2):

ay(—z2) =

(10)

N>
N>

U | -

Each server behaves as an M/G/1 server with Poisson arrivals, the mean
arrival rate being ). Expressions (3) and (6) become:

- q
Ele™™]=(1-p)- ,
e ={1-0) g—A+ X pi1(—q)
l1—p q dg (1
Wo(t) = ; . eqt . .—
o) =55 /+0 g—2+X-oi(-9) ¢
(a) First expression of Wy(t), for each server
On the contour (to the right of the imaginary axis), we may write
B = L= (1) 3 7 (i)
1 - AT ¢j(—q) =
1= o (—
with ¢ (—g) = 1 —#1 =) (12)

T-q °
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¢;(2) corresponding to the remaining service time To. We deduce for
expression (6):

Wol) =1—(1-p)- 3 0" {1_ (/()'“_?(i‘l.duy)}, (13)

v=1

where (-)® denotes the v-fold convolution corresponding to [} (z)]”.

(b) Second expression of W(t), for each server
Another very useful expression of W(r) has been given by Prabhu [4],
p. 90, formula (2.106):

Wo(t)=1—(1—p) -i/uoze—*"-@i—'!‘)l-duﬂ(wu), (14)

i=0

where F;(f) denotes the i-fold convolution of Fi(f) and corresponds
to [p1(2)]".

(c) Asymptotic expression of W(t), for each server

The asymptotic expression of Wy(f), for t large, corresponds to the
(real) singularity of E[e~?*0] closest to the origin: ¢ = —fo (8o > 0). This
expression is given in [2], p. 27:

Wo(t) = Wi() =1 —/\‘—(p;%_—l.e—ﬂot’ (15)

where f3 is the real (positive) root closest to the origin of the equation
g+A—XA-pi(q) =0. (16)

This practical expression (15) may be used for approximately ¢ > 5- Ty
(Ty: mean remaining service time) and p < 0.8.

(d) Probability of delay P of the multiserver
For the M/G/s queue, expression (5) gives for the mean busy period
size per server:

n=-—. (17)
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Consequently, expression (9) of P becomes the delay Erlang
formula:

Ez‘s(A . T) = Ez,s(s . p). (18)

(e) Expression of W(t) for the multiserver
Finally, expression (8) may be written as:

1 - Wwo()]’
W) =1-P- [———i(-)} , (19)
p

where P is the delay Erlang formula E, (s - p), W(t) corresponding to
each server. We recall that we exclude the queue M/D/s, Eq. (19) how-
ever being a good approximation.

3. THE QUEUE-LENGTH IN THE GI/G/s QUEUE

For the nth arrival in the GI/G/s queue, we denote by X,, and 7, the
arrival epoch and the queueing delay, respectively. In [3], p. 29,
Pollaczek gave the condition to find j customers waiting at the epoch
X, n+je

Xo1+ma < Xn+j < Xy + ™. (20)

It follows that the condition to find at least j customers is:
m— Xnj—Xp)=mm—(Y1+---+Y;) >0. (21)

Pollaczek worked in the complex plane to define the singular points.
Now, with the facilities given by the electronic computers for the
numerical calculations, we will work in the real plane. Due to (21), if
(Y1+---+ Y)=t, we must have 7, > r. Consequently, in the station-
ary regime, the probability P(>j) to find at least j customers waiting
Jjust before the arrival X, is

P(>j) = /0 - w)- diR ), (22)
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where [Fy(2)]’ denotes the j-fold convolution of Fo(f), which is the
distribution function of any arrival interval. From the relation

> dR )Y = Adt,
j=1
we may deduce the mean queue-length:

inP(Zj):A-/oo[l—W(t)]-dt=A-W. (23)
J=1 0

It is Little’s formula applied to waiting customers only. To use simple
expressions of a single server, expressions (6), (7) and (8) give

) M —wy()]° ;
rep=p [T aimo. 24)
0 0
In expression (23), the mean queueing delay of the multiserver becomes
o1 _ s
W=P-. / [l_uﬁ_(ﬁ] .dt. (25)
0 Py

For numerical calculations we will consider the M/G/s queue,
especially.

4. THE QUEUE-LENGTH IN THE M/G/s QUEUE

4.1. The General Expression

In the case of a Poisson arrival process we may write

d[Fo()]Y = H(1,j— 1) - Adt, with H(t,j)=e‘A'-%—l!)—j. (26)

Expression (24) becomes, referring to (18),

P =Eulsp)- [ [ e n-aa @)
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where W(t) is defined by expression (14). Frequently, the calculation
of [1 — Wy(?)] is long. It is better to use the asymptotic expression as
far as possible. For p < 0.8, it is appropriate to split up the preceding
integral into two parts:

Buisen) [ [l‘—W"(”]s-Ha,j— 1)-Adt= 1)+ B (28)

p

with
Il(j)=E2,s(s'p)'AIO[I;Z%Q]S~H(I,j—1)-Adt,
n) =o)L - - na

where Wy(f) is asymptotic expression (15) for each server. 7, may be
approximately equal to [5 - Ty/s], Ty being the mean remaining service
time. Practically, for P(>j) <1072 the term I;(j) may be neglected
(if p<0.8).

4.2. Case of Packet Traffics

As an important example, consider the case of a total traffic stream with
N component partial Poisson traffic streams labelled j (j=1,...,N).
For traffic stream j, packet lengths are constant (deterministic) and
equal to 7; (T < T, <---<Ty). The arrival rate is A; and the total
arrival rate is A =%, A;. Per server, these arrival rates become
Ai=[Aj/s] and A=[A/s], respectively, and the loads (traffic intensities)
become p;j=M\;-T;, and p= Z,Iil p;. For the service times, ¢1(z)
becomes

"] (Z) = E X . Csz. (29)
=

In expression (14), F;(¢) corresponds to

; .! /\ 7 A JN - T
[ = F’l_ﬁ(f) (TN) e Tz e Tz (30)

JesdN
(g +-+in=i)
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Finally expression (14) of W(¢), per server, becomes

mo-0-0-3 5 ot (3) - ()

T
=0 1IN Ji: JN:

,,,,,

Uy +-+in=i)
il
with A(t,j1,--0jw) = A= (h T+ +ivTn = 1) <0, (31)

b

[¢/Ty] is the integer part of (¢/Ty). This expression is too long for
numerical calculations. On the contrary, asymptotic expression (15)
becomes

_ 1—p —Bot
W](t)_—l_pl.eﬂOTI+...+pN.eﬂ0TN—1.e 0, (32)

where g = [y (>0) is the real (positive) root, closest to the origin, of
the equation

g+ 2= el — o ApefTV = 0. (33)
Finally, for p < 0.8 and P(>;) <1073, it is sufficient to use approxi-

mation (28) with expression (32), j being here the number of waiting
customers just before an arrival:

P(2)) = L())- (34)

This quantity is useful to dimension the buffer controlling the queue.
Each packet occupies the buffer during the sojourn time (= queueing
delay + sending time). j packets waiting correspond to (j + s) packets in
the buffer. A packet is rejected on its arrival if the number j of packets
waiting is such as (j+ s) > K, K being the buffer capacity. Due to (34),
the rejection rate R is

R=L(K—s). (35)

Due to the resending of packets rejected, the traffic handled is not
decreasing, and for low values of R, expression (35) is a good
approximation.

4.3. AnExample

As an example for the numerical calculations, we consider the case
N=3; T'=1, T»=5, T3=30; py=p2=p3=0.2 (p=0.6). Following
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TABLE I Buffer capacity K necessary for a rejec-
tion rate R in the case of s servers: formula (35) —

(M/G/s queue)
K R

1073 107 1075 106
1 28 35 39 44
2 28 38 49 58
3 28 38 49 59
5 28 38 49 59

Example (3 packet traffic streams): N=3; Ty =1, T,=35,
T3=30; pi=p,=p3=0.2(p=0.6).

formula (35), Table I gives the buffer capacity necessary for R=1073,
1074, 107> and 107°, the multiserver capacity being s=1, 2, 3 and 5.
As we can see, the buffer capacity K has to increase much when we
want to decrease the rejection rate R. But an interesting result appears
for s> 1, the buffer capacity does not depend on the multiserver capacity,
approximately. And from this Table I, it appears another interesting
result: for s > 1, to get a low rejection rate it is necessary to satisfy the
condition:

Ty

K .
>T1

(36)
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