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In this paper, an adaptive technique is suggested to provide the passivity property for a
class of partially known SISO nonlinear systems. A simple Dynamic Neural Network
(DNN), containing only two neurons and without any hidden-layers, is used to identify
the unknown nonlinear system. By means of a Lyapunov-like analysis the new learning
law for this DNN, guarantying both successful identification and passivation effects, is
derived. Based on this adaptive DNN model, an adaptive feedback controller, serving
for wide class of nonlinear systems with an a priori incomplete model description, is
designed. Two typical examples illustrate the effectiveness of the suggested approach.
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1 INTRODUCTION

Passivity is one of the important properties of dynamic systems which
provides a special relation between the input and the output of a sys-
tem and is commonly used in the stability analysis and stabilization of
a wide class of nonlinear systems [4,12]. Roughly speaking, if a non-
linear system is passive it can be stabilized by any negative linear
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feedback even under the lack of a detailed description of its mathe-
matical model [19,20]. This property seems to be very attractive in
different physical applications. In view of this, the following approach
for designing a feedback controller for nonlinear systems is widely
used [17]: first, a special internal nonlinear feedback is introduced to
passify the given nonlinear system; second, a simple external negative
linear feedback is applied to provide a stability property for the
obtained closed-loop system. The detailed analysis of this method and
the corresponding synthesis of passivating nonlinear feedbacks repre-
sent the foundation of Passivity Theory [1,12].

In general, Passivity Theory deals with controlled systems whose
nonlinear properties are poorly defined (usually by means of sector
bounds). Nevertheless, it offers an elegant solution to the problem of
absolute stability of such systems. The passivity framework can lead
to general conclusions on the stability of broad classes of nonlinear
control systems, using only some general characteristics of the input—
output dynamics of the controlled system and the input—output map-
ping of the controller. For example, if the system is passive and it is
zero-state detectable, any output feedback stabilizes the equilibrium
of the nonlinear system [12].

When the system dynamics are totally or partially unknown, the
passivity feedback equivalence turns out to be an important problem.
This property can be provided by a special design of robust passivating
controllers (adaptive [7,8] and non-adaptive [11,18] passivating con-
trol). But all of them require more detailed knowledge on the system
dynamics. So, to be realized successfully, an adaptive passivating con-
trol needs the structure of the system under consideration as well as
the unknown parameters to be linear. If we deal with the non-adaptive
passivating control, the nominal part (without external perturbations)
of the system is assumed to be completely known.

If the system is considered as a “black-box” (only some general
properties are assumed to be verified to guarantee the existence of the
solution of the corresponding ODE-models), the learning-based con-
trol using Neural Networks has emerged as a viable tool [6]. This model-
free approach is presented as a nice feature of Neural Networks, but the
lack of model for the controlled plant makes hard to obtain theoretical
results on the stability and performance of a nonlinear system closed by
a designed neuro system [10,13]. In the engineering practice, it is very
important to have some theoretical guarantees that the neuro controller
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can stabilize a given system before its application to a real industrial or
mechanical plant. That’s why neuro controller design can be considered
as a challenge to a modern control community.

Most publications in nonlinear system identification and control use
static ( feedforward) neural networks, for example, Multilayer Percep-
trons (MLP) [16], which are implemented for the approximation of non-
linear function in the right-hand side of dynamic model equations [3].
The main drawback of these neural networks is that the weight
updates do not use any information on a local data structure and the
applied function approximation is sensitive to the training data [6].
Dynamic Neural Networks (DNN) can successfully overcome this dis-
advantage as well as provide an adequate behavior in the presence of
unmodelled dynamics, since their structure incorporate feedback. They
have powerful representation capabilities. One of the best known DNN
was introduced by Hopfield [5].

For this reason, the framework of neural networks is very convenient
for passivation of unknown nonlinear systems. Based on the static
neural networks, an adaptive passifying control for unknown nonlinear
systems is suggested in [2]. As we stated before, there are many draw-
backs on using static neural networks for the control of dynamic systems.

In this paper, we use DNN to passify the unknown nonlinear
system. A special storage function is defined in such a way that the
aims of the identification and the passivation can be reached simul-
taneously. It is shown in [9,14,15] that the Lyapunov-like method
turns out to be a good instrument to generate a learning law and to
establish error stability conditions. By means of this technique we
derive a weight adaptation procedure to verify the passivity conditions
for the given closed-loop system. Two numerical examples are consid-
ered to illustrate the effectiveness of the adaptive passivating control.

2 PARTIALLY UNKNOWN SYSTEM AND APPLIED DNN

21 Partially Unknown SISO System

As in [1,2], let us consider a single input—single output (SISO) non-
linear system given by

z=fo(z) +p(z,»)y
ji=a(z,y)+b(z,y)u (1)
2(0) =z, ¥(0) = yo
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where ¢:=[z", y]T € R" is the state of the system at time >0, u€ R
is the input and y € R is the output of this system.

The following interpretation of this structure can be done: the scalar
y is “the main controlled state” and the vector z is “the internal
dynamic feedback uncontrolled variables” or states (see Fig. 1). A
broad enough class of controlled SISO systems has such structure.

The functions fy(-) and p(-) are assumed to be C'-vector fields
and the functions a(-,-) and &(-,-) are C'-scalar functions (b(z, y) #0
for any z and y). Let it be

fo(0)=0
We also assume that the set U,q4 of admissible inputs u consists of all
R-valued piecewise continuous functions defined on R, and satisfying
the following property: for any initial conditions ¢°=¢(0) € R" the
corresponding output

y(0) = h(@(2,¢°, u))
of this system (1) satisfies'

t
/ |y(s)u(s)|ds < oo, forallz>0
0

that is, the “energy” stored in the system (1) is bounded at each time .

L4 J

FIGURE 1 The general structure of the controlled system.

t®(z, ¢, u) denotes the flow of [ fo(2) + p(z, ¥), a(z, y) + b(z, y)u]T corresponding to the
initial condition ¢° =[(z°)", »°|T € R" and to u € U,q.



CONTROL VIA NEURAL NETWORKS 65

DEFINITION 1 Zero dynamics of the given nonlinear system (1)
describes those internal dynamics which are consistent with the external
constraint y =0, that is, the zero dynamics verifies the following ODE

z = fo(z) (2)

2.2 Passivity Property and Storage Function

DEFINITION 2 [1,4] A system (1) is said to be C'-passive if there exists
a C'-nonnegative function V:R" — R, called a storage function, with
V(0)=0, such that, for all u € U,gq, all initial conditions ¢ O andall t>0
the following inequality holds:

V(¢) < yu 3)
I
V() = yu (4)

then the given system (1) is said to be C'-lossless. If, furthermore, there
exists a positive definite function S : R" — R such that

V(i) =yu—S (5)

then the system is said to be C'-strictly passive.

2.3 Basic Assumptions

For the nonlinear system (1) considered in this paper, the following
assumptions are assumed to be fulfilled:

H1: The zero dynamics fy(z) and the function b(z,y) are completely
known.

H2: fo(-) satisfies the global Lipschitz condition, that is, for any
21,2, €R"!

[/fo(z1) = fo(22)ll < Lgllz1 = 22|, Lg >0

H3: The zero dynamics in (1) is Lyapunov stable, that is, there exists
a function Wy : R"! — R+, with Wy(0) =0, such that for all



66 J. REYES-REYES et al.

zeR"!

OWy(2)
_— <
S olz) <0
H4: The unknown part of the system (1) is related to the functions a(z, y)

and p(z,y) with an a priori known upper bounds, that is,

la@z )l < a(zy),  llp@y)l <p(z)

where a(z,y) and p(z,y) are Lipschitz functions (selected by the
designer) and satisfying the following “strip conditions”:

a(z,y) < ao+ ar(||z]| + | ¥])
p(z,y) < po+pi(llzll + 1 71)-

2.4 Dynamic Neural Network

Following to [14,15], to identify this partially unknown nonlinear
system we propose DNN having the structure as follows:

+ 4y + b(z,y)u (6)

Here (2,7) € R” is the state vector of the DNN, W;e®R"D>"
W, eR"™" are the weight matrix and vector, correspondingly, the
functions ; € R"™" and 1, € R"™*" are the “output thresholds” of each
neuron, the activation functions ¢;(-,-) € ™! and @,(-,-) e R"*! are
defined as follows:

oi(a, B) = [tanh(k; - @), ..., tanh(k; - a,_1), tanh(k; - B)]"
ki€eR, i= 1,2

As it is seen from (6), the structure of the DNN is constructed using
the known part f(z), b(z, y) and the unknown part is identified by only
two neurons (without any hidden layers):

the neuron [Wp1(Z, ) + 1] corresponding to the function p(z, y)
and [Wap2(2,§) + 1»] corresponding to the function a(z, y).
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Sure, that in the general case, the unknown nonlinear system (1)
does not necessarily belong to the class of systems which can be exactly
modelled by Eq. (6). Hence, for any >0 and for any fixed initial
weights of the DNN, denoted by W} and W3, there exists, so called,
the identification error (vq, V) defined as

v =z —fo(z) + [Wiei(z,y) + 1]y

7
vy =Y — W3pa(z,y) + 2+ b(z,y)u 0

In view of (1) and (7), we can get the algebraic presentation for the
identification error:

v = Bi(z,y)y — 1y

vy = By(z,y) — 1 ®)

where
Bi(z,y) :=p(z,y) — Wipi1(z,»)
Bi(z,y) = a(z,y) — W35pa(z,)

From H4 and the boundness of the functions ¢; and ¢, we can con-
clude that By and B, are also bounded and satisfy

1B1(z )l < 5(z,3) + [IW7 ]l - lerll =: Bi(z,)

_ . - ©)
B2z, y)|| < a(z,) + W3l - ezl =: Ba(2, )

Now we are ready to discuss the following problem: how to incor-
porate this DNN into the internal feedback of the given nonlinear
system such that the obtained closed-loop system possesses the pas-
sivity property.

3 PASSIVATION OF PARTIALLY UNKNOWN
NONLINEAR SYSTEM VIA DNN

In order to simplify the notation, the following expressions will be
used:
ei = i(z,y), @i=pi(27)
@i = wi(2,9) — pi(z,y) (i=1,2)



68 J. REYES-REYES et al.

A Z—z
A= =1 10
5]-5) L
For any vector w € R™ and any positive integer m=1, 2, ..., we denote
jwl = [Jwr| Jwa| - fwnl]®

diag(w) := diag{wi,w2,...,wm} € R™"
and for a scalar k € R and a positive integer /=1,2, ..., we will write
V?c(n) =k Kk - k]Te®R

Under the assumptions H1-H4, the original nonlinear system (1)
can be represented as

z=Jo(z) + [Wiei(z,9) +ily +w

) (11)
y=W5p(z,y) + Y2+ b(z,p)u+ 1,

where the unmodelled dynamics (v, v,) are defined by (8).
The following theorem gives the main result on the passivation of
this partially unknown nonlinear system via DNN.

THEOREM 3 Let the assumptions H1-H4 hold and the nonlinear
system (11) be identified by DNN (6) with the following differential
learning law

: . oW, .
wl=mn (—2901)’A3Pz + 901)’—5%@), w1(0) = W, 12)

Wy =m(—20:8,Py +p2y), Wa(0) = W5

where P, R"V*=D s g positive solution to the following matrix
Riccati equation

P,A+ AP, + PzAfr,‘ P,+1,- Lf%,nA;,u =0 (13)
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and P, is a positive constant. Let also the output thresholds of DNN
nodes are adjusted according to

41 = —sign(diag(A.P.)) [ W7 31| + vec(By)] sign()

(14)
¥z = —sign(8,Py) [[IW3 ]| - | 2]l + B2
If the control law is constructed as follows:
oW,
=b7'(z,) [v - aoz(z) Wi
oWy (z .
-8+ |2 8] siens) — w (15)

then such a closed-loop system is passive (with respect to the new input v)
with the storage function

1 Sl 1 ~ ~
= ATPA 4532 + Wo(2) + W W 4 e Wy W]}

2
P, 0 (16)
P= eER™, O0<meR™, 0<mEeR
0 P,
that is, for any t >0
I'/g vy
Proof Let us define
Wi=W,—W!, i=1,2 (17)

Start with the calculation of the derivative of the storage function (16)
along the trajectory of the systems (11) and (6):

6W0( z)

V=2ATPA + ;4 yyp 45! W2W2 +tr{W1n1 W1} (18)

Next, calculate the upper bounds for V in such a way that this bound
is going to be a function of known data. To do this, we should use the
assumptions H1-H4. Start with the term

2ATPA =2ATP.A, +2ATPA,
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From (11), (6), (17) and (10) it follows

2AzTPzAz =fO _f0 + (WISaI + Wik‘bl)y g

, 3 (19)
287 Py A, = Wogy + Wigs — 1

Equation (19) can be rewritten as
207 P.A; = 207 P:[ fo(2) ~ fol2) + (4A; — AA;)
+ (W1 + Wig1)y — v
= ZAZPZ[J?' + AN, + (Wlsbl + Wip1)y — ]
where
['=1h(E) - folz) - A ~z)

is the function, which in view of H2, verifies the following Lipschitz
condition:

17 € Lplla:l, Ly >0 (20)
Equation (8) implies that
2ATPA, = 2ATP,[ [/ + AA,] + 20T P, W1 $1y
+ 207 P [Wi$1 — Bi + 1]y

and, taking into account the inequ~ality (20), the first term from the
right-hand side of the term 2ATP,[ /' + AA,] can be estimated as

2ATP.[f' + AD,) < AT[P.A + AP, + P.P, + I - L} || Az 1A,

Also the following estimations hold:

2ATP, (WG — B + 1]y
<21ATP:|(I1W7 1] + ggg(f?l))lyl +2A7 Py

= 24P, [sign(diag(ATP.)) (| W; 1] + vee(B1) )sign(») + 1]y
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The upper bound for 2AT PA, is
207PA, < A7[P,A+ AP, + P.P, + I - L} || Az ||,

+2ATP, [sign(diag(A'erz))

x (11711211 + vee(B1) )sign(y) + 1|
+t{ W1 [201yAT P;] } (21)

Using (8), analogously to the previous calculations, for the second
term in (19) it follows:

20,P, A, < Wy(r2A,P, +2A,P,
x [sign(A,P)([|W; |32 + B2) + 4] (22)
The upper bound of the term ((0Wy(z))/0z)z is

6,,;(;(2) ‘ awo(z) 5 +tr{ W1[ o1 yam(;()(z)]}

N

w 23
8z 1<p1]y (23)
The term yy is estimated in the following way:

vy < [Waps + bu+ B, sign(y)]y + Wa[—p2y] (24)

Combining (18) with the estimations (21)—(24), finally, the upper
bound for the derivative of the storage function (16) can be presented
in the following form:

2ATPA
S A [P A+ AP, + PAZ P + I - L || Az ][],

Bjsign(y

+ 27 P, [sign(diag(ATP2)) (W7 11| + vec(B) sign(y) + 1]
+ 24, P, [sign(A,Py) (W3] - 1@2ll + Ba) + 4o

+ tr{ W [m“ W, +2p19ATP, — 1y 6)/\(;0(2)] }

AL ¢22Aypy ~ 23]

2| Ea

Bs1 gn(y) + ——=

Wl‘Pl}y

+ [Wapa + bu + Basign(y)] y (25)
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From this expression, it follows that:

— the first right-hand term contains the algebraic Riccati equation
inside of the brackets and, hence, is equal to zero identically,

— the second and third terms are cancelled by the output thresholds
1y and 1, selected as in (14),

— since W= W; (i=1,2), the learning law for the weights adjusting
cancels the fourth and fifth terms of (25).

By the assumption H3 and imposing the control law as in (15),
finally, it follows that
V< vy

The theorem is proved.

To clarify the main contribution of this paper, formulated in the
proven theorem, the following remarks seems to be useful.

3.1 Structure of Storage Function
The storage function (16) consists of the following three parts:

— the first one ATPA makes the identification error smaller;
— the second part

y* + Wo(2)
are the terms related to the passivity property;
— the third one
Le{ Wiy Wi} +ins ' W Wi

is used to generate the learning law for DNN.

3.2 Thresholds Properties

The output thresholds v, and 1), are introduced to cancel the influence
of the uncertain terms. These thresholds are functions of the bounding
functions By and B,, hence, it is preferable to select these functions in
such a way that they be sharp (reachable). Such selection can signifi-
cantly improve the performance of the interconnected system.
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3.3 Stabilizing Robust Linear Feedback Control

The control law u is constructed based on the information received
from the updated neurons of DNN (W(z, y), Wapa(z, y)). The neural
part of the control law identifies the uncertain terms of the system.
So, the control law passifies the system and also cancels the influence of
the uncertain terms simultaneously. The selection of a feedback as a
negative linear one, that is,

v=—ky, k>0
that leads to the following inequality:
V<vw=-ky?<0

So, the closed-loop system turns out to be stable for any negative linear
feedback.

3.4 Situation with Complete Information

If the nonlinear functions fy(z), p(z,y), a(z,y) and b(z, y) are known,
then the control law (15) can be constructed by replacing the neuron
part Wy, with the known function p(z,y), and Wy, replaced with
a(z,y). The functions B; and B, may be replaced by zeros since these
functions are related to the uncertainty (unmodelled dynamics). The
control law, making the system with such known model passive from
input v to output y, now is

u=b"(zy) [v - ) p(z.y) - azy)

The corresponding storage function is as follows:
V.= %yz + Wo(z)

These facts coincide with the results in [1].

3.5 Two Coupled Subsystems Interpretation

We can consider the given nonlinear system (1) as a collection of two
coupled subsystems (see Fig. 1). One of them (say, subsystem F) is

y=a(z,y) +b(z,y)u
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with the input u and the output y. The other one (subsystem G) is
z=fo(2) +p(z.y)y

with the corresponding input y and output z related to the internal
dynamics of the whole system. The input of the entire system (1), con-
taining F coupled with G, is u and its output is y. So, in this sense we
can say that the function p(z, ) is the “coupling term” of this nonlinear
system. In view of this remark, we can say that the uncertainties,
described before, are related to the coupling term p(z, ).

3.6 Some Other Uncertainty Descriptions
3.6.1 Case 1: Uncertainty in the Term p(z,y)

If the functions of nonlinear system (1) fo(2), a(z,y), b(z,y) are known
and the function p(z, y) is unknown but bounded, that is,

| p(z, )|l < p(z,)

then the particular DNN for such uncertain system can be selected as
2= fo(2) + W11 (2,9) + iy
with the learning law

wl=m (—2<p1(2, Y)ATP; + ¢1(z,) 81;?)}’
(26)
w1(0) = Wy
and the output threshold given by
W1 = —sign(diag(A:P.)) [|W7]l - le1(2,) — ¢1(2,9)]
+ vec(By)]sign(y) (27)

The passifying control law is
oWy(z
u= 7o) v - L Wi )

- H\a—pggz@”l?l] sign(y) — a(z,) (28)
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with the storage function equalled to

Vp = ATP,A, + Wo(z) + 12 + te{Winy 1 W, } (29)
On the other hand, the coupling term p(z, y) can be expressed as
p(z,9) =Ppo(z,5) + 6(2, )

where po(z, y) is a known part and 6,(z, y) is an unknown one, satisfy-
ing the constraint

”617(2’.}))” S gp(zay)

In this case the corresponding DNN can be constructed as

2=10(2) + [po(z9) + Wi (2,) + iy
with the function B; changed to
By =by(zy) + W7 - llnll

The control and learning laws, as well as the threshold and the storage
function, remain as in (26)—(29). So, we have two alternatives for the
uncertainty description in the coupling term p(z, y). But in both cases,
the suggested passifying control law (28) turns out to be robust with
respect to the uncertainty in this coupling term.

3.6.2 Case 2: Uncertainty in the Term a(z,y)

The main result of this paper, formulated in the theorem given above,
concerns the uncertainty in the terms p(z, y) and a(z, y). As a partial
case, we can formulate the main result for the situation when the
uncertainties are involved only in the term a(z,y). If the functions
fo(2), p(z, y) of the nonlinear system (1) and b(z, y) are known and only
the term a(z, y) is unknown but it is bounded as

la(z,»)Il < a(z,y)
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then DNN, identifying the unknown part, can be constructed as

follows:
= Wapa(2,9) + ¥2 + b(z, y)u
with the weights adjusting according to
Wy =m(=2¢2(2,9)AP, + ¢2(2,))
wW1(0) = W3

and with the output thresholds tuned as

o = —sign(A,P)[IIW3 ] - llp2(2.9) — @2z 9)ll + Ba].

The control law
-1 6W0(Z) = .
u=b"(zy)1y———>-=p(, y) — Basign(y) — Wap,

passifies the NLS with the storage function

1 r]“l ~ o~
Va=AJPA, + Eyz +Wo(z) + % Wowt

(30)

(31)

(33)

As in the former case, we can present the uncertainty of the function

a(z,y) as

a(z)y) = ao(z,y) + 5a(z,y)

where ag(z, ) is the known part of a(z, y) and 6,(z, y) is the unknown

one, satisfying

18a(z, ¥)II < 8a(z,¥)

Then the DNN can be constructed using only ay(z, y) by the following

way:

Y = ao(z,y) + Wapa(z, ) + o + b(z, y)u

(34)



CONTROL VIA NEURAL NETWORKS 71

The function B, is changed to
By = 84(2,9) + W3] - lleen

The control law, the learning law, the threshold and the storage func-
tions remain as in (30)—(33). For example, for a single link manipu-
lator we can assume that the friction term is only single uncertainty of
the corresponding model. So, the friction term 8,(z, y) can be identified
by DNN given by (34). More details, concerning this example, will be
discussed in the next section.

4 NUMERICAL EXPERIMENTS

4.1 Single Link Manipulator

Let us consider the following nonlinear system (single link
manipulator)

[Zyl] - [—(g/a)cos}zzl) _)\(y)} + [I/r?qaZ]” (35)

where m is the mass and a is the length of the link, A(y) is the friction
of the joint, z; € R is the joint variable, y € R is the velocity of z; and u
is a torque control.
It can be easily seen that the system (35) can be rewritten in the

form (1), i.e.,

z2=/o(z) +p(2,)

y=a(z,y) +b(z,)
with

So(z1) =0, p(z,y)=1
a(z,y) = —ga~' cos(z1) — A(¥)
b(z,y) = (ma*)~'z,

The zero dynamics of the system (35) is stable and the Lyapunov
function for this dynamics is

Wo(z1) =3 zf
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Now, assume that the terms a(z, y) and b(z, y) are unknown. Choose

y=—y
The initial conditions are selected as

[21(0), O] = [1,1]"
[21(0), 0)]" = [5,0]"

To realize the numerical simulations the following parameters were
selected:

m= %, a=03, A(») =0.1(y+ tanh(50y))

A=-2, W;=[9.8521,11.8528], W} = [3.6141,3.5260]
P, =0.5359, Aj:, =1, Lj;, =2
B = 154127)jp1|| +3, By = 5.0492||gs|| + || + 4
m =diag{2,2}, m=2 ki=1, ky=1

The corresponding simulation results are depicted in Figs. 2—4.
As it is seen from above, the given system reaches to the point y =0
around 0.7 s that correspond to a very quick stabilization process.

s T

-0.05

-0.1H

-0.15

-0.2

025} (sec)

0 0.2 04 0.6 0.8 1 1.2
Time (second)

FIGURE 2 The control input u.
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FIGURE 3 The state z; and its estimate 2;.
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FIGURE 4 The output y and j.

4.2 Benchmark Passivation

Consider the following benchmark nonlinear system [8]

Z —z] —5212 0
Zl=11 0 |+ |-15]y+|{0]|u (36)
y 0 0 1

The passifying controller for this system was derived in [2,8,18]. We
can rewrite this system (36) in the form (1) with
a(zy)=0, bzy)=1, fi=[-z 0O
p(y,2) =[5z — 1.5]"
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The zero dynamics of this system (36) is stable with the corresponding
Lyapunov function equal to

Wo(z) = (zf +23)/2

One assumes that fy(z) and b(y, z) are known and that p(y, z), jointly
with a(y,z), are unknown. The initial conditions are selected as
follows:

[21(0), 22(0), ¥(0)]" = [-1,1, -2
[21(0), £2(0), 5(0)]" = [1, = 1,1]"
Take the feedback as
v=—y

The corresponding simulation results are presented in Figs. 5—8.
The parameters were selected as follows:

-3 0 000
a=10 L wmi=lo o) oo
0 -3 0 00

2.2918 0 30
Pz:[ ]’ Ailz[ ]’ le:z
0 2.2918 0 3

By =1.5/25%22 4225+ 01y2, By =1/0.01-22 +0.001(z% +y?)
m= d1ag{20, 20, 20}, m = 20, k1 = 1, k2 =1

The corresponding stabilizing process is finished around 1.5s.

80
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| . .

-20

-40
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60, 1 2 3 4 5

FIGURE 5 The control input u.
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FIGURE 6 The state z; and its estimate Z;.

H z2

-0.5¢

(sec)

o 1 2 3 4 5

FIGURE 7 The state z, and its estimate 2;.
As it follows from the examples presented above, the suggested

approach provides nice stability property for the partially known non-
linear systems closed by the simplest linear negative feedback.

5 CONCLUSIONS

The methodology, proposed in this paper, can be considered as an alter-
native approach to the existing ones dealing with a passivity feedback
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(sec)

2 3 4 5

FIGURE 8 The state y and .

equivalence within a class of uncertain nonlinear systems. The sug-
gested structure of the DNN is constructed using only the known part
of the uncertain nonlinear system. The corresponding output thresh-
olds are adjusted in such a way to compensate the uncertainty influ-
ence. A learning law is derived by means of a Lyapunov-like analysis.
The passivating feedback control law, as well as the learning law for
the dynamical neural network, contain some design parameters which
with an adequate selection can improve the performance of the corre-
sponding closed-loop system.

Future research will be devoted to the generalization of this
approach to the class of MIMO nonlinear systems with incomplete
information.
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