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This paper discusses and compares the synthesis of fixed-architecture controllers that
guarantee either robust H, or H,, performance. The synthesis is accomplished by solving
a Riccati equation feasibility problem resulting from mixed structured singular value
theory with Popov multipliers. Whereas the algorithm for robust H, performance had
been previously implemented, a major contribution described in this paper is the imple-
mentation of the much more complex algorithm for robust H,, performance. Both robust
H, and H,, controllers are designed for a benchmark problem and a comparison is made
between the resulting controllers and control algorithms. It is found that the numerical
algorithm for robust H,,, performance is much more computationally intensive than that
for robust H, performance. Both controllers are found to have smaller bandwidth, lower
control authority and to be less conservative than controllers obtained using complex
structured singular value synthesis.

Keywords: Controller synthesis; Homotopy algorithms; Popov multiplier;
Fixed-architecture; Robust H, performance; Robust H,, performance

1 INTRODUCTION

This paper considers the design of robust controllers using the state
space Popov analysis criterion which is based on the Popov stability
multiplier W(s)= H?*+ Ns. This is a special case of mixed structured
singular value synthesis (Haddad et al., 1994; How and Hall, 1993).
Algorithms for both robust H, and H,, performance are described
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and compared. The formulations which closely follow those presented
in Collins et al. (1996, 1997) require the minimization of a cost func-
tional subject to a Riccati equation constraint. These formulations have
several advantages. First, compensator order and architecture can be
specified a priori. In addition, both the controller and multiplier
parameters can be optimized simultaneously which avoids M—-K (i.e.,
multiplier—controller) iteration, potentially leading to better perform-
ing robust controllers. For robust H, performance the cost function
that is minimized is an upper bound on the H, performance over the
uncertainty set. For H,, performance, an artificial cost function is used.

Because of positive definite constraints on the Riccati equation solu-
tion, standard descent techniques cannot be used to solve the resulting
optimization problem. Hence, probability-one homotopy algorithms
have been formulated (Collins ez al., 1996; 1997). These algorithms
have desirable properties when applied to controller design. First, they
can be initialized with any feasible multiplier and any stabilizing control-
ler. Also, each controller computed as the homotopy curve is traversed
is physically meaningful. In particular, for robust H, performance
each controller along the homotopy path guarantees a specified degree
of robust stability while for robust H,, performance problem each
controller guarantees a specified degree of both robust stability and
robust performance. Collins ez al. (1996, 1997) describe implementa-
tion of the algorithm for H, performance. A major contribution
described in this paper is the implementation of the algorithm for
robust H,, performance and a comparison with the algorithm for
robust H, performance.

It should be noted that earlier work developed continuation algo-
rithms for designing robust H, controllers based on the Popov multi-
plier (How et al., 1994a,b; 1996; Sparks and Bernstein, 1995). These
algorithms have been effectively used, but are harder to initialize than
the probability-one homotopy algorithms used here since they cannot
be initialized with any feasible multiplier and any stabilizing controller.
Also, it is known that probability-one homotopy algorithms are more
reliable and numerically robust than continuation algorithms (Watson,
1987; Watson et al., 1987).

The paper is organized as follows. Section 2 presents Riccati Equa-
tion Feasibility Problems (REFPs) for the synthesis of both robust H,
and H, controllers using the Popov multiplier. Section 3 discusses the
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solution approach via probability-one homotopy algorithms. Section 4
shows the result of both robust H, and H,, control design for a stan-
dard benchmark problem and compares the results to a controller
designed using complex structured singular value synthesis. Conclu-
sions are presented in Section 5.

Notation and Definitions

R,C real, complex numbers

DT r x r real diagonal matrices

tr, ()* trace, complex conjugate transpose
0,1, r X r zero matrix, r X r identity

Zy> 7, Z, — Z, positive definite

Z,> 7, Z, — Z, nonnegative definite
GO [(1/27) [, (G jw) G jw)) dw]

1G($)loc  sup, &(G(jw))
Fu(M,A)  Mp+MyAU—MyA) ' M,
I structured singular value

2 RICCATI EQUATION APPROACHES TO ROBUST
CONTROLLER SYNTHESIS USING THE
POPOV MULTIPLIER

Consider the uncertainty feedback system shown in Fig. 1, where G(s)
has the nth order, stabilizable and detectable realization

A | By Di B

Gs)~ |G | 0 0 0 (2.1)
E; 0 0 O
C 0 D, O

K(s) has a realization of order n. < given by

(2.2)
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FIGURE 1 Uncertain feedback system.
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FIGURE 2 Closed-loop representation of uncertain system.

and A, € U, where for M, and M, in D™ with M, — M;>0, U is
the real parametric uncertainty set

UE A, € R™™: My < A, < My} (2.3)
Let
z=[" (Bu)')" (2.4)

and let 6 be a vector representation of the controller state space
matrices, for example

0 = [vec(dc)" vec(B.)" vec(C.)'] . (2.5)
Then Fig. 1 is equivalent to Fig. 2, where
A(9) ! By, D(6)
G(s,K) ~ Co 0 0o | (2.6)
E(6) 0 0
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where
P R
Eoz[f)‘)}, D) = [BDI‘)J (2.8)

(2.9)

~t0 o E0=| |

0 EC.|

It is desired to determine K(s) or equivalently # such that for all

A, €U, the system of Fig. 2 is asymptotically stable and either

| Fu(G, A, or | Fu(G, A,)|, satisfies some prespecified bounds.
Define

R(0) 2 EO)TE®), ¥(6)2 D(6)D®)". (2.10)

The next theorem formulates a synthesis problem for robust H, per-
formance in terms of the Popov multiplier W(s)= H?+ Ns.

THEOREM 1 Suppose G(s, K) is asymptotically stable. If there exist 0,
H ¢ D™>*mMm N g D™>™ P> 0, and e >0 such that

= [2H*(My — M) ™" + NCoBy + BfCIN] > 0 (2.11)
and
0 = (A(0) — BoM,Co)" P + P(A(0) — BoM;Cy)

P(4
+ [BYP — H?Cy — NCy(A(6) — BoM Co)|™ - Y7
x [ByP — H?Cy — NCy(A(0) — BoM1Cy)] + €R(0),  (2.12)

then the uncertain system of Fig. 2 is asymptotically stable for each
A, € U. In addition,

max | Fu(G, Ay)ll, < J(e.6, H, N, P)

AU

2 Zu[P+ CT (M, — M)NC|7(B).  (2.13)

a |-

Proof See Haddad et al. (1994).



130 E.G. COLLINS Jr. AND D. SADHUKHAN

Ay 0
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w Z

FIGURE 3 Closed-loop uncertain system with ‘performance block’.

To consider H,, performance, a fictitious complex uncertainty block
A, is inserted into Fig. 2 (Doyle et al., 1982; Packard and Doyle, 1993)
as shown in Fig. 3. It is assumed that o;,x(A,) <. For ease of presen-
tation assume that dim(2) = dim(w) = ¢, such that A, € C?*?. Define

M, £ block-diag{ My, —yI,}, M, £ block-diag{M,~I,}, (2.14)

BO) 2By D), €2 {Ec(g)} (2.15)

The next theorem formulates a synthesis problem for robust H,, per-

formance in terms of the Popov multiplier W(s)=H?>+ N.

THEOREM 2 Suppose G(s, K) is asymptotically stable. If there exist 6,
H =block-diag{H, H,}, where H, € D™*™ and H, € R?? satisfies
H,A,=A,H,, N=block-diag{N,,0,}, where N; € D™*™,  P>0 and
€ > 0 such that

Y =[2H?*(M, — M,)”' + NCB+ B'"C™N] >0 (2.16)
and
0= (A(0) — BM,C)"P + P(A(9) — BM,
+[BYP— H*C — NC(A(9) — BM,C))
x [BY"P— H?*C — NC(A(6) — BM,C)] + I, (2.17)
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then the uncertain system of Fig. 3 is asymptotically stable for each
A, € U. In addition,

. 1
max [[Fu(G, Au)llo < ot (2.18)

Proof Follows from results in Haddad et al. (1994, 1995) and a
straightforward variant of the main loop theorem (Packard and Doyle,
1993).

3 ALGORITHMS FOR ROBUST CONTROLLER SYNTHESIS

Both Theorems 1 and 2 pose robust controller synthesis as a Riccati
Equation Feasibility Problem (REFP) (Collins et al., 1996; 1997). As
discussed in Collins et al. (1996, 1997) an approach to solving the
REFP of either Theorem 1 or 2 can be based on solving an optimi-
zation problem

e,or,r1111,11\]/,PJ(6’ 0,H, N, P) subject to (2.12) or (2.17), (3.1)

where J(-) denotes an appropriate cost functional.

For control design for robust H, performance J(-) is given by (2.13).
For robust H,, performance J(-) can be chosen to minimize the artifi-
cial cost function

J(e,0,H,N,P) = tr P. (3.2)

Note that this cost functional is used to choose a unique control law
corresponding to the degree of robustness and performance specified
by 7. More complex artificial cost functionals containing barrier func-
tions to enforce P> 0 and (2.11) or (2.16) are described in Collins et al.
(1996, 1997), but our experience indicates that these cost functionals
are not necessary.

To characterize the extremals define the Lagrangian

L(,0,H,N, P,Q) = J(e,0,H,N, P) + tr OW(e,6, H,N, P),  (3.3)
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where W(-) denotes the right-hand side of (2.12) or (2.17). The neces-
sary conditions for a solution to (3.1) are given by

oL oL oL oL

0=5;; 0=%7 Oza—I{’ Ozgﬁ’ (34)
oL oL
0=35 0=%5 (3.5)

The first equation in (3.5) recovers the Riccati equation (2.12) or (2.17)
while the second equation in (3.5) results in a Lyapunov equation in Q
whose coefficient and forcing matrices are functions of P.

If 8 is given by (2.5), the second equation in (3.4) is equivalent to

oL oL oL
=71 "=am "Tac

(3.6)

The actual expressions for (3.6) corresponding to design for robust
H,, performance are much more complex than the expressions corre-
sponding to design for robust H, performance. For example the
expression for OL/9B. for robust H, and robust H,, design are given
respectively by

1 L 1 1

308, gpzl Via +E[PzchV2] + [PQ]zlcl;r 3.7)
and
1 L T 2 piT AT | 15-1 17257 T BT
‘2‘ch=[QP]12+[M1CQP]22D2+[Y H*CQP|,,D,

~ INCPp{[¥ ' H*CQPBY ']y, + [V ' H*CQPBY '],,}D]
— [@PBY™'NC]},C} + [Y"'NCAQP],, D}

— [INC1L,{[Y"'NCAQPBY ']}, + [Y'NCAQPBY"],,} D}
— [M,CQPBY~'NC];, — [Y"'NCBM,CQP);,D}

+ [NC]{[Y'NCBM,CQPBY ']},
+[Y"'NCBM,CQPBY"),,}D]

+ 14 additional terms. (3.8)
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This extra complexity is due to the fact that Cy and By in (2.12) are not
functions of @ while C and B in (2.17) are functions of 6. This extra
complexity makes it much more difficult to practically derive and imple-
ment algorithms for the design of robust H, controllers and increases
the computational intensity of the resulting algorithms.

In Collins ez al. (1996, 1997) probability-one homotopy algorithms
are formulated based on the necessary conditions (3.4) and (3.5). In this
paper probability-one homotopy algorithms based on the Popov
multiplier have been developed and implemented for both robust H,
and robust H, controllers.

4 NUMERICAL EXAMPLE

To illustrate robust control synthesis with the probability-one homo-
topy algorithm, we consider the two-mass/spring benchmark system
shown in Fig. 4 with uncertain stiffness k. A control force acts on the
body 1 and the position of body 2 is measured, resulting in a noncolo-
cated control problem. This benchmark problem is discussed in detail
in Wei and Bernstein (1992).

The open-loop plant (for m; =m, = 1) is given by

x = A(k)x + Bu + Dyw, 4.1)
y = Cx+ Dyw, (4.2)
z = Ex, (4.3)

where z = x, is the output performance variable, y is a noise corrupted
measurement of x,, w is the disturbance vector, and

X1 0 0 1 0
X2 0 0 0 1
gl AR=1% k 0 ol
X4 k -k 0 0
0 0 0
B = 0 , D= 00 , Ey=p,
1 0 0
0 1 0
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X X
= —2

u—-= m J\/\/\ m —— W
Q Q alfa)

FIGURE 4 Two-mass/spring system.

Here E, = p, and p; are introduced artificially to act as control knobs.
Decreasing p, increases the controller authority and increasing p;
causes attenuation of the performance variable z. The parameters p;
and p, are therefore made a function of the homotopy parameter A. It
is assumed that k=kpom + Ak. The perturbation in A(k) due to a
change Ak in the stiffness element k from the nominal value kpop, is
given by

A(k) - A(knom) = AA = —ByAkCy, (4'4)

where
Bo=[0 0 1 —1]", Cy=[1 -1 0 0]

We desire to design a constant gain linear feedback compensator
K(s) with realization (2.2) such that the closed-loop system is stable for
0.5<k<2.0 and for a unit impulse disturbance at t=0, the perfor-
mance variable z has a settling time of about 15s for the nominal
system (with k = k,om = 1). The uncertain plant and the controller can
now be put into the form shown in Fig. 1.

H, Performance

The closed-loop system can now be put into the form shown in Fig. 2,
with a realization given by (2.6). The matrices A, By, Cy in (2.12) of
Theorem 1 are given by (2.7)—(2.9). The upper bound on the H, cost
functional is given by (2.13) in Theorem 1. It can be seen that the
diagonal H and N of the Popov multiplier reduce to scalars for this
particular example. The parameter vector x with respect to which the
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Lagrangian (3.3) is to be minimized is given by
x=[H N e vec"(4) vecT(B.) vec (Co)]". (4.5)

The initial point x; is chosen in the following manner. Hy, Ny, and ¢
are chosen arbitrarily as 10, 10, and 1, respectively. The initial control-
ler (Ac.0, Bc.0, Cc,0) 18 an LQG controller for the plant corresponding to
k=1.25, p;=1 and p, = v0.1. No robustness is expected of this con-
troller and hence the initial M, and M, in (2.3) are chosen close to zero
(i.e., My o= —0.01 and M, (=0.01). It was found that the desired robust-
ness and performance level could not be achieved without increasing
the authority of the controller. Hence M; and M, are increased to
+0.75 and —0.75 respectively and p, is decreased to +/0.001, during the
course of the homotopy algorithm.

H_, Performance

As shown in Section 2, the problem may be formulated to minimize an
H, instead of an H, performance index. The closed-loop system may
now be formulated as shown in Fig. 3 and is given by the realization

. [4| B
G~{C 0} (4.6)

where A4, B, and C are given by (2.7) and (2.15). The formulation is
similar to that in Braatz and Morari (1992). However, unlike in Braatz
and Morari (1992), we let the performance block A, be full, i.e.,
A, € C¥2. M, and M are diagonal matrices of the form given in (2.14).
Notice that in this formulation A is mixed since Ak is real whereas A,
is allowed to be complex. Hence the multiplier elements H and N have
the structure

H= diag{/’l“,hzz,hzz}, N= diag{nn, 0, 0} (47)

as discussed in Theorem 2. The parameter vector x with respect to
which the Lagrangian (3.3) is to be minimized is given by

x=[h11 hxn nn € VCC(AC)T Vcc(B(;)T vec(Cc)T]T. (4.8)
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The initial point xq is chosen in the following manner. Hy, Ny(1, 1),
and ¢q are chosen arbitrarily as 1075, 10 and 1, respectively. The initial
controller (A, Bco, Ce) is an H,, controller corresponding to k=
1.25, py=1, p;=0.01, M, = block-diag{—0.001, —0.1,} and M, =
block-diag{0.001, 0.1, }. The initial controller provides a fair amount
of performance but no robustness. It was found that the required
robustness level could not be achieved without increasing the con-
troller authority. Hence, M;(1,1) and M(1, 1) are changed to —0.75
and +0.75 respectively, and p, is decreased to 0.0001, during the
course of the homotopy algorithm. The parameter p, is increased to
2.5 to improve the performance.

Complex 1 Synthesis

The formulation is identical to the robust H_, performance case except
that the A is complex structured (not mixed). The weights are adjusted
till u for robust stability is 1 and the settling time constraints are met.
The D-scales are constrained to be of zeroth order to keep the order of
the controller fixed at 4, so as to be able to make a fair comparison
between different synthesis techniques.

Observations

All three controllers are guaranteed by the theory to be robust for the
range 0.5 <k < 2.0 and this was also verified by a direct search. The
actual cost and the upper bound on the worst case cost (for 0.5<
k < 2.0), as guaranteed by the respective algorithms, have been plotted
for all three controllers in Figs. 7, 10 and 13. It can be seen that the
upper bound on the worst case cost for both the robust H; and robust
H, controllers are fairly ‘tight’, whereas that for complex p synthesis
is clearly very conservative. The robust H, controller is stable for
0.35 <k <2.39; the robust H,, controller is stable for 0.4 <k <2.45
and the controller obtained by complex p synthesis is stable for
0.32 <k < 6.7, as can also be seen from the familiar ‘cost buckets’ in
Figs. 7, 10 and 13. Clearly the controllers obtained using the Popov
multiplier approach are less conservative than that obtained by
complex p synthesis.
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The settling time for the system was chosen to be the time required
for the displacement of mass 2 to reach and stay within the interval
[-0.1m, 0.1m]. All three controllers are seen to satisfy the settling
time objectives when connected to the nominal model corresponding
to k=1N/m, as can be seen from the impulse response of the closed-
loop system in Figs. 5, 8 and 11. It can also be seen that the settling
time objective is satisfied for the entire family of plants (0.5 < k < 2.0),
which, though not a design requirement, is a very desirable character-
istic of the controllers. It is seen that the robust H, and robust H,,
controllers obtained using the Popov multiplier approach yield similar
time responses. The control effort required is shown in Figs. 6,9 and 12.
It is seen that nearly similar control effort is required by both the
robust H, and the robust H,, controllers and it is significantly less
than that required by the complex p controller. It can also be seen
from Fig. 14 that both the robust H, and the robust H,, controllers
have bandwidths which are significantly smaller than the bandwidth
of the complex u controller.

It is observed that the algorithm for robust H,, performance is much
more computationally intensive than that for robust H, performance.

Impulse Response of Closed-Loop for k = 0.5,1, 2

-
(M)

dashed line - k= 0.5
solid line -k =1.0
dotted line - k = 2.0

o o
(o2 © -

o
»

Displacement of m2 in meters
o
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02 A A s L "
0 10 20 30 40 50 60

Time in seconds

FIGURE 5 Impulse response — robust H, controller.
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dashed line - k= 0.5
solid line -k =1.0
dotted line - k=2.0
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FIGURE 6 Control effort — robust H, controller.
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FIGURE 7 H, performance for range of values of spring constant k — robust H,
controller.
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FIGURE 9 Control effort — robust H,, controller.
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FIGURE 10 H,, performance vs. spring constant k — robust H., controller.
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FIGURE 12 Control effort — complex p controller.
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FIGURE 13 H,, performance vs. spring constant £ — complex p controller.
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FIGURE 14 Controller bandwidths.

This is because the expressions for the gradient and Hessian for H,
design are far more complex than those for H, design.

5 CONCLUSIONS

In this paper the Popov multiplier has been used to develop prob-
ability-one homotopy algorithms for the design of robust controllers
with guaranteed H, or H,, performance. The formulation closely fol-
lows that presented in Collins et al. (1996, 1997) and extends it to the
case of robust controllers with H, performance. Though the formula-
tion for both the robust H, and the robust H,, problems are very
similar, the gradient and the Hessian expressions for the H,, formula-
tion are more complex. A numerical benchmark example is presented
for both the robust H, and H, controllers. Both controllers are found
to have smaller bandwidth, smaller control authority and to be signifi-
cantly less conservative than controllers obtained by complex p synthe-
sis. It is seen that the algorithms for the robust H,, controllers are
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more computationally intensive than algorithms for robust H, con-
trollers, as is expected.

Certainly if the uncertainty is mixed, and the performance require-
ments are in terms of H,, cost, it is preferable to use the multiplier based
algorithms with guaranteed H,, performance (as described in this paper)
than complex p synthesis. The fact that the robust H, and the robust
H, algorithms produce controllers with similar characteristics, sug-
gests that when the performance specifications are not directly in terms
of either H, or H, cost, one may use either of the two algorithms. In
this case, due to the significant difference in computational complexity,
it is advantageous to use the algorithm for H, performance.
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