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NOMENCLATURE (Excluding the Appendix)
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wj nominal value of wy

Q closed-loop system bandwidth

1Sl 0o infinity norm of S (supremum of |S(jw)|)
FOREWORD

National Transportation Safety Board preliminary report
#IAD9IFAO052 cites the following incident involving a passenger
jetliner’s encounter with turbulence [1]: On July 8, 1999 the Boeing 737
was cruising at 8800m [29000 ft] over the Atlantic Ocean. Visual
meteorological conditions prevailed, and, according to the first officer,
“there were no visual cues to an adverse ride.” The aircraft was flying
through smooth air, when, suddenly, it encountered turbulence, result-
ing in seventy-two injured persons (one serious) and minor airplane
damage. The aircraft was consequently diverted to make an emergency
landing.

One interpretation of this incident is that the aircraft encountered
turbulence of a different nature than the turbulence model used in the
autopilot design and evaluation. In other words, the root cause of this
incident may be considered to be a relative lack of robustness with
respect to disturbance model uncertainty. The work described in this
paper is devoted to analysis of the robustness of controllers (in
particular, autopilots) with respect to uncertainty in the disturbance
model.

1 INTRODUCTION

One of the objectives of feedback control is to attenuate disturbances.
Typically, it is assumed that the disturbance belongs to a given class of
signals (e.g., stochastic processes with given power spectral density),
and a controller is designed to accommodate such disturbances in a
desirable manner. The question of what happens if the actual distur-
bance is outside of the assumed class is usually ignored, even though
there is often considerable uncertainty as to whether or not the dis-
turbance is, in fact, in the class. For example, it is common to model
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continuous wind turbulence [2-5], road roughness [6—10], and water
waves [11-13] as stationary stochastic processes with fixed power
spectral density (PSD), in spite of the fact that, in each case, the actual
disturbance statistics are uncertain, and, moreover, they vary in both
time and space. The goal of this paper is to introduce tools to analyze
performance robustness with respect to uncertainty in disturbance
bandwidth and power, and to apply these tools to an altitude-hold
autopilot in the presence of uncertain turbulence.

The single-input single-output system under consideration is shown
in Fig. 1. The transfer function C and transfer functions P, and P,
comprise the controller and plant, respectively. Dividing the plant into
two components allows us to model both input and output distur-
bances in a unified manner. The disturbance is assumed to be the
output of the filter

F(s) = kY2 (1)

s—i—wb’

where w;, and K are positive constants whose values may be uncertain.
This structure of F was chosen since the parameters w, and K cor-
respond to physically meaningful quantities: the disturbance band-
width is w, and the disturbance root-mean-square (rms) value is K.
Moreover, it is shown below that filter (1) corresponds to a model of
turbulence cited in the literature [14]. Extensions of some of the results
to more general disturbance filters are published elsewhere [15,16].

w
F
d
r C APy Py —— H [~

FIGURE 1 System model.
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Robustness with respect to uncertainty in wj, and K will be evaluated
by computing, as a function of w,; and K, the variance (i.e., rms
squared) of several signals in Fig. 1; for presentation purposes, the
focus will be on the variance of the filtered output signal, y. Variancc
is a useful performance measure in many applications. For example,
there is a relationship between passenger comfort and the variance of
vertical acceleration in airplanes [2,5] and automobiles [7,9,17,18]. As
another example, variance is closely related to the notions of prob-
ability of exceedence and residence time, concepts that are important in
several fields of study, including aiming control (telescope pointing,
missile terminal guidance, robot arm pointing, etc.) [19-21], aircraft
gust load analysis [22,23], and ship stabilization in waves [24]. As a
consequence of the practical importance of variance as a performance
measure, the control literature uses variance extensively (e.g., in
covariance control [25]).

For simplicity, sensor noise is assumed to be negligible over the
bandwidth of the controller, and the reference signal is assumed to vary
sufficiently slowly that the only contribution to the signal variance is
the disturbance, d. It is also assumed that the disturbance is not
measurable. Finally, to ensure the existence of an internally-stabilizing
controller, it is assumed that H is stable and that there are no unstable
pole-zero cancellations in forming the product P P,.

As stated earlier, it is uncommon to explicitly account for uncer-
tainty in the disturbance model. However, there are several relevant
threads of research in the systems community. For example, Poor and
Looze recognize that disturbance model uncertainty is a significant
issue when they deal with the problem of state estimation under
process and measurement noise [26]. They study cases where the PSD
of one of the noise sources is uncertain and where the other is white
noise with known PSD. In the scalar-state case, they also mention the
spectral band noise model (originally used in [27], and subsequently in
[28], in the context of noncausal signal estimation in the presence of
uncertain noise) in which the PSD of the fixed-power noise signal is
assumed to lie between known lower and upper bounds. The approach
of their paper is to optimize the worst-case mean-square error by
forming a minimax optimization problem. Earlier papers of a similar
nature include [29] and [30]. Poor and Looze also contributed to [31],
where the LQG problem is considered in the face of uncertain process
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and measurement noise. Both noise sources, however, are assumed to
be white (i.e., there is assumed to be no frequency-dependent uncer-
tainty in the PSDs). Again, a minimax optimization approach is taken.
More recently, Chen and Dong consider the LQG problem subject to
both plant parametric uncertainty and uncertain noise PSD; however,
the noise is again assumed to be white with uncertainty only in the
magnitude of the PSD [32]. Other papers that treat the LQG problem
with white noise and uncertainty in the noise covariance include [33]
and [34].

The second thread is that of Gusev, who considers problems where
a portion of the correlation function of the disturbance is assumed to
belong to a prespecified set [35—37]. For both control and filtering
problems, he develops minimax design procedures, although the tools
used are distinctly different from the previously mentioned papers.

The third strategy for treating estimation problems with uncertain
plant state-space matrices and uncertain noise statistics is the use of
bounding filters [38—40]. The idea is to design for a spectrum that
bounds the possible noise spectra. As discussed in [30], this simple
approach can be useful, but it also can lead to conservative designs
and, moreover, it is not applicable if the noise spectra cannot be
bounded. A bounding approach is also used in a recent paper dealing
with the LQG problem in the face of uncertain disturbances [41].

It is possible to rearrange Fig. 1 into a so-called generalized plant,
having done so, the uncertainty in Fis transformed into uncertainty in
the generalized plant. Since the general H, problem can be posed as an
LQG problem (with cross-weights in the cost function), LQG theory
dealing with parametric plant uncertainty is also relevant to this paper.
Many researchers have tackled this subject area, although it seems that
few papers include cross-weights in the performance index, so most
results are not directly applicable to the problem at hand. Never-
theless, a brief review is appropriate: Grimble treats uncertain plant
parameters in the LQG problem as random variables [42]. The author
describes a method of choosing the LQG weights to improve stability
robustness. A random variable approach is also taken by Ray,
where an active suspension system is considered using statistical
(Monte Carlo) analysis [43]. McDowell and Basar also treat uncertain
plant parameters as random variables, but the authors consider
performance in addition to stability [44]. The approach of their work
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is to minimize the expected cost. Alternative approaches to the random
variable method include a minimax approach to plant parameter
uncertainty [45] and the approach of Bernstein and Greeley, in which
the authors handle plant parameter uncertainty in the LQG problem
by introducing artificial multiplicative noise sources at the uncertain
parameters [46]. Yet another approach is to use the parameter robust
LQG method, where parameter variations are treated by introducing
artificial internal feedback loops [47,48].

In spite of this significant body of literature, simple tools for analysis
of the robustness of control systems with respect to disturbance model
parameter uncertainty are lacking. This paper is written to contribute
to this end, and is organized as follows. In Section 2 the main analysis
tool, the V-transform, is defined; V-transforms give convenient
expressions for signal variance, explicitly as a function of K and wj. In
Section 3 two robustness margins, the disturbance gain and bandwidth
margins, are defined in terms of V-transforms to quantify how much
uncertainty in w, and K can be tolerated before performance becomes
unacceptable. These concepts are then applied in Section 4 to an
autopilot system to show that a seemingly good controller design lacks
robustness with respect to uncertainty in turbulence scale. In the same
section, the issue of robustness performance limitations is discussed,
and it is shown that the robustness can be made satisfactory only by
increasing the closed-loop bandwidth significantly. Conclusions are
given in Section 5, and proofs are collected in the Appendix.

2 THE V-TRANSFORM

Temporarily assume that K in (1) is unity. Then the variance of y, as
a function of G and wj, is defined by what is referred to here as a
V-transform:

2wb

—— dw, 2
w? + w? n @)

V(G)wn) 21GFIE = [ 16w

where the V stands for “variance”. The word “transform” is used since
V(G) transforms G, a function of s, into a function of w,. For general
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K, the variance of 7 is K*V(G)(ws) = V(KG)(wp). The following
theorem describes several properties of ¥(G) as a function of wy:

THEOREM 2.1 Let G be a stable proper transfer function with state-
space realization

c g}(s)éD—i-C(sl—A)'lB.

Then

e V(G) is a rational function of wy, that is proper and has “state-space
realization”

4 |
2B'L, + DC) | D?

V(G)(wp) = (we), 3)

where L, is the observability Grammian of (C, A), i.e., the unique
solution to

AL, + L,A+CTC=0. (4)

o V(G) is an analytic, nonnegative, and bounded function of wy,.

e V(G)(0) = G(0)~.
o lim,, .o V(G)(wp) = D%

The first statement in the theorem is used to conveniently compute
V-transforms. The Lyapunov equation (4) is linear in L,, so it can be
solved to any prespecified accuracy in a finite number of operations.
Note that the variance of any signal in Fig. 1, not just y, can be written
in terms of V-transforms (e.g., the variance of u is K*V(GC)). Also
note that V-transforms need not be monotonic functions of wy, and,
therefore, it’s not possible to determine the “worst-case” wj (the one
that yields maximum variance) without computing the corresponding
V-transform. A deeper study of V-transforms, including their mathe-
matical properties and an example showing that V-transforms provide
information that is not easily obtained from Bode plots, is available
in [49].
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3 DISTURBANCE ROBUSTNESS MARGINS

Let v >0 denote the threshold of the variance of y that determines
acceptable performance. Assume that

V(K" G)(w}) <7,

that is, nominal performance is achieved. It’s natural to quantify how
much K and w;, can vary from their nominal values before (if ever)
performance becomes unacceptable. Define the disturbance gain mar-
gin (DGM) to be the largest increase in K that can be tolerated until
performance becomes unacceptable:

pam £ ()

In general, two margins are needed to account for uncertainty in w,
since V(G) need not be a monotonic function of w,. However, for the
autopilot example in the next section, it is sufficient to define a single
margin, the disturbance bandwidth margin (DBM), as the largest
increase in wp that can be tolerated until performance becomes
unacceptable:

W

DBM 2 sup{ s @p > wy and Ywy, € (W), @), V(K*G)(wp) < 'y}.

)
(For convenience define the supremum of an unbounded set of
positive real numbers to be infinity. Also, if nominal performance is
not achieved, define DBM to be zero.)

The concepts of disturbance gain margin and disturbance band-
width margin appear to be new. Both margins are easily determined
from a plot of the relevant V-transform. For example, Fig. 2 shows
V(G) where G(s) =s/(s+ 1); assuming K* =1, wj = 1, and v=0.8, one
obtains

4.0 0.8\ /2
— =4‘ = —_— = . .
DBM = ;=40 and DGM (0.5) 1.26

That is, the system can tolerate an increase in disturbance bandwidth
up to a factor of 4.0, or an increase in disturbance gain up to a factor
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FIGURE 2 V-transform of G(s) =s/(s+ 1) illustrating the computation of DBM and
DGM.

of 1.26, before the variance exceeds the threshold. Note that the
definitions of DGM and DBM, as with V-transforms, apply equally
well to signals in Fig. 1 other than j.

4 APPLICATION TO AN ALTITUDE-HOLD AUTOPILOT

41 Scenario

In this section, we consider the effect of turbulence uncertainty on the
performance of an altitude-hold autopilot. The plane is an F-89 jet
aircraft cruising at 6100 m [20000 ft] at Mach 0.638 (200 m/s [660 ft/s]);
this plane has been selected for analysis for no special reason except
that its dynamical model is readily available [23]. The autopilot that
will be considered uses the elevator (with deflection &.) to control the
altitude. For simplicity, throttle is not used as a second actuator, and
it is assumed that the aircraft is flying in a vertical plane. For the
turbulence analysis, it will be assumed that the aircraft is flying in
“clear air” turbulence.
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The performance of the autopilot will be quantified by standard
measures such as command tracking response, stability margins, and
bandwidth. The effect of turbulence will be evaluated using four
measures:

o Altitude-holding ability: The deviation of the aircraft from its
nominal altitude will be quantified by rms(#). To ensure that the
aircraft does not deviate more than 60m [200ft], a 20m [67 ft]
threshold is set on rms(k).

e FElevator angle variation: To avoid excessive elevator motion, a
0.5deg threshold is set on rms(de).

e Elevator rate variation: To ensure that the elevator is not com-
manded to move too quickly, a Sdeg/s threshold is placed on
rms(8e).

e Passenger comfort: There is experimental evidence that passenger
comfort is related to rms(k), as the data in Table I, taken from [5],
indicates. Assume that under clear air turbulence conditions the
autopilot should result in, at most, “moderate” discomfort. Accord-
ing to Table I, the rms vertical acceleration should correspondingly
not exceed 0.15g.

For future use, the threshold information is summarized in the fourth
row of Table II. The thresholds were chosen based on a combination
of intuition and values known to be reasonable for other aircraft; the
particular values do not necessarily correspond to real data for the
aircraft and flight conditions being considered here.

The plane and turbulence models in this scenario fit into the scheme
of Fig. 1 where u is the deviation of . from its nominal value, y is the
deviation of A from 6100m, j is the acceleration 4, d is the turbulence

TABLE I Relationship between airplane travel comfort and
rms vertical acceleration

Qualitative description of rms vertical
turbulence acceleration (in g's)
Negligible 0.05

Slight 0.10

Moderate 0.10-0.15
Moderately heavy 0.20-0.30
Severe 0.30-0.60

Extreme 0.60
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TABLE II Comparison of the rms value of several signals for controllers Cj, Cs,
and Coypen. The turbulence model parameters are at their nominal values

rms(h)(in g’s) rms(h) (in m) rms(u) (in deg) rms(%)(in deg/s)

Ci(s) 0.137 0.69 0.060 0.155
Ca(s) 0.102 0.69 0.263 6.790
Copen(s) 0.115 00 0.000 0.000
Threshold 0.150 20.0 0.500 5.000

velocity, and r is the desired deviation in altitude from 6100 m. In the
following subsections, the plant and disturbance models are given, a
proportional-derivative (PD) controller is presented, the controller is
analyzed with respect to uncertainty in the turbulence bandwidth (and
found to be inadequate), it is shown that a large increase in the closed-
loop bandwidth is necessary to improve the robustness, and a modified
PD controller is suggested.

4.2 Airplane Model

Using the information in [23], the transfer functions from u (in rad) to
y (inm) and d (in m/s) to y (in m) can be computed to be

y(s) _ 21.275(s + 19.8114)(s — 17.0301)(s + 0.0064)
()~ s(s2 +4.2087s + 18.2546)(s2 + 0.0090s + 0.0040)’
(s)  —1.43(s+ 3.8443)(s2 +0.0055s + 0.0131)

(s)  s(s + 4.2087s + 18.2546)(s2 + 0.0090s + 0.0040) "

u

<

Thus, a suitable choice for the plant transfer functions in Fig. 1 is

Prls) = 21.275(s + 19.8114)(s — 17.0301)(s + 0.0064)
—1.43(s + 3.8443)(s2 + 0.0055s + 0.0131) ’

_ —1.43(s+3.8443)(s% + 0.0055s + 0.0131)

(52 + 4.2087s + 18.2546)(s2 + 0.0090s + 0.0040)

P2(S)

Filter H(s) is set to s? since y =/ and 7 = h. Note that the plant is non-
minimum-phase; denote the non-minimum-phase zero at s=17.0301
by z. The plant is also unstable; the instability mandates the use of
feedback control to obtain acceptable altitude-hold characteristics. In
the analysis to follow, uncertainty in the plant model is accounted for
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only when stability margins are discussed; it is assumed that the plant
model is accurate when the robustness to turbulence model uncertainty
is evaluated.

4.3 Turbulence Model

Under the flight conditions considered here it is reasonable to assume
that the turbulence is homogeneous and isotropic [4]. A widely used
model of the vertical component of the wind velocity is that of a
stationary stochastic process with the Von Karman PSD [4]:

2L 1+8(1.339Lw/U) |
"U[1 + (1.339Lw/U)*"/®

In this formula, afﬁ is the power (i.e., variance) of the wind (in (m/s)?),
L is the so-called turbulence scale (in m) and U is the true airspeed of
the aircraft (200 m/s). Because it is not possible to generate a signal
with the Von Karman spectrum by passing white noise through a
linear time-invariant (LTI) finite-dimensional filter, it is common to
approximate the Von Karman spectrum by the rational Dryden
spectrum [4] or the even simpler rational spectrum [14]

, L 4

e (5)

Spectrum (5) is used in this paper. A signal with this spectrum is
generated by filtering white noise through the disturbance filter (1)
with
K=o, and wbzz—(—]. (6)
L
Note that L affects w;, only, and wj, is inversely proportional to L.

The values of o, and L vary greatly depending on the altitude and
the nature and severity of the turbulence. At the assumed altitude,
Ref. [4] recommends setting o, to 1.46m/s [4.8ft/s] for clear air
turbulence, so K* =1.46m/s. For simplicity, K will be assumed to be
fixed at K* for the remainder of the paper.} The choice of L is less

Uncertainty in K is easily handled since the variance of all signals is proportional to
K?; thus, the largest admissable K is the worst-case value.
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clear: For the Von Karman model it is recommended that L be set to
762 m [2500 ft], but for the Dryden model a value of 533 m [1750 ft] is
standard [4]. Since spectrum (5) is closer to the Dryden model than the
Von Karman model, the nominal L value is chosen to be 533 m. The
corresponding nominal wind bandwidth is, via (6), wj = 0.754rad/s.
Uncertainty arises in w;, because of the underlying uncertainty in L. As
an estimate of the degree of uncertainty, consider that values of L as
small as 150m [490ft] and as large as 1500m [4900 ft] have been
proposed in the literature for the Von Karman model [2]; the cor-
responding values of w, are 2.7rad/s and 0.27rad/s respectively.
Therefore, we will demand satisfactory performance (as measured by

rms(4), rms(h), rms(x) and rms(z)) for all w, €[0.27, 2.7] rad/s.

4.4 PD Controllerand Nominal Controller Performance

As suggested in [23], a simple but effective autopilot design is to feed
back 4 and A to the elevator. The PD-like controller

s+0.15

Ci(s) = ~0.0023 57—

(7)

was found to yield good command tracking response, good stability
margins (gain margin = 3.4 =10.6 dB, phase margin =63 deg, ||S||o. =
1.50=3.5dB), and reasonable close-loop bandwidth (gain crossover
frequency = 1.0rad/s and effectively no control effort® is used above
7.0rad/s). Plots of the command tracking ability (in the absence of tur-
bulence), loop-gain Bode plot, and magnitude of the sensitivity func-
tion are shown as solid curves in Figs. 3—5. (The other curves in the
figures are explained below.) The rms(h), rms(k), rms(u), and rms(z)
values for nominal w, and K, tabulated in the first row of Table II, are
seen to be less than the corresponding thresholds, so nominal turbu-
lence behavior is deemed acceptable. The table also shows that the
open-loop control Copen (i.€., any controller which does not use feed-
back) has satisfactory nominal rms(h), rms(x), and rms(s), but, as
mentioned previously, the open-loop controller has no altitude-
holding ability (i.e., rms(h) = 00), and is therefore not useful. (The data

$This notion of bandwidth is defined more precisely later.
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FIGURE 3 Command tracking for controller (7) (solid) and controller (13) (dashed).
The dotted curve is the commanded trajectory.

Gain (dB)

Phase (deg)

10
200+ J
oF i
-200 el
. . N )
10 107 10” 10° 10’ 10°

w (rad/s)

FIGURE 4 Loop-gain Bode plot for controller (7) (solid) and controller (13) (dashed)
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FIGURE 5 Sensitivity magnitude plot for controller (7) (solid) and controller (13)
(dashed). The thick solid lines represent the performance boundary used in the deriva-
tion of PLC-3, drawn for 2 =7rad/s.

in the first three rows of Table II is obtained from Figs. 6—9, presented
in the next subsection.)

4.5 Robustness Analysis

In this section the robustness of C; with respect to changes in wy is
evaluated. Plots of rms(k), rms(k), rms(u), and rms(zz), for nominal K,
are shown in Figs. 6-9 as solid curves. The four curves were generated
by computing the square roots of V(K*G), V(K*G), V(K*GC,), and
V(K* -s-GC), respectively, all via Theorem 2.1. In each plot, a thick
vertical line is drawn at the nominal wj, (0.754 rad/s), a thick horizontal
line is drawn at the corresponding performance threshold (see the
fourth row of Table II), and two dotted vertical lines mark the
boundary of the interval [0.27, 2.7]. The other curves in the figures are
explained below.

Figures 7-9 reveal that, for wj in the range [0.27, 2.7], the rms values

of h, u, and u are acceptable. (The corresponding DBM values are
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vertical lines mark the w, interval of interest.
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FIGURE 9 Plot of rms(u) for controller (7) (solid) and for controller (13) (dashed).
Also shown is the performance threshold and the nominal w, value. The two dotted
vertical lines mark the wj interval of interest.
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TABLE III Comparison of the robustness of controllers Cj, C,, and Copen With
respect to uncertainty in w,. The figures in the last row are based on the requirement
that w, values as large as 2.7 be accommodated, i.e., the required DBM is 2.7/
0.754 =3.58

DBM for}i DBM for(h) DBM for(u) DBM foru

Cy 1.23 o0 00 o0
C 2.36 oo 3.85 0.00
Copen 1.86 0.00 o0 00
Minimum acceptable value 3.58 3.58 3.58 3.58

listed in the first row of Table III. They were obtained by inspecting
the figures on a wider range of w, than shown.) In contrast, it is
apparent from Fig. 6 that, when uncertainty in wj is accounted for, the
rms value of 4 is not acceptable. Indeed, from Fig. 6, the performance
robustness margins for 4 can be computed to be

DBM = 2221 _ 123 and DGM = 213 _ 09,
o 0.137

The low value of DGM is not of concern since it is a measure of
robustness with respect to uncertainty in K, and K is assumed to be
fixed here. A concerning lack of robustness, however, is reflected in
the relatively low value of DBM: If w is only 23% larger than the
nominal wj (corresponding to w greater than 0.931rad/s or L less
than 432m [1418 ft]), then the variance of A will be unacceptable. Since
values of wy, as large as 2.70 rad/s can be expected, an increase in the
robustness with respect to uncertainty in w is needed. Note that the
open-loop control, although superior to C; in terms of the rms of h,
also has inadequate DBM (see the dotted curve in Fig. 6 and the third
and fourth rows in Table III).

4.6 Improving the Robustness of the PD Controller

At this point, it has been shown that, although C; has acceptable
nominal performance, the robustness of rms(h) with respect to wj, is
inadequate, that is, DBM is too low. It is reasonable to try to modify
C, to improve DBM for h; however, it is desirable to maintain the
low bandwidth, good stability margins, and good altitude-hold
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characteristics of C. This leads to the issue of robustness performance
limitations, that is, determination if there exist fundamental limita-
tions on how much the robustness can be improved. This question is
addressed in this subsection by computing performance limitation
curves, that is, lower bounds on the achievable V-transforms. Since the
only signal with inadequate robustness properties is h, we compute
performance limitation curves (PLC’s) only for V(K*G). Three differ-
ent PLC’s, each more sophisticated than the previous one, are consid-
ered, then a controller whose robustness is superior to that of Cj is
suggested. An in-depth discussion on the derivation computation, and
interpretation of the PLC formulae is available in [15].

4.6.1 PLC-1: No Constraints Other than Stability

In order to determine if any internally-stabilizing LTI controller can
achieve the desired DBM for A, initially relax all considerations of
bandwidth, stability robustness, and holding ability. Then the follow-
ing PLC is obtained:

THEOREM 4.1 For every internally-stabilizing controller, the variance
of h satisfies, for every w, >0,

var(h) = V(KG)(wp) > (f%%,

(8)
where 3 is a constant that depends only on the plant data and z. The
bound is tight, in the sense that, for any specific wp, >0, a controller can
be found so that V(KG)(wp) is arbitrarily close to achieving equality in
(8) at that value of wy.

For the airplane system, constant 3 is 121.83. The lower bound in
(8) (with appropriate unit conversion) is shown in Fig. 6, marked
PLC-1 (for “performance limitation curve 1”). The bound intersects
the performance threshold (0.15g) at w,=3.52rad/s, and its value at
nominal w, is 0.0802g. This performance limitation curve therefore
places an upper bound on the robustness margins for h:

3.52 0.15

DBM < =-=4. DGM < —— = 1.87. 9
" 67 and < sos = %7 9)
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That is, no internally-stabilizing LTI controller can achieve a DBM
larger than 4.67, or, equivalently, no internally-stabilizing LTI
controller can satisfy the rms threshold for 4 if L is less than 114m
[375ft). (Similarly, no internally-stabilizing controller can achieve a
DGM value larger than 1.87, or, equivalently, satisfy the rms thresh-
old if the turbulence intensity is greater than 2.73m/s [8.96ft/s].)
Fortunately, 4.67 is larger than the required DBM of 3.58 (see
Table III).

The Controller that attains variance arbitrarily close to the lower
bound in (8) was computed using the construction given in the proof
of the theorem. By adjusting the value of w; used for the controller
design, DBM for h can be made arbitrarily close to the theoretical limit
of 4.67. Unfortunately, regardless of which wy, is used in the minimum-
variance controller design, the resulting controller uses essentially
infinite bandwidth, has infinitesimal stability margins, exhibits extre-
mely poor altitude-hold properties, and uses unrealistic control effort.
In fact, controllers that exactly achieve the bound in (8) yield a closed-
loop system with a pole at the origin. Moreover, the minimum-
variance controllers are all of high order. Clearly such controllers are
impractical. Nevertheless, PLC-1 shows that at least there exists a LTI
controller with the desired DBM.

Remark 4.1 The fact that the variance bound in Theorem 4.1 is
nonzero is due strictly to the non-minimum-phase zero in the plant. In
general, it can be shown that if PP, in Fig. 1 is non-minimum-phase,
then the variance of y cannot be made arbitrarily small; in contrast, in
the minimum-phase case, arbitrarily small variance of y is theoretically
achievable.

4.6.2 PLC-2: Bandwidth Constraint

In deriving PLC-1, the entire class of internally-stabilizing controllers
was considered. In this subsection, a PLC is derived based on
consideration of only those internally-stabilizing controllers that meet
a prespecified bandwidth constraint. Specifically we wish to capture
mathematically the notion that no control effort is desired above some
frequency, Q. A convenient method of doing this is to require
S(jw) =1 to hold for all w > Q. (Strictly speaking, this constraint never
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holds exactly, except for the case C=0; it’s possible to loosen the
requirement by allowing |S(jw)—1| to be small, but nonzero, for
w >, but this complicates the notation significantly, and the final
conclusions are essentially the same. For the bandwidths quoted in this
paper, a 0.05dB error is permitted in the magnitude plot of S. Using
this definition, the bandwidth using C; is 7.0rad/s.) Under such a
bandwidth constraint, the following bound holds:

THEOREM 4.2  For every internally-stabilizing controller whose corre-
sponding sensitivity function satisfies S(jw)=1 for all w>Q, the
variance of h satisfies, for every wy > 0,

var(i) = V(KG)(wr) > 2L exp(as) +% /Q CVFGo)Pdw,  (10)

where oy =2tan"'(Q/z) and a; = {ﬁ]ﬂ W(w)In[|F( jw)]*/ W (w)] dw}/ax,
and where W(w) is the weighting function 2z/(z> + w?).

Figure 10 shows plots of the PLC (10) (hereafter referred to as
PLC-2) for several values of €2; for comparison, PLC-1 is also shown
in the figure as a dashed curve. (For each wj, a, was computed
numerically to within 0.1% relative error.) The figure reveals that only
the PLC-2 curves with 2 equal to 25rad/s or larger lie beneath the
0.15g threshold for all w in [0.27, 2.7]. In other words, the system
bandwidth must be at least 25rad/s to attain the desired robustness —
a considerable increase over the 7.0 rad/s bandwidth of C;. Moreover,
the 25rad/s figure does not consider the desire for reasonable stability
robustness and altitude-holding ability, so it may be necessary to
increase the bandwidth even further to satisfy these additional con-
straints. The next subsection shows that this is indeed the case.

4.6.3 PLC-3: Bandwidth, Stability Robustness, and
Holding-Ability Constraints

Suppose that, in addition to the bandwidth constraint imposed for
PLC-2, constraints are placed on the stability robustness and on the
holding ability of the autopilot. Specifically, suppose it is required that
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FIGURE 10 Performance limitation curve PLC-2 for several §2 values (all in rad/s),
and, for comparison, PLC-1 (dashed). Also included in thick solid lines are the perfor-
mance threshold and the nominal w, value. The two dotted vertical lines mark the w,
interval of interest.

the stability robustness and holding-ability cannot be worse than those
of C,. This places a total of three constraints on S:

e To ensure that the closed-loop bandwidth is reasonable, require
S(jw)=1for w> Qrad/s;

e To ensure that the distance between the Nyquist plot and the critical
point is at least that of Cj, require ||.S||, < 3.5dB; and

e To ensure that the low-frequency altitude tracking is no worse than
that of Cy, require |S(jw)| < —30dB for w < 0.093 rad/s.

These three constraints on S are shown as a thick solid boundary in
Fig. 5 (for the particular case 2 =7 rad/s). For general €2, denote this
boundary curve (when not expressed in dB) by M.x(w, 2). Then the
following bound holds:

THEOREM 4.3  For every internally-stabilizing controller whose corre-
sponding sensitivity function satisfies the above three constraints,



290 D.E. DAVISON et al.

the variance of h satisfies, for every wy >0,

var(h) = V(KG / min(M2,, (w, Q)|F(jw)[*, W(w)c?) dw
+;/Q Fio) P d (i

where W(w) is the weighting function 2z/(z* +w*) and c is the unique
scalar satisfying

/Q W(w) - Inq min [ Mmax(w, ), LWE—M)]—]/—Z—C dw = 0. (12)
0 |F(jw)]

Figure 11 shows plots of the PLC (11) (hereafter referred to as
PLC-3) for several values of Q. (The integration was performed

0.2 T T T T T

RMS vertical acceleration (

L 1 L L

15 2 25 3
w, (rad/s)

-

FIGURE 11 Performance limitation curve PLC-3 for several Q values (all in rad/s),
and, for comparison, PLC-1 (dashed). Also included in thick solid lines are the perfor-
mance threshold and the nominal w, value. The two dotted vertical lines mark the w,
interval of interest.
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numerically, as in the PLC-2 case, to within 0.1% relative error. For
each wj and €2, constant ¢ in (12) was computed iteratively, to within
0.1% relative error, using the bisection algorithm.) Now only the
curves with 2 equal to 52 rad/s or larger lie beneath the 0.15g threshold
for all wy in [0.27, 2.7]. Thus, the system bandwidth must be at least
52rad/s to attain the desired robustness. This is a significant increase
over the 25rad/s bandwidth that resulted from the PLC-2 analysis,
and even more significant compared to the 7.0 rad/s bandwidth of C;.

Remark 4.2 The performance limitation curves PLC-2 and PLC-3
are based on the Poisson integral that holds due to the plant non-
minimum-phase zero (see the Appendix). The Bode sensitivity integral
[50] also holds for the plant considered here, and it’s not dependent on
the non-minimum-phase nature of the plant; using the Bode sensitivity
integral instead of the Poisson integral gives different, but very similar,
results.

4.7 A Modified Controller

Although this paper deals with analysis, it was felt that at least one
alternative controller to C; should be presented. Using loop-shaping
methods, C; was augmented with dynamics in an attempt to increase
its robustness. After iterating by trial-and-error, the following con-
troller was arrived at:

Cy(s)

(s+ 0.15)(s + 1)2(s2 + 4.2087s + 18.26546) /18.26546
(0.025 + 1)(0.355 + 1)(0.7s + 1)(s% + 725 + 1600)/1600

(13)

The dashed curves in Figs. 3—9 correspond to this controller, as do the
second rows in Tables II and III. Note that the stability margins
(gain margin = 3.46 = 10.8 dB, phase margin =111deg, ||S||.c=1.43=
3.1dB) and low-frequency behavior of C, (see Figs. 3—5) are essen-
tially the same as those of C;, but the DBM margin for A has improved
significantly (from 1.23 to 2.36). As anticipated, this robustness
improvement (which still does not meet the desired robustness) is
obtained at a cost of an increase in bandwidth: The gain crossover
frequency has increased from 1.0rad/s to 2.5rad/s, and control effort

= —0.0023
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is required up to 400 rad/s, from 7.0rad/s. The increase in bandwidth
is also reflected in the rms (u) plot (Fig. 9); indeed, DBM for u is now
below the desired value. It may very well be that this very large
increase in bandwidth is unacceptable (due to actuator limitations or
unmodeled aircraft dynamics, for example); nevertheless, it follows
from the previous section that, if significant improvement in the
robustness is desired, there is simply no choice but to increase the
bandwidth.

5 CONCLUSIONS

The notions of V-transform, disturbance bandwidth margin, and
disturbance gain margin were introduced to analyze uncertainty in
disturbance bandwidth and gain. They were used to analyze the
behavior of an altitude-hold autopilot system in the face of uncertain
turbulence characteristics. In particular, it was shown that the auto-
pilot achieves good nominal performance, as measured by the variance
of several signals; however, when uncertainty in the turbulence band-
width is considered, the autopilot performance is inadequate as
measured by the variance of the vertical acceleration. Several perfor-
mance limitation curves were then derived to determine a lower bound
on how much the system bandwidth must be increased to attain the
desired robustness. It was concluded that, if one is willing to sacrifice
stability robustness and altitude-holding ability, the controller band-
width must be increased from 7.0 rad/s to at least 25rad/s; if such a
sacrifice cannot be made, then the bandwidth must be increased even
further, to at least 52rad/s. With regard to future research, it is
desirable to extent the results from analysis to design; some progress
along this line is reported in [51].
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APPENDIX

Proof of Theorem 2.1 Equation (3) is derived first. On noting that

F(s) = (2wp)'?/ (s + wp) = [_Wb | (2uwp)'?

] (s), it follows that

11 o
[ —Ww W, /2
G(s) - Fls) = /H% (s)[ = ! 2 g’l }(s)
:A B 0
=0 —w | @) (). (14)
c p | o

Let L denote the observability Grammian of this realization of GF.
Partition L as

Lo | LT
Ly L |
where L is a scalar. Then,

= Zwa3 . ( 1 5)

V@) en) = 16FIE = [0 ) P]L[ () 0)02 |

L

We now solve for L3 for substitution in 15. The Lyapunov equation

for the observability Grammian of ([C D], [g i
—Wp

A B Ly LT|[4 B
_+_
0 —Wp Lz L3 0 —Wwp

+[c D|'[c D]=0o.

is

T[Ll LT

L, Lj

This matrix equation is equivalent to the following three equations:
AL+ 1,44+ CTC =0, (16)
B'L, —wyLy + LA+ DC =0, (17)

B'LY —wyLs + LB — wpLy + D* = 0. (18)
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Equation (16) indicates that L, is the observability Grammian of
(C, A); denote this Grammian by L,. By the stability of G, w is not an
eigenvalue of 4; hence, (4 —w,I)™" exists, and solving for L, in (17)
yields

Ly=(—B"L,— DC)(A —w,I)™". (19)

Next, solve for scalar L; in (18) and substitute for L, using (19) to
obtain

1 1
Ly=—D*——(B"L,— DC)(4 — w,I)'B.
3 2wb wb( 0 )( Wwp )

Use this to substitute for L; in (15):
V(G)(wp) = D* + 2(B"L, + DC)(wpI — A)"'B,

which proves the result.

The second point in the theorem is simple: V(G)(wp) is nonnegative
since it is a norm; V(G) is an analytic function of w, since it is a
rational function of w, with all poles in the open left half-plane;
V(G) is a bounded function of wy, since it is a proper rational function
of wy, with all poles in the open left half-plane. To prove the third point

in the theorem, write

_ 1 [ _ . 2w 2 [ .. 1
V@) = [ 16G0F s =2 [T 16l o do

™ Jo

and compute the limit

[e.]

) _ .2 . 2
A, V(@) o) = fim, 7 J, 16U

2 [ L. ) 1
2-/0 lim |G(jwpa)| a2—+—lda

™ wp—0

:2(;(0)2 /w ' 4o
0

T a?+1
= G(0)%.
(For rigorous justification of taking the limit under the integral sign,

apply Theorem 17.3c in [52].) The fourth point in the theorem follows
immediately from realization (3).
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Proof of Theorem 4.1 The bound is obtained by constructing the
minimum-variance controller. The construction closely follows the
procedure described in Section 10.4 of [53], so the derivation is
condensed.

The first step is to compute a coprime factorization for P, P,, that is,
compute stable proper transfer functions N, M, X, and Y so that (the
Laplace variable is omitted for brevity):

N
P, P, =H and NX+MY=1.

(See [53] for methods of computing N, M, X, and Y.) Then it’s a
standard result that the set of internally-stabilizing controllers is para-
meterized by the so-called Youla parameter Q (a stable transfer
function). In particular, the set is

X+MQ .
{Y——]VQ Q 18 Stable}.

It’s now a matter of finding the Q that minimizes the output variance.
To this end, define the stable transfer functions

T=HP,FMN and Z= HP,FMY.

Let T,, denote the all-pass component of 7" and T, the minimum-
phase component of T so that T'= T,,Tmp. Then it’s straightforward
to show that

V(G)(w) = IGFI; = 1Z ~ TQI; = 1T Z — TwpQll-  (20)

The next step is to decompose T;plz into stable and completely
unstable (all poles in the open right-half-plane) parts:

T Z = (T Z)g+ (Tg) Dun

Substitute this into (20) and use a version of the Pythagoras theorem
(see [53]) to obtain

V(G)(ws) = (Tog Z)uallz + 1Ty Z)se — Tenp Q13- (21)
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From this equation, it is apparent that the minimum value of V(G)(ws)
is (as a function of wy)

(T Z)unl2-

Computation and substitution of M, N, X, and Y (and multiplication
by K?) yields (8). The tightness of the bound also follows from (21):
The second term in (21) is zero at Q = T,.}(T,,' Z),,. (Since this Q is
improper, it must be approximated by a proper transfer function.
Another technicality overlooked is that this optimal Q will have a pole
at the origin, and, therefore, the closed-loop system will be unstable;
this can be overcome by shifting the pole at the origin of P, and the
zeros at the origin of H slightly into the left-hand plane.)

Proof of Theorem 4.2 The idea behind the proof is to treat the
function |S(jw)| as a curve in we([0,], and apply classical optimal
control theory to find the curve that minimizes the variance of y. The
optimization is carried out subject to the constraint

/ " In S (i) [ W(w) dw = 0, (22)
0

where W(w)=2z/(z*+w?). This constraint, usually called a “Poisson
integral” constraint, arises because of the non-minimum-phase zero at
s =z. See [50] for the general Poisson integral derivation.

For convenience, define the functions f(w)=In|S(jw)|*> and
g(w) = In|F(jw)|*. Use (22) and the assumption that |S(jw)| =1 for
w > () to obtain

Q
/ £(@)W(w) dw = 0. (23)
0
Now compute the variance of y:
N O o
var(y) =~ A |F(jw)I"S(jw)|” dw

e . |
. / \F(jio) IS () deo + / |F(jio) 2 deo
™Jo T™JQ

(o)

Q
-1 /0 exp(g(w) + /(@) dw+ - /Q FQw)Pdw. (24)

™
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Thus, the optimization problem reduces to finding the f that minimizes

Q
/0 exp(g(w) +/ (@) dw

subject to (23). To rewrite this in a more convenient form, define, for
we[0,Q],

h(w) = /O " @) W(@) da.

Then the problem reduces to the following subproblem:

Q
mjin /0 L(h,f,w)dw (25)

where L(h,f,w) = exp(f(w) + g(w)) (26)

subject to  h(w) = f(w) W(w) (27)

with end conditions A(0) =0, A(Q2) =0. (28)

This subproblem has been written as a control problem where f plays

the role of the control signal and /4 plays the role of the state. The
“dot” notation denotes differentiation with respect to w.

The solution of (25)—(28) can be found by applying classical
unconstrained optimal control theory [54]. The Hamiltonian is

H(h,f,w) = L(h.f,w) + \fW = exp(f +g) + M W,
where )\ is the costate, i.e., the solution to —\ = 6H /0h. Since
OH/Oh=0, it follows that ) is constant. Next, the stationarity condi-
tion 0H/Jf =0 yields
exp(f+g)+ AW =0.

Since W is positive, this implies that ) is negative and that the optimal
“control signal” is

f(Ww) =InW(w) - g(w) + e,
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where ¢; 2 In(—M). To evaluate ¢;, use & = /W to obtain
h(w) = [In W(w) — g(w) + c1] W(w).

Integration yields
= / W(@)[In W(w) — g(w)]dw + ¢ / W (@) dw + co,
0 0

where ¢, is a second constant. Using the constraints £(0) =0and A(2) =0
uniquely determines ¢y and ¢; to be

j;) — In W(@)] dw
é’ <>d~

=0and =

Therefore, the optimal f'is

() = In W(w) —gw) + I3 W(@)[g(@) — In W(@)) dw

I3 w(@) da ’
and the optimal cost is
Q
|| expts ) + gw)) v
() dw- fo —In W(w)] dw
/ W(w)d exp{ fo w) o } (29)

This solves the subproblem (25)—(28). Substitution of (29) into (24)
yields

Q N
var( / W(w) dw - exp{ o W(w)n|F(jw)|” —In W(w)]dw}

OQ W(w)dw

1 _
+= / |F(jw)[* dw.
Q

™

Bound (10) follows 1mmed1ate1y on deﬁnmg a) = f(?
2tan"' Q/zand ap = {fo w)In[|F(jw)[*/ W(w)] dw}/au.
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Proof of Theorem 4.3 The key idea, as in the proof of Theorem 4.2,
is to treat the function |S(jw)| as a curve in we[0,Q], and apply
classical optimization theory to find the curve that minimizes the
variance of y. The optimization is carried out subject to the Poisson
integral constraint given in (22) and subject to the constraint
[S(jw)| € Mpax(w, ). The addition of the second constraint, absent in
the previous proof, mandates the use of more sophisticated mathema-
tical tools.

As in the proof of Theorem 4.2, define the functions
f(w)=1n|S(jw)|? and g(w) = In|F(jw)[*. Also define M(w) = In M2,
(w, ). (The dependence on parameter 2 is not explicitly shown.) Use
(22) and the assumption that |S(jw)| =1 for w>Q to obtain, exactly
as before (see (24)):

(o]

Q
va() =+ [ exple) + @) dw 2 [ T1FG dw. G0

™

Thus, the optimization problem reduces to finding the f'that minimizes

Q
| explete) +/w) v
subject to (23) and subject to f(w)< M(w). This problem can be

converted into a standard form for application of Pontryagin’s Mini-
mum Principle (see [54]). To this end, define, for w € [0, §2],

h(w) = /0 " @) W(@) da.

Then the problem reduces to the following subproblem:

min /0 ? Ll fw) dw (31)

where L(h,f,w) =exp(f(w) +gw)) (32)
subject to  h(w) = f(w) W(w) (33)
with end conditions 4(0) =0, A(Q)=0 (34)

and control constraint f(w) < M(w). (35)
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As before, this is an optimization problem where f plays the role of the
control signal and 4 plays the role of the state. The Hamiltonian is

H(h,f,w) = L(h,f,w) + MW =exp(f+g) + W,

where ) is the costate, i.e., the solution to —\= 0H /Oh. Since
OH|[Oh =0, it follows that A is constant. Pontryagin’s Minimum Prin-
ciple states that the optimal control, f(w), is that which minimizes the
Hamiltonian (when evaluated at the optimal state and costate) over all
admissible controls. Here, this means that the optimal control is the
f(w) that minimizes

exp(f(w) +g(w)) + M (W) W(w), (36)

where ) is the optimal costate (yet to be determined) and where f(w) is
constrained by f(w) < M(w). This holds at each w€[0,€2]. There are
two cases:

e If A>0, then function (36) is clearly “minimized” at f(w)= —o0.
Since ) is a constant, this implies that f(w) = —oo for all we[0, 2].
However, such a control signal does not satisfy foﬂ f(w)W(w)
dw = 0, so this case cannot occur.

e If A <0, then simple analysis shows that (36), as a function of f(w),
has exactly one stationary point (a global minimum) at f(w)=
In(—AW(w)) — g(w). Therefore, the optimal control, in terms of the
still unknown ), is

f(w) = min(M(w), In(-AW(w)) — g(w))

= min(M(w), In W(w) — g(w) + a1), (37)
where ¢; £ In(—X). We can solve for ¢; by applying the constraint
Q
/ f(w)W(w)dw = 0. (38)
0
This yields

09 W(w) - min(M(w), In W(w) — g(w) + ¢1) dw = 0. (39)
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Equation (39) can be solved for ¢, via the bisection algorithm since
the right-hand side is a known quantity and the left-hand side is a
monotonically increasing function of ¢;. (A solution exists if and
only if fOQ W(w)M(w)dw > 0, which holds here for sufficiently large
Q.) The optimal cost is

Q0
| et + eley e
Q
_ /0 exp{min(M(w), In W(w) — g(w) + 1) + g(w)} dw

= /ﬂ exp{min(M(w) + g(w), In W(w) + ¢1)} dw. (40)
0

This solves the subproblem (31)—(35). Substitution of (40) into (30)
yields, after simple manipulation,

9}
var(5) >~ [ min(M2,, (w, Q|F()l W(w) exp(cr)) dw

T™Jo

+1/°° |F(j) du.

TJQ

Define céexp(cl /2) to obtain (11). The equation for ¢ follows
from (39).
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