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1 INTRODUCTION

This paper gives a criterion for the existence and uniqueness of the
solution to a nonlinear nth order system of differential equations

n
1

n

T (1) = A7) + ( ,

)A"‘1 T(t)B + ( )A”—ZT(;)B2 4+

+ (’:) A"TT()B + -+ T(1)B" + F(t, T(1))

n

=> ()4 T)B + FTW), a<t<b (1.1)
r=0

with 4°= B® = I'and where 4, B and T(f) are square matrices of order z.
We assume that 4 and B are constant matrices, that T is a variable
matrix whose components are continuous functions on [a, 4], and that
the nonlinear function F: [a,b] x R™" — R™" is continuous. We
further assume that F(¢,0)=0 on [a, b]. This restriction only ensures
(1.1) admits a trivial solution. We in fact seek a solution of (1.1)
satisfying the boundary condition matrix

MT(a) + NT(b) = (1.2)

(or 0 MiT(1;) = @). Here a=1t,<t,<---<t,=b where M and N
are constant square matrices of order n and all scalars are assumed to
be real. For n=1, the problem reduces to

T'(t) = AT(t) + T(1)B.

The boundary value problem (1.1), (1.2) naturally arises in a number of
areas of applied mathematics and control engineering. It has attracted
the attention of such mathematicians as Atkinson [1], Bellman [3], and
others with the closed form solution given by Murty et al. in [6].

This paper is organized as follows: in Section 2, we present the
general solution of (1.1), (1.2) and develop variation of parameters
formula for the nonhomogenous system (1.1). With this formula as a
tool, we develop in Section 3 our main results on existence and unique-
ness of solutions to two- and multi-point boundary value problems.
The results presented in this paper pave the way for studying prob-
lems of stability for nonlinear systems of higher order matrix systems.
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In Section 4, we deduce the results of Barnett given in [2] as a partic-
ular case of our results and draw certain natural interesting conclusions.

2 GENERAL SOLUTION OF THE MATRIX SYSTEM

In this section, we establish the general solution of nonlinear matrix
Lyapunov system in terms of the fundamental matrix solutions. The
results presented here include those of Barnett [2] as a special case. We
assume throughout that Y is a fundamental matrix solution of 7’ =
AT and Z is a fundamental matrix solution of 7/ = B*T. (* refers to
the transpose of the complex conjugate matrix of B). We present the
following theorems.

THEOREM 2.1 If' Y is a fundamental matrix solution of T' = AT, then
Y is also a fundamental matrix solution of T™(t) = A™T(t), where A is an
n X nmatrix.

Proof Y is a fundamental matrix solution of 7/=AT if and only
if Y'(t)= AY(z). This implies Y"(1)=AY'(1)= A*Y(2). Again Y" ()=
A%Y'(f)= A>Y(¢) and so on. Thus the proof is complete.

THEOREM 2.2 If Y(¢) is a fundamental matrix solution of T'= AT,
then for any real or complex constant n, Y(nt) is a fundamental matrix
solution of T' = (nA)T.

Proof The proofis a direct verification and hence omitted.

THEOREM 2.3 Any solution of
TOW =3 (”) ATT()) B (2.1)
r=0 r

is of the form T(t) = Y(t)CZ*(t), where C is a constant square matrix of
order n.

Proof We first note that by the Leibnitz theorem on the derivative of
the product of two functions

(Y()CZ* (1)) = YD ())CZ* (1) + (’1’) Y"1 (0)CZ* (1) + - -

+ () wezm +--+ Yz ).
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Using Theorem 2.1, we have Y®(1) = A" Y(1), Y V() = 4”71 Y(), etc.
we can easily verify that 7(¢) defined by 7(¢) = Y(¢)CZ*(¢) is a solution
of (2.1).

To prove that every solution of (2.1) is of this form, let 7 be a solu-
tion and let K be a square matrix of order n defined by K(f)=
Y~ () T(7). Now T(r) = Y()K(z). Hence

TO) (1) = YO (1) K(1) + (’11) YO () K(1) +
+ (’r’) Y™ (1)K + Y(1) K" (1)
= A"Y(1)K(t) + A" Y(O)K(t) +
+ (’:) ATY()KD (1) + -+ YK (1),
This is true if and only if K*(f) = ZC, K* (f) = Z*C "(1)=2""¢C
or K() = C*Z*. Hence T(1) = ¥(1)K(1) = Y(1)CZ*(1) (Take c =0).

THEOREM 2.4  Any solution of the nonlinear matrix Lyapunov system
TO) (1) = AT + ('I')A"—lTB 4o
+ (’r‘) AT + -+ TB + F(L,T(1))  (2.2)

is of the form T(t) = Y(£)CZ* + T(t), where T(t) is a particular solution
of 2.2).

Proof It can be easily verified that T defined by 7(¢) = Y(¢)CZ*(¢) +
T(z) is a solution of (2.2). To prove that every solution is of this form,
let T be any solution of (2.2) and T(¢) be a particular solution of (2.2).
The T — Tis a solution of the homogeneous equation

n

10 = 3° (N arr1m

r=0

with A°=B=] Hence by Theorem 2.1, T—T= YCZ* or T=
T + YCZ*, and the proof is complete.

The next theorem establishes the variation of parameters formula
for the nth order nonlinear nonhomogeneous matrix differential
system.
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THEOREM 2.5 Let Y be a fundamental matrix solution of T' = AT and
Z be a fundamental matrix solution of T' = B*T. Further suppose that
the variable matrix C is such that

(Y'C'Z* + YC'Z*)"2 =0 foreachi=2,3,...,n  (2.3)

Then a particular solution of (2.2) is of the form

T(t) = Y(t)[ / t / 5 / " / " Y (s F(s, T(s)).

X Z*_I(S) ds,dr,—1dm_2-- -dT1:|Z*(l).

Proof Any solution of the homogeneous matrix Lyapunov system is
of the form T(t) = Y(£)CZ*(t), where C is an n x n constraint matrix.
Since such a solution cannot be a solution of the nonlinear nonhomo-
geneous system (2.2) unless F(z, T(£))=0. We assume that C is a
variable matrix and seek a particular solution of the form 7(¢) =
Y()C(£)Z*(¢). Substituting the general form of 7(¢) in (2.2) and on
using (2.3), we get

Y()C" (1) Z* (1) = F(t, T(1))
or
C (1) = YY) F(t, T())Z* V().

Upon integrating » times, we get

C=/a'/a” // Y~ (s)F(s, T(s))

x Z*=1 (s)dsdmy—1dmy_p---dm.

It can be easily verified that

() = Y(z)[ / ' / " / " / " Y (s)F(s, T(s))

x Z*1(s)dsdm-1d7y - -- dn} z() (24

is a solution of (2.2), and hence the proof of the theorem is complete.
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THEOREM 2.6 Let T be any solution of (2.2) and T be a particular
solution of (2.2). Then any solution of (2.2) is of the form

T(t) = Y(O)CZ*(¢) + Y(t [ / / / / -1 (5)F(s, T(s))

x Z*(= ()deTn 1d7m—2 - dT]]Z*(t).
(2.5)

Proof 1t can be easily verified that T defined by (2.5) is a solution of
(2.2). Further, if T is any solution of (2.2) and 7(¢) is a particular solu-
tion of (2.2), then T— T is a solution of T (1) =3, (") A"'TH'.
Any solution of the homogeneous systems is of the form Y(#)CZ*(¢),
where C is an #n x n constant matrix. Thus, or T— T = YCZ* or T =
T+ YCZ*. By Theorem 2.3, any solution T is of the form 7(¢) =
T(t) + Y(1)CZ*(¢), where T(¢) is given by (2.4). Thus the proof of the
theorem is complete.

Next, we consider the boundary value problem

n
(n) — n\ n-r r
T (7) g (r)A TB' + F(1, T(t)) (2.6)
satisfying the general matrix boundary conditions
MT(a) + NT(b) = o (2.7)
or
n
> MT(t) = o (2.8)
i=1

Recall that any solution T of the nonhomogenous matrix Lyapunov
system (2.2) is of the form

() = Y(1)CZ* (1) + Y(t)[ / ' / 5 / " / " Y () (s, T(s))

x 2V (s5) dsdm,_1 d7y_s - - -dn} ZX(2).

(2.9)
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Substituting the general form of 7(¢) in the boundary condition matrix
(2.7), we get

MY(a)CZ*(a)+NY(b)CZ*(b)+NY(b)[ / ’ / i / / "y

x F(s, T(s))Z*V(s) dsdr,_; dry_s - - -dﬂ} Z*(b) =

or
MY(a)CZ*(a) + NY(b)CZ* (b) = K,

where

IC=a—NY(b)[/ab/aﬂ // Y- (s) F(s, T(s))

x Z* (s)dsdm,_; dr_y - - -dn] zZ(b)  (2.10)

which is equivalent to
A1CBy + A>CB, = K, (2.1 1)

where 4, =MY(a), A,=NY(b), Bi=2*(a) and B,=Z*(b). We find
the general solution C of (2.11) in terms of the known matrices 4;, A4,,
By, B,, and K. In the case of the multi-point boundary value problem
(2.2) satisfying (2.8), we get

;MiY(ti)CZ*(t,-)=a—zn:M,~Y(t,-)[/at/aTl /”/ ¥(s)

=2
x F(s, T(s))Z* "' (s) dsdm_y dTy_z - - -dn] Z (1)
which is equivalent to
i ACB; =K, (2.12)
i=1

where 4;= M;Y(t;) and B;= Z*(t;).
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3 ANALYSIS OF THE MATRIX C AND THE
GENERAL SOLUTION T(7)

In this section, we shall be concerned with the general form of the
constant matrix C satisfying Eq. (2.11):

A1CBy + ACB, = K

or
n—1 )
> 4B, =K. (3.1)
i=0

Transformation to a vector equation, using the Kronecker product
of matrices, allows us to use currently available numerical techniques
for the solution of (2.11) or (3.1). We use the following notation. If
A € R™" and B € R™", then their Kronecker product 4 ® B € R xn’
is defined as

A® B=ay;B forij=1,2,...,n

We now consider our target Egs. (2.11) or (3.1). A system AC = X is
solvable for C if the eigenvalues ); of A are all nonzero. Whether the
system (3.1) is uniquely solvable depends on the eigenvalues of 4 and
on a polynomial matrix

B(x) = ZBixi, x€C.
i=1

THEOREM 3.1  Eguation (3.1) has a unique solution C if and only if
detB(\) #0 fori=1,2,...,n.

Proof The left-hand side of (3.1) will be regarded as the product of
C and B. For that reason, we define F=3;Fix' € C"”" and for
M € R™", the operation M x F=_, A'MF;. Then C"*" becomes a
right module over the ring C""[x]. Let a(x) be the characteristic
polynomial of 4, and take

® = a(x)C"™"[x]

so that @ is the ideal in C"*"[x] generated by a(x)I. By the Cayley—
Hamilton theorem, we have M x H=0 for all H € ®. Hence we can
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define
M« (F+®)=Mx«F.
With this fact, we can rewrite (3.1) as
C+x(B+®) =K. (3.2)

It is clear that (3.2) is solvable if and only if B+ @ is invertible in the
quotient ring C""[x]/® [5].

THEOREM 3.2  If the system of Egs. (3.1) is universally solvable and
n .
G(x)=> G (3.3)
=1

is the polynomial given by
BG = GB = I(mod ®),deg G < n

then
Cc=)_ 4KG;
i=1

is the unique solution of (3.1).

Proof The coefficient matrices G; of (3.3) can be determined from an
auxiliary equation which involves the companion matrix F, of a(x).
Substituting the general form of C, we get

T(1) = Y(t)[gA"ICG,-Z"(I)] + Y(t)[ / t / 5 / " / "y

x F(s, T(s))Z*(_l)(s) dsdm,—1dm_2 - dT]] Z*(1)

is the unique solution of the multipoint boundary value problem (1.1),
(1.2),i=1,2,...,n.
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When the matrices 4; are pairwise commutative, the general case
(2.12) can be approached with a somewhat more complicated theore-
tical treatment [5].

We now turn our attention to the boundary value problem (1.1),
(1.2). For this problem, we need to solve for C from Eq. (2.11)

A1CBy + ACB, = K,

a problem for which practical numeric techniques have been devel-
oped. If 4, and B, are invertible, then

AC+CB=K, (3.4)

where 4 = A7'4,, B= B1B;!, and K = A7'KB;!. Equation (3.4) is
known as the Sylvester matrix equation. Let {)\;} be the set of eigen-
values of 4 and {u;} the set of eigenvalues of B. If there is no choice of
i,j,1<1i,j<n such that \;+ u;=0 then (3.4) has a unique solution C
for any choice of K. The system is then said to be nonsingular.
Reduction of one of A and B to tridiagonal form and the rest to
digaonal form via the symmetric QR algorithm provides a robust and
elegant algorithm for solution of the Sylvester equation when both 4
and B are symmetric. On the other hand, when A4 or B are not
symmetric, the Householder reduction to Hessenberg form does not
yield a tridiagonal matrix. The method of Golub et al. [4] requires for
the reduction of only one of the matrices 4 or B to Schur (upper
triangular) form. Considerable savings in computations may be made
through the use of Gaussian reduction to banded form and then using
Alternating Direction Implicit (ADI) solution of the reduced equation.

Use similarity transformations G and H, respectively, to reduce 4
and B to the banded matrices S and 7. Then the Sylvester equation
(3.4) reduces to

SZ+ZT =F, (3.5)

where
S = GAG™!, (3.6)
T= HBH', (3.7)

F=GKG™, (3.8)
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and
Z=GCH™!, (3.9)

respectively. Once 4 and B have been reduced to S and T of small
bandwidth, one can solve the Eq. (3.4) by ADI iteration [7]. The itera-
tion equation for the reduced system is as follows

Zy =0, (3.10)
(S +Pj1n)Zj—1/2 = F — Zj—l(T"ijm), (31 1)
(T* + gil,)Z; = [F = (S — giln)Zj_1)2]". (3.12)

Let the right-hand side of Eqgs. (3.11) and (3.12) be denoted by G;_,,
and G;. The ADI iteration first computes

Gy =F
and thereafter on the half-steps
Gj-1/2 = F + [plim + gj-1Zj-1 — Gj1]".
For the whole steps
Gt = F+ [pilm + 4iZj-1/2 — Gja 2]

where T refers to the transpose of the matrix.

A method of computing the solution of (1.1) satisfying (1.2) is given
in [6] for first order systems of differential equations. We now present
the same technique for the nth order nonlinear Lyapunov system (1.1).
We assume that F satisfies a Lipschitz condition on [g, b)] x R™", i.e.,

|F(s, Tir(s)) — F(s, T2(s))|| < L|| Ty — T2[|(L > 0) (3.13)
and define

cond(¥) = max | Y()|  max | Y1 (7)|
t€(a,b] tefa,b)

and

cond(Z) = max ||Z(z)]] max ||Z71 (7).
t€la,b) t€la,b)
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If 4, and B, are nonsingular, then (2.11) is equivalent to
C—ACB=Y, (3.14)

where 4 = —(47'4y), B= (B,B;'47!) and Y = A7'KB;!. Now, to
solve for C we have the following analysis:
C—ACB=Y & [I®I-(A®B")C=Y
S Ic—(A®BY)c=y
& Ic—Gec=y, where G=(4®B").

Putting C = Y + ACB in the second term of (3.14), we have the follow-
ing equivalent statements:

C—A(Y+ACB)B=Y & ¢— G(y+ Gc) =y,
C—ACB* =Y+ AYB & c—G*c=y+ Gy,
C—ACB =Y+ AYB+ A’YB? & c—Gc=y+Gy+G*y,

C— A"CB"
=Y+ AYB+ -+ A" 'YB" ' & c—G'c=y+Gy+ Gy
+ -+ Gy,

If the spectral radii of 4 and B satisfy
p(4)p(B) < 1,

then A" YB" — 0 as n — o0o. In this case
0 . .
C=Y+> AYPB
Jj=1

= A7'KBT' + ) (47 42)/(41KB1) (B2 By ")
j=1
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Substituting the general form of C in (2.11), we get
S .
T(1) = Y()A7T'KBT' + (47" 42) (41K By)

x (BB Y Z (1) + Y(z)[/al[’ /n/ Y-1(s)

< P, T)Z ™ dsd 1 drya-dn | 2°()

= ¥0;'[a-Ny0)| [ e
Pl T6) dsdr dr - | | 7 2°0)
- VOB + 3 (4 42 (o - N¥D

=1
([

x F(s, T(s))dsdm,_y dmpg - - dn} ] Bl) (BB Z*(1)
ol [ [
x F(s, T(s))Z* " dsdn,_1dm_s - - -dn} Z(2).

To obtain a unique solution to the two point boundary value problem,
we define the operator T by

/() = Y(1)BZ*(1) — Y(1)A;'N¥(b) / ’ / " / " / ")

x F(s, T(s))Z"" (s)ds d7_1d7,_2 - - - dry

xB;‘(BsBl‘l)fZ*(t)+/ab/an /an---/am Y~(s)

x F(s, T V(s)Z*'(s)) dsdm_y - - - dn, Z*(1).
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Consider

| T'(z) — T1(2)|| < Cond(Y) Cond(Z {ZHA Ly,

_ a i L(b—a)"
< 147 N7 1827 I + 1} Lo —ar

Let

Cond(Y) Cond(Z) e
a= < L[||4 B NY()|+1] < 1.

Then

170 - 7@ < el 7 0 - T2 L

i

<20 - OIS
_Nitn—1

< @170 = P01 Gy

This is a contraction operator whenever o < 1. By the Banach fixed
point theorem T has a unique fixed point and this fixed point is
the unique solution of (1.1) and (1.2). To simplify our exposition, we
omit the straightforward generalization to multipoint boundary value
problems.

4 CONCLUSIONS

In this section, we obtain the general solution of
"\ /n
TO@n =Y (r) A" TE
r=0

in terms of the fundamental matrix solutions of 7/ = AT or T’ = B*T.
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THEOREM 4.1 If Y is a fundamental matrix solution of T' = AT. Then
Y(n?) is a fundamental matrix solution of T' = (nA)T.

THEOREM 4.2 If Y is a fundamental matrix solution of T' = AT and Z
is a fundamental matrix solution of T' = B*T, then T defined by

T(1) = Y(nt)CZ* (m1)
is a solution of
T' = (nA)T + T(mB).
Proof
T'(t) = nY'(nt)CZ* (nt) + mY(nt)CZ* (mt)
= nAY(nt)CZ*(nt) + mY(mt)CZ*B
= (nd)T + T(mB).
THEOREM 4.3 If Y is a fundamental matrix solution of T' = AT and Z

is a fundamental matrix solution of T'=B*T then T defined by
T(t) = Y(nt)CZ*(nt) is a solution of

T' = (nA)T + T(nB).

THEOREM 4.4 If Y(¢) is a fundamental matrix solution of T'=AT
and Z(t) is a fundamental matrix solution of T'= B*T then T(t) =
Y(nt)CZ*(nt) is a solution of the system

T (1) = (W A)T + ('1’) ("' 4)T(nB) + ('2') W2 AT(n*B)

+o+ (D) HTOB) + -+ T B).
We observe that T defined by
T(t) = Y(=26)(Co + C1t) Z* (—21)
is a solution of the matrix system
T"(t) + 4(AT' + T'B) + 4(A4> + 2ATB + TB?) = 0.

Thus Theorem 1 given in [2] is a particular case of Theorem 4.4.
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