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This paper presents a new approach to robust quadratic stabilization of nonlinear
systems within the framework of Linear Matrix Inequalities (LMI). The systems are
composed of a linear constant part perturbed by an additive nonlinearity which depends
discontinuously on both time and state. The only information about the nonlinearity is
that it satisfies a quadratic constraint. Our major objective is to show how linear con-
stant feedback laws can be formulated to stabilize this type of systems and, at the same
time, maximize the bounds on the nonlinearity which the system can tolerate without
going unstable.

We shall broaden the new setting to include design of decentralized control laws for
robust stabilization of interconnected systems. Again, the LMI methods will be used to
maximize the class of uncertain interconnections which leave the overall system con-
nectively stable. It is useful to learn that the proposed LMI formulation “‘recognizes” the
matching conditions by returning a feedback gain matrix for any prescribed bound on
the interconnection terms. More importantly, the new formulation provides a suitable
setting for robust stabilization of nonlinear systems where the nonlinear perturbations
satisfy the generalized matching conditions.

Keywords: Robust stabilization; LMI; Generalized matching conditions; Interconnected
systems; Decentralized control

1. INTRODUCTION

The subject of this paper is the robust quadratic stability and feed-
back stabilization of a class of linear constant systems under additive
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perturbations which are nonlinear and discontinuous functions in time
and state of the system. The perturbations are uncertain and all we
know about them is that they are contained within quadratic bounds.
Conceptually, our mathematical models have the structure of Lur’e-
Postnikov systems, and it is natural that we attempt to solve the new
stability problems in the framework of absolute stability (Popov [1],
Yakubovich [2]). A crucial difference, however, is in that we do not
impose any structure on the way the nonlinear functions depend on
the state of the system. This distinction prevents us from using the
powerful methods of absolute stability in solving robust stability
problems in the new setting.

Another important distinction of our results within the vast
literature on robust control (e.g., see the surveys by Siljak [3],
Leitmann [4], Kokotovi¢ and Arcak [5], as well as the book by
Battacharya et al. [6]), is that we want to determine a linear control
which stabilizes the system and, at the same time, maximizes the class
of uncertain perturbations which can be tolerated by the stabilized
(closed-loop) system. We do not assume that the linear part is stable,
nor that the perturbations satisfy the matching conditions. The main
objective of this work is to show how a solution to such a complex
control problem can be obtained by using the full extent of the S-
procedure [7] and applying the efficient tools of Linear Matrix
Inequalities (LMI) (Boyd et al. [8]). The LMI methods are flexible in
allowing inclusion of a wide variety of additional design requirements,
such as the size and structure of the gain matrices, degree of ex-
ponential stability, and time delays, to mention a few. In the sub-
sequent paper [9], we shall extend the present framework to include
robust stability and stabilization of discrete-time systems (see also the
paper by Oliveira et al. [10]).

Of our special interest in this paper is to exploit the extraordinary
ability of the LMI approach to accommodate the decentralized
information structure constraints imposed on the gain matrices
(Geromel and Bernussou [11], Geromel et al. [12], Ikeda et al. [13],
Cao et al. [14], Geromel et al. [15]). In control applications of large
scale systems, the controllers are allowed to use only the locally
available state variables [16]. In interconnected systems this translates
into a restriction that the control law for each subsystem contains
only the state of that subsystem. By recognizing the well known fact
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(e.g. [17]) that interconnections can be considered as perturbations
of subsystem dynamics, we shall compute the robust decentralized
control laws using our new LMI problem formulation. The resulting
closed-loop interconnected systems will be connectively stable with
the maximal bounds on the interconnection terms which can change
discontinuously as functions of time and state of the system.

2. ROBUST STABILITY

Let us consider a nonlinear system described by the differential
equation

X = Ax + h(t,x) (2.1)

where x € R” is the state of the system, A is an n x n constant matrix,
and /:R""! - R" is the nonlinearity. In this section, we assume that
the matrix 4 is Hurwitz stable, that is, it has all eigenvalues with
negative real parts. We shall remove this assumption in the later
sections, when we use linear state feedback to stabilize an otherwise
unstable matrix A.

With regard to the nonlinearity A(z,x) we assume that it is a
piecewise-continuous function in both arguments ¢ and x (Filippov
[18]). Notice that piecewise-continuity of A(-,-) implies the same
property of the right hand side Ax+A(t, x) of Eq. (2.1), and their
domains of continuity coincide.

The crucial assumption about nonlinear function A(z, x) is that it is
uncertain and all we know is that, in the domains of continuity, it
satisfies the quadratic inequality

W7 (¢, x)h(t,x) < o®xTHT Hx (2.2)

where o >0 is the bounding parameter and H is a constant £ x n
matrix. We immediately note that for any given H, inequality (2.2)
defines a class of piecewise-continuous functions

H, ={k R*"! = R"|hTh < o’>x"H" Hx in the domains of continuity}.
(2.3)
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The class H,, is comprised of functions that satisfy A(z,0) =0 in their
domains of continuity, and x=0 is an equilibrium of system (2.1).
The main objective of this paper is to establish stability of x =0, and
we introduce the following:

DEeFINITION (2.4) System (2.1) is robustly stable with degree a if
the equilibrium x=0 is globally asymptotically stable for all
h(t,x) e H,.

Definition (2.4) is similar to the standard definition of absolute
stability (e.g. [19]). A significant difference, however, is that we do not
assume here any structure of dependence of A(z, x) on the state x; the
function A(t,x) depends on the state rather than the output of the
system.

To establish robust stability in the sense of Definition (2.4), we use a
quadratic Liapunov function

V(x) = x" Px, (2:5)

where P is a symmetric positive definite matrix (P > 0). We assume
that V(x) is a C' function satisfying for all x €R”

o1(llxl) < V(x) < da(llxl)), (2.6)

where ¢, ¢, € K, are Hahn’s functions (e.g., Khalil [19]). Using the
well-known results of Filippov [18], we can establish stability of
Definition (2.4) by negative definiteness of the derivative

V(%) (1) = (grad, V){Ax + h(t,x)} < — ¢s(|Ix])) (2.7)

in the domains of continuity of A(-,-). Thus, from this point on
we shall consider all equations and inequalities involving A(-,-) only
in the domains of continuity without any further mentioning of this
fact.

Now, we want to show how the LMI approach (Boyd et al. [8]) is
ideally suited to analyze the introduced notion of robust stability. We
start with the fact that constraint (2.2) is equivalent to the quadratic

inequality
T 2T
X —a‘H'H 0|]|x
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To show stability we compute

V(x) (1) = x" (ATP + PA)x + h"Px + x" Ph (2.9)
and require
P>0, x"(ATP+ PA)x+ h"Px+x"Ph<0, (2.10)
or
T
x| [ATP+PA  P][x
poo, [T <o e

By using the S-procedure (Yakubovich [7]) we conclude that, when
(2.8) is satisfied, (2.11) is equivalent to the existence of P and a num-
ber 7 > 0 such that

P>0
[ATP + PA + 7a*H"H P
P —7l

] -0 (2.12)

which is further equivalent to the existence of a matrix Y so that

Y>0
[AY + YAT + o*YHTHY I ] <0 (2.13)
I -1 ’

where Y=7P" ",
Relying on the Schur complement formula, (2.13) can be rewritten
as

Y>0
AY+YAT 1 YHT
I -1 0 | <0, (2.14)
HY 0 —I

where v=1/o?.
Our interest is in establishing robust stability for as large a class H,
as possible. We assume that the matrix H is selected and maximize
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parameter « by solving the following LMI problem in Y and ~

minimize v
subject to Y >0
AY +YAT I YHT (2.15)
I -1 0 |<O0.
HY 0 —~I

We arrive at

THEOREM (2.16) System (2.1) is robustly stable with degree « if prob-
lem (2.15) is feasible.

To illustrate the benefit of the LMI formulation (2.15) let us
consider the following simple example [16]:

Example (2.17) A system is given as

i= [_02 _13]x + u()x, (2.18)

where u(f) is an uncertain time-varying parameter. To estimate the
largest bound on the perturbation function,

()| < a (2.19)

which can be tolerated by stability of the nominal linear part in
(2.18), the following problem was formulated in (Siljak [17]):

Am(Q) }
e { M (P) (2.20)
subject to ATP+ PA = —Q.

The maximization problem was solved in (Patel and Toda [20]),
where it was shown that Q = I is the optimal choice.

In the case of system (2.18), we solve the Liapunov matrix equation
in (2.20) for Q = I and obtain

P:[fﬁ im =1 2.21)
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resulting in

1(0)
2 u(P)

a= = 0.3810. (2.22)
On the other hand, solving the LMI problem (2.15) for H=1 by the
LMI Toolbox (Gahinet et al. [21]), we get the bound

& = 0.5397 (2.23)
with matrices

p 0.7774 0.2604 ~ |1.0428 0.3783
0.2604 0.1868 |’ Q= 0.3783 0.5993 |’

— (2.24)
which is more than 40% larger than the bound & = 0.3810 obtained
for0=1.

If we apply the transformation (Siljak [16])

x=T% T= [_11 _12} (2.25)
to improve the bound «, we obtain
P=1 Q:z[(‘) ‘2’] (2.26)
producing the bound
__12(0)
=_mx/ _q 2.27
* 2 (P) 227)

which is almost twice the bound & = 0.5397 obtained in the original
space.

When the LMI solution is computed in the transformed space, it
reproduces the maximal bound & = 1 confirming at the same time the
fact that the LMI formulation (2.15) of robust stability margin is
“coordinate dependent”.

3. ROBUST STABILIZATION

When the linear part of the system (2.1) is not stable we can intro-
duce feedback to stabilize the overall system and, at the same time,
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maximize its tolerance to uncertain nonlinear perturbations. The
system with control input is described by equation

X = Ax + Bu+ h(t,x) (3.1)

where B is n X m constant matrix, u: R” — R™ is the linear feedback
control law

u(x) = Kx, (3.2)

and K is an m X n constant gain matrix. We assume that the pair
(4, B) is stabilizable.

When we apply the feedback (3.2) to the open-loop system (3.1),
we obtain the closed-loop system

% = Ax + h(t, x) (3.3)
where
A=A+BK (3.4)
is the closed-loop system matrix.

DEeFNiTION (3.5) System (3.1) is robustly stabilized by the control law
(3.2) if the closed-loop system (3.3) is robustly stable with degree a.

Using the quadratic function V(x) and computing the derivative
V(x)(3.3), we can imitate the process that led to problem (2.15) and
formulate the following problem

minimize 7y
subjectto Y >0

AY + YAT + BKY + YK'BT I YHT (3.6)
1 -1 0 <0
HY 0 —I

which is not an LMI in Y and K, but can be made so by introducing
the change of variable (Bernussou et al. [22])

KY =L, (3.7)
or

K=Ly™! (3.8)
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The transformed problem is now of LMI variety,

minimize v

subject to Y >0

AY +YAT +BL+ITBT 1 VYHT (3.9)
1 -1 0 <0.
HY 0 —I

We have the following:

TueEOREM (3.10)  System (3.1) is robustly stabilized by control law (3.2)
if problem (3.9) is feasible.

Example (3.11) Let us consider the same system of Example (2.17),
but add control to get

Xx = [_02 _13}x+ [ﬂu-&—u(z)x. (3.12)

We choose u=u(x) as the feedback control (3.2) with the gain
matrix K= [k, k12]. Since the open-loop matrix is stable, the objective
is to apply feedback in order to increase the uncertainty bound a.
Solving the problem (3.9) with bounding matrix H=1 we get
a=0.9998 which is an improvement over the open-loop bound & =
0.5397 obtained in Example (2.17), but not an improvement we ex-
pect to have when we use feedback. Furthermore, the gain matrix
is exceedingly large

K = 10%[—8.9716, —0.0006]. (3.13)

The bound does not change when we solve the problem (3.9) in the
transformed space as in Example (2.17). The outcome remains the
same even if we start with the unstable open-loop matrix 4 in

= [‘1’ (l)]x+ [?]u—i-/t(t)x (3.14)

and use feedback u(x)=Kx to stabilize 4 and, at the same time,
maximize the uncertainty bound . We obtain the same « and the gain
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matrix
K = 10°[—1.2860, —0.0185] (3.15)

which has again a large size as K in (3.13).
When we change matrix B in (3.12) to get the system

x:[_g _;]x-i—[”u-i-p,(t)x (3.16)

we increase the bound to @ =3.1623 with the gain matrix
K = 10°[-6.996,3.5013] (3.17)

having a reduced size.
The situation changes drastically when we choose B=1. Solving
problem (3.9) for the system

x:[_g _;]x+[(l) ﬂu—i—u(t)x (3.18)

we obtain v close to zero implying an arbitrarily large . The gain
matrix

K= 109[~5.1195 0.001}

0.0001 —5.1189 (3.19)

has elements even larger than K in (3.13). System (3.18) satisfies the
matching conditions and, as expected, we get arbitrarily small v with
very large size of K. That the matching conditions always lead to this
LMI result needs a proof which we provide later on in this section. Of
our immediate concern is the size of the feedback gain matrix.

To make the outcomes of problem (3.9) practical, we must limit the
size of the gain matrix K while, at the same time, guaranteeing a
prescribed uncertainty bound @. We can restrict the size of K by
constraining L and Y~ (Chen ez al. [23]). We set

LTL< kI, k>0 (3.20)
which is equivalent to the LMI

[ —I‘éLI LT

5 —1] <0. (3.21)
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Similarly, we assume
Y l<kyl, ky>0 (3.22)

which can be represented as an LMI,

["IY’ {,} >0, (3.23)

From constraints (3.20) and (3.22), we get the desired bound
KTK =Y ILTLY ' < i YY1 < pi2, (3.24)

which has the LMI representation (3.21) and (3.23).

In order to guarantee a desired value &, we recall that vy =1/a?, and
require that v — 1/a% < 0.

With these modifications the optimization problem (3.9) becomes

minimize v+ KL + Ky
subject to Y >0

[AY + YAT + BL+LTBT B YHT
BT -1 0 | <0
i HY 0 —I
1
-=<0 3.25
= < (3.25)
[—kl LT
RL ]<0
.
[y 1]
> 0.
_I K)yl

THEOREM (3.26) System (3.1) is robustly stabilizable with prescribed
degree & by control law (3.2) if problem (3.25) is feasible.

Example (3.27) To illustrate the effect of the added features to
problem (3.9), we solve the new optimization problem for the system
(3.18) of Example (3.11), with the same bounding matrix H =1, but
include the fixed bound

Qi
Il
[

(3.28)
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We obtain o =2.004 with the gain matrix

—1.8759 —-0.1206

K=1_00974 —0.5553

(3.29)

having a much smaller size than that of gain matrices in Example
(3.11).
Raising the requirement on guaranteed a to

a = 10, (3.30)
produces the stabilizing gain matrix

_ [-10.8005  0.1949

K=1 02881 —9.0440 (3.31)

which has (expectedly) a larger size than the previous solution (3.29)
obtained for smaller a. In this way, the optimization problem (3.25)
offers a useful trade-off between the guaranteed robustness bound &
and the size of the stabilizing gain matrix K.

3.1. The Matching Conditions

The fact that solution of problem (3.9) for system (3.3), where no
constraints were placed on the gain matrix K, produced arbitrarily
large uncertainty bound o has been attributed to the matching
conditions being satisfied by the matrix B and the perturbation p(f)x.
To show that this connection is true in general let us consider the
system (3.1) in the form

Xx = Ax + Bu + Bg(t, x), (3.32)

where we replaced A(t,x) by Bg(t, x), with g(¢, x) satisfying the same
general conditions as A(z, x). Since the control input u and the per-
turbation function g(z, x) enter the system through the same input ma-
trix B, the system satisfies the matching conditions (Leitmann [24]).
It is well-known that when the matching condition is present, there
always exists a stabilizing feedback control u(x) regardless of the size
of the perturbation. What we want to show is that our LMI for-
mulation of robust stabilization “recognizes” the matching conditions,
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and that a stabilizing gain matrix can always be computed by the
LMI method.
The quadratic constraints are imposed on the perturbation function

&(t, x),
g"(t,x)g(t,x) < o*x"HTHx (3.33)

where we assume that the constant matrix H has full rank, that is,
HTH is positive definite.

As for the linear part of the system we require that the pair (4, B) be
stabilizable and the pair (4, H) is detectable.

Remark (3.34) We note that we assumed (without loss of generality)
that both the input u and perturbation g enter the system through a
single matrix B. The matching conditions hold even if  and g enter via
two different matrices B and B, provided Im B D Im B. Then, there is
a constant matrix C of appropriate dimension such that B = BC and,
when C is absorbed by g, we are back to (3.32). A similar argument
holds in case of the decentralized matching conditions considered in
Section 5, Remark (5.26).

We prove the following:

TueoreM (3.35) System (3.32) is robustly stabilizable with arbitrarily
large degree o by the control law (3.2).

Proof For the new description (3.32) of the open-loop system (3.1),
the LMI problem (3.9) becomes

minimize 7y

subjectto Y >0

AY+YAT + BL+L"BT B YHT (3.36)
BT -1 0 |<O0
HY 0 —9I

where again L=KY and v=1/o’.
First, we note that inequality constraints in (3.36) are equivalent to

>0

r>0 (3.37)

1
AY + YAT + BL+ LTBT + 5 YHTHY + BB <0.
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To prove feasibility of (3.37) let us consider the Riccati equation

ATX + XA — XBB'X + %HTH =0, (3.38)
where 0 <4 <+. Since the pair (4, H) is detectable, there exists a
unique positive definite solution X to Eq. (3.38) such that (4 — BBTX)
is a stable matrix (e.g., Zhou et al. [25]). Now, premultiplying and
postmultiplying (3.38) by X! we obtain

X 1AT + Ax~!' —BBT + iX“lHTHX”l =0 (3.39)
¥

or

1
AX' 4+ x7 AT + B(—B)" + (-B)"B+=X"'HTHX~' + BB = 0.
¥
(3.40)

Since v > 4, where 4, can be arbitrarily small number, and H'H is
positive definite, it follows from (3.40) that

1
AX7' 4+ X747 + B(-B)" + (-B)"B+—-X"'HTHX"' + BB" <0.

Y
(3.41)
By comparing (3.41) with (3.37) and choosing
L=-B", vy=Xx"! (3.42)

where X is the positive definite solution of (3.38), we get a solution
to the problem (3.37) for any > 0. Therefore, the solution of the
optimization problem (3.36) is

y=inf §=0. (3.43)
¥>0
Q.E.D.

As we pointed out in Example (3.11), this solution may be
impractical requiring high feedback gains. Therefore, problem (3.36)
should be appended by restrictions on both v and K, as in problem
(3.25).
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4. DECENTRALIZED CONTROL

Our crucial assumption in this section is the presence of decentralized
information structure constraints on feedback control [16]. This simply
means that not all state variables are available for control at every
point of the system. The linear feedback control law for the system

X =Ax+ Bu+ h(t,x) (4.1)
has the familiar block diagonal form
u(x) = Kpx, (4.2)
where m x n feedback gain matrix
Kp = {K1,Ka,...,Ky} (4.3)

has diagonal blocks K;s of dimensions m; x n;. The size of the
blocks are predetermined by the control information structure, and
SiLymi=m, YL n=n.

We assume again that the nonlinear function A(z, x) satisfies the
quadratic constraint (2.2). As for the linear part of the system the
stabilizability property of the pair (4, B) is not appropriate because of
the information structure constraints. It is replaced by the requirement
that the closed-loop matrix 4+ BKp has no unstable decentralized
fixed modes [16]. This means that there are no unstable eigenvalues of
A+ BKp which are invariant to any and all changes of elements of
the gain matrix Kp. This is a difficult condition to test and it is impor-
tant to note that for LMI approach to work we do not need to test
the condition. Within the limits of our LMI formulation of the de-
centralized stabilization problem, the feasibility solution is answered
by solving the related LMI problem.

By applying the decentralized control law (4.2) to the open-loop
system (4.1) we get the closed-loop system

% = Ax + h(t,x) (4.4)
where
A=A+BKp (4.5)

is the closed-loop matrix.
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We use again the change of variables (Bernussou et al. [22])
KpYp = Lp, (4.6)
and express Kp as
Kp = LpYy,'. (4.7)

By using the Schur complement formula (Boyd et al. [8]), we
reformulate problem (3.9) as
minimize 7y
subject to Yp >0
AYp + YpAT + BLp + LTBT I  YpHT (4.8)
{ I -1 0 ] <0
HYD 0 -—’)’I

THEOREM (4.9) System (4.1) is robustly stabilized with degree o by
decentralized control law (4.2) if problem (4.8) is feasible.

Example (4.10) Let us consider the system of Example (3.11) with a
different control matrix B,

= [_02 _HH[; ﬂuw(t)x. (4.11)

Since the system satisfies the matching condition the solution of
problem (3.9) with H=1 yields a large uncertainty bound a=
1.4826 x 10° and the gain matrix

(4.12)

Kzlog[ 4.6785 —2.7920]

—3.8646  0.6845

When we impose the diagonal structure on the feedback gain
matrix, Kp = diag{ky, k,} and solve problem (4.8), we get a drastically
reduced uncertainty bound o= 1.8877, with a smaller size of gain
matrix

—524.0131 0

KD:[ 0 00349] (4.13)

The reason for reduction in « is that, in order for the matching
conditions to produce arbitrarily large o with high gains, diagonal
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solutions Ly and Y, of problem (4.8) need to exist for the entire range
of variation of a. In any given situation, this flexibility of the
formulation (4.8) may not be available. A stabilizing Kp may exist
but the corresponding Ly and Yp, as solutions of (4.8), may not.
Recalling inequality (3.41) and relations (3.42), we conclude that
the matching conditions would work if the control matrix B= B is
compatible with K, and the system matrices 4 and B allow for the
existence of the corresponding diagonal matrices Ly and Yp. This
takes place if we change the system (4.11) back to (3.18), that is,

= [_g _”H[é ?]u—ﬂz(t)x. (4.14)

Solving again problem (4.8) with H=1, we get a =1.7001 x 10°> and
Lp = 108diag{—5.5266, —5.5234}

. (4.15)
Yp = diag{0.1817, 0.1802}
resulting in an impractical gain matrix
Kp = 10°diag{—3.0414, —3.0655}. (4.16)

Decentralized feedback gains may be unacceptably high even in the
absence of the matching conditions. For this reason we need to append
problem (4.8) with constraints

LTLp <kil, Yp' <nyl (4.17)

where k; and ky are positive numbers. By imitating problem (3.25) in
the present context, we get the expanded version of problem (4.8) as
minimize 7y
subject to Yp>0

[AYp + YpAT + BLp + LTBT I  YpHT
I -1 0 <0

i HYp 0 —vI

1
- 4.18
7=5 <0 (4.18)
—I‘CLI LD

] <o
[Yp I

I Hy1]>0
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Example (4.19) We want to show now that even if we have a block-
diagonal Bp we may not be able to compute Kp because the matrix
pair (A4, Bp) does not permit diagonal matrices Lp and Y as a part of
the solution to problems (4.8) and (4.18). To illustrate this fact let us
consider the system

1 0 2
0 0 00

20 1 u+ h(t,x). (4.20)

—_o oo

0

1
x+0
0 0 0 O 0

Since the pair (4, B) is stabilizable, we can solve problem (3.25) with
H=1I and without restriction on v to get a=0.5818 and full gain
matrix

K = 0.4218 —-1.9333 —-1.2357 —-0.1966

=1 12357 —0.1966 04218 —1.9333 | (4.21)

When we attempt to solve decentralized problem (4.8) or (4.18) with
a block-diagonal matrix

KD = diag{Kl, Kz} (4.22)
having diagonal blocks
K1 = [k, k), Ko = [ka, k)" (4.23)

the problems are found to be infeasible. To explain this result let us
recall that the system (4.20) was considered in (Sezer and Huseyin
[26]) as a composition of two interconnected subsystems

, 0 1 0 2 0
"‘:[0 0]’”[0 0]"”[1]“‘
, 0 1 0 2 0
x2=I:0 O]XZ+|:O O:|xl+|:1:|u2

when the perturbation term h(z, x) is set to zero, that is, Az, x)=0.
For the decentralized control laws

(4.24)

u =Kixy, uy=Kx; (4.25)

to stabilize system (4.24), it is necessary that

ki2ky, <0, (4.26)
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which implies that at least one of the decoupled closed-loop
subsystems

. 0 1 . 0 1
—_ = 4.2
X1 [k“ ki ] X1, X2 [k21 ke ] X2 ( 7)

must be unstable. As we recall from [16] this fact is not conducive to
existence of block-diagonal solutions to Liapunov matrix equations.
Yet, if Kp is to robustly stabilize system (4.20) it must be stabilizing
for system (4.24) which is the system (4.20) when A(z, x) =0.

Let us note that system (4.20) was carefully chosen not to satisfy
the generalized matching conditions (Ikeda and Siljak [27], Siljak [16]).
One way to make problem (4.8) feasible is to change the intercon-
nection terms in (4.21) from

[g (2)})62, [g g]xl (4.28)

to

[8 g:|x2, [g g]xl, (4.29)

so that interconnections satisfy the generalized matching conditions.
Solving problem (4.18) with H =1 and without restrictions on ~y, we
get «=0.2157 having the gain matrix

_ [—26.3549 -15.1577 0 0
KD’[ 0 0 —13.9516 —19.3660]' (4.30)

Obviously, with this K, both docoupled closed-loop subsystems
(4.27) are stable. The matrices Lp and Yp are obtained as

L _[-29233 52388 0 0
=1 o 0 0.7605  —5.9507
© 21485  —3.5427 0 0
(4.31)
g _ | —35427 65054 0 0
b= 0 0 1.2455 —0.9366
) 0 ~0.9366  0.9820

resulting in Kp = LpY;,! of (4.30).
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Another way to make problem (4.8) feasible is to reduce the size of
interconnections (4.28), so that the interconnected subsystems (4.24)
become weakly coupled [16]. When we replace interconnections (4.28)
by

0 0.5 0 05
[0 0 :|x21 |:0 0 :'xh (432)

and solve problem (4.18) with H =1 and without the restrictions on -,
we get a=0.3347 and the gain matrix

-2.8793 —2.8614 0 0 ]

KD:[ 0 0  -28793 -28614 (433)

With this Kp both subsystems (4.27) are stable. Problem (4.18) has
block-diagonal solutions for Lp and Yp as

[ 04410 —1.7232 0 0
b= 0 —0.4410 —1.7232]
r1.8694 —1.7541 0 0
po_ | TL7L 2363 0 0 (434)
0 0 1.8964 —1.7541
L0 0  —17541 23673

producing Kp = LpY,! in (4.33).

5. INTERCONNECTED SYSTEMS

When a dynamic system is modeled from the outset of stability
analysis as an interconnection of a number of subsystems, the prob-
lem of structural perturbations arises in a natural way. We want
the interconnected system to remain stable despite subsystems being
disconnected and again connected during operation; we want the
system to be connectively stable (Siljak [16,17], Lakshmikantham
et al. [28], Stipanovié and Siljak [29]). In this section, we consider
a collection of linear subsystems with nonlinear interconnections
and compute linear feedback which connectively stabilizes the overall
system. The model is justified by the fact that in most practical
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situations reliability of subsystems is much higher than that of the
interconnections [16].
Let us consider the interconnected system

X; =A,-x,-+B,-u,-+h,~(t,x), ieN (51)
which is composed of N linear time-invariant subsystems
Xx; = Aix; + B, ieN (52)

where x; €R" are the states, ;€ R™ are the inputs, 4;:R"*! — R"
are the interconnections, and N={1,2,..., N}.

For the linear part of the system we require that all pairs (4;, B;) be
stabilizable. Besides general assumptions concerning the nonlinear
interconnection functions stated in Section 1, we require that they all
satisfy the quadratic constraints

KT (1, x)hi(t,x) < o?x"H H;x 53
1 1 4

where «,;>0 are interconnection parameters and H; are fixed ma-
trices. The constraints can be interpreted as

ll:(2, %)|| < cuil|[Hix]]. (5.4)

where || - || is the Euclidean norm. If we define the constant matrix H;
as a block matrix

H; = [Hy, Hp, ..., Hn] (5.5)

with the blocks Hj; compatible with the subsystems state vectors x;,
we can rewrite (5.4) as

N N
(e, X)1| < el > Hi| < e > 1Byl 1 (56)
Jj=1 Jj=1
and arrive at the inequality
N
1At x)| < 0 Y &l (5.7)
Jj=1

which is the standard interconnection constraint with &; = ||H;| (e.g.,
Siljak [16]).
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The overall interconnected system can be rewritten in a compact
form

X =Apx+ Bpu+ h(t,x), (5.8)

where x € R” is the state, u € R” is the input, and Ap = diag{4,,
Ay, ...,Ax} and Bp=diag{B, B,,..., By} are constant matrices of
appropriate dimensions. We assume that the subsystems are disjoint,

that is, x = (x],x3,...,x5)" and u= (uf,uf,...,u})". In the com-
pact notation (5.8), the interconnection function A:R"T!—R"
h= (W, hL,...,hE)", is constrained as
N
WY (2, x)h(t,x) < x7 (Z aizHiTHi) x. (5.9)
i=1

Our crucial assumption in this section is that the feedback control
law has to obey the decentralized information structure constraint, that
is, each subsystem is controlled using only its locally available state.
The requirement implies that the i-th subsystem is controlled by the
local control law

ui(x,') =Kix;, i€eN (510)

which we require to be linear and time-invariant, that is, K; is an
m; X n; constant matrix. The control law for the overall system (5.8),
which is a collection of the individual local laws, has the familiar
block-diagonal form

u(x) = Kpx, (5.11)

where Kp=diag{K;,K,...,Ky} is a constant m x n matrix with
diagonal blocks compatible with those of Ap and Bp,.
To compute the gain matrix Kp, so that the closed-loop system

X = (AD + BDKD)X + h(t, X) (512)

is robustly asymptotically stable in the large under the constraint
(5.9) on the interconnection function A(z, x), we use again the change
of variables (Bernussou et al. [22])

KpYp = Lp (5.13)



ROBUST STABILIZATION 483

and express Kp as
Kp = LpYp'. (5.14)

Then, by applying repeatedly the Schur complement formula we can
reformulate problem (3.9) in the decentralized context as

minimize

N
Yi

i=1
subjectto Yp >0

-ADYD + YDA{) +BpLp+ L{)Bg 1 YDH{ e YDH}\; i
1 -1 0 0
H\Yp g— 0 | <o
L HNYD 0 0 —’)’NI |
(5.15)

where v; = 1/a?.
At this point we are ready to provide a generalization of Theorem
(3.10) for the interconnected systems in the following form:

THEOREM (5.16) Interconnected system (5.8) is robustly stabilized with

degree vector a=(a1,a2,...,aN)T by control law (5.11), if problem
(5.15) is feasible.

Before we use problem (5.15) to compute the local feedback ma-
trices K; for each subsystem, we should note that the formulation of
the constraints (5.3) on the interconnection terms Az, x) includes the
case when any and/or all A(f,x)=0 guaranteeing that the overall
closed-loop system (5.12) is connectively stable (Siljak [16]). Let us also
note that in solving problem (5.15) we can encounter the same
problem of existence of matrices Ly and Yp in pretty much the same
way as in solving problems (4.8) and (4.18), as illustrated in Examples
(4.10) and (4.19).

5.1. The Decentralized Matching Conditions

We want to show that if the matching conditions are satisfied by each
subsystem individually, then the system can be stabilized by linear
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decentralized feedback with unlimited bounds on the interconnection
functions. This means that, in this case, we can guarantee existence of
Lp and Yp when solving problem (5.15).

An interconnected system satisfying decentralized matching condi-
tions can be described by the equations

X; =A,‘x,‘+B,'ui+B,'gi(t,x), ieN (517)

where the uncertain functions g;: R"*! — R™ are the interconnections
between the subsystems (5.2). We again assume that the pairs (4;, B))
are stabilizable and the interconnections g{z,x) satisfy the usual
quadratic constraints

g7 (t,x)gi(t,x) < 2x"GT Gix. (5.18)
In the compact form, Eq. (5.17) are
5€=ADX+BDM+BDg(t, x), (519)

which is the same as (5.8) except for fact that the interconnection term
h(t,x) is replaced by Bpg(t,x). The subsystems are interconnected
through the control matrix Bp and, therefore, satisfy the matching
conditions. The quadratic constraints (5.18) are collectively formu-
lated as a single inequality

g7 (t,x)g(t,x) < xr(iafGiTG,v) X. (5.20)

i=1

where g = (¢],8],...,80)"
Notice that the inequality constraints in (5.15) are equivalent to

v >0, forallieN

Yp>0

N
ApYp + YpA], + BpLp + LB}, + YD{ Zyglcfai}yp + BYBp < 0.
i=1

(5.21)

Now, we will prove that the set of inequalities (5.21) is feasible for all
~:> 0, i € N, when all the pairs (4;, By), i € N, are stabilizable and for
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the appropriate choice of the matrix G =[G}, G}, ...,GL]". Let us
choose G;’s to be block diagonal such that G has a full column rank.
Block diagonal structure is required to secure existence of the de-
centralized feedback control.

First notice that if the pairs (4;, B;), i € N, are stabilizable then the
pair (4p, Bp) is stabilizable. Also, if G has a full column rank then for
any positive v;’s, the matrix

G= [ 1 Lo —I—GT ! (5.22)
\/_ \/_ ey '

has full column rank as well. Thus, in the last inequality in (5.21) we
observe that the following is satisfied:

N
> 767G =G'G>0 (5.23)

i=1

where G' G has a block diagonal structure. From positive definite-
ness of 3% ;77 'GTG; it follows that G can always be chosen as a
block diagonal matrix Gp having a full column rank. This further
implies that the pair (Ap,Gp) is detectable for any positive ~,’s.
Thus, the left-hand side of the third inequality in (5.21) has a block
diagonal structure, that is, (5.21) may be decoupled into N inequal-
ities. Using the similar arguments to those used in the nondecen-
tralized case of Section 3, when the matching conditions were satisfied,
we conclude that the solution to optimization problem (5.15) is
given by

inf i ¥ = inf Z 4 = 0. (5.24)
i=1

leN i=1

From this result we see that the decentralized matching conditions are
“recognized” by the LMI problem (5.15). Therefore, in solving (5.15),
when this kind of matching is present, we always have a stabilizing
decentralized control law but should expect high feedback gains. To
limit the gains and, at the same time, guarantee a certain degree of
robustness at each subsystem, we propose the following decentralized
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version of problem (3.25):

minimize

subject to

Remark (5.26)

N N N
Z'Yi + Zﬁn +Zi€u
i=1 i=1 i=1

Yp>0

[ApYp+ YpAL +BpLp +LEBY Bp YpGl -
BY -1 0 -
GIYD 0 ——')/11

L GnYp 0 0

1
¥i—— <0, ieN
i
-—'K}Lil LlT
| L I
(Y I
_1 K?y,'I

]<0, ieN

] >0, ieN.

interconnected system is given by

X; = A;jx; + Biu; +E,~g,~(t,x), ieN.

YoGF,

0 <o

- =l

(5.25)

By recalling Remark (3.34), we can assume that our

(5.27)

Using constraints (5.18), we can reformulate the optimization prob-
lem (5.25) to obtain

N N N
minimize E ¥ + E Kyi + E KLi
i=1 i=1 i=1

subject to

Yp>0
[ApYp+YpAL +BpLp+LEBY Bp YpGT -
Bl -1 0
G1 YD 0 —’711 ce
L GnYp 0 0

1
")/,'—_—2<0, ieN
@

- =Nl

YpGY
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—RL,'I L,-T .
[ L _J <0, ieN
Y 1

€N
[1 fml}>0’ i€

(5.28)

where Bp = diag{B,,B,,...,By}. Again, we cannot guarantee the
solution of (5.28) unless Im Bp C ImBp.

Example (5.29) To illustrate the application of problem (5.28) we
consider the system composed of two coupled inverted penduli,
which was discussed in [16]. The system is interesting in the LMI
environment because we can compute decentralized feedback gains to
make the system connectively stable. The penduli are coupled by a
sliding spring, the position of which is uncertain. In the present control
design we allow the sliding of the spring to be a discontinuous function
of both time and state of the system.

Let us describe the motion of two penduli (Fig. 1) as two inter-
connected subsystems (for details, see [16]),

S R O (3 PR ) I L
X1 =
=0 oM T M T 2 oM T o)™

oo [0 [0 wel® 015 s [0 0 (5-30)
x2-—10x2 1u2 e10x1 e_lon

FIGURE 1 Inverted penduli.
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where g/f=1, 1/mf*=1, and a*k/mf* =1. We assume that the
spring can slide up and down the rods of the penduli in sudden
(discontinuous) jumps of unpredictable size and direction between
the support and a height a. This means that a(z, x) is assumed as
a piecewise continuous function in both time and state, such that
0<a(t,x)<a, To study connective stability of the penduli under
structural perturbations caused by the jumps of the coupled spring,
a normalized interconnection parameter e:R>— [0, 1] is defined as
e(t,x) = a(t,x)/a. We want to compute the linear decentralized con-
trol laws

ui(x1) = Kix1, ua(x2) = Kaxa (5.31)

to robustly stabilize the system (5.30) for all values e(z, x) € [0, 1] and,
at the same time maximize the uncertainty bounds o; and a, on the
interconnections

hi(t,x) = [_01 g (1) 8}(3(@ X)X
00 0 o (5.32)
hy(t,x) = [1 0 —1 0]e(t,x)x.

By choosing G; = G, =1 and setting the minimal limits on «; and a; as
ag=m=1 (5.33)
we can solve problem (5.28) to get the decentralized gains
K; =[-3.0080 —3.0032], K,=[-3.0080 — 3.0032]. (5.34)
The resulting quadratic Liapunov function
V(x) = xTPpx, (5.35)

which establishes connective stability of the interconnected penduli
(5.30), has the block-diagonal form

30820 09408 0 0
0.9408 20565 0 0
Po=1" 0 3.0820 0.9408 (5.36)
0 0 09408 2.0565

as expected.
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5.2. The Generalized Matching Conditions

A generalization of the standard matching conditions introduced in
(Siljak and Vukéevié [30]) was subsequently broadened by many
people (Ikeda and Siljak [27], Sezer and Siljak [31], Ikeda et al. [32],
Shi and Gao [33], Yang and Zhang [34], Zhang et al. [35]; see also
the book [16] and references therein). In this section, we consider the
example from (Ikeda and Siljak [27]), which satisfies the generalized
matching conditions, and demonstrate the fact that the LMI does
not “recognize” the conditions, as it was the case with the standard
matching conditions. We cannot drive the robustness bound to infinity
by raising up the feedback gains. This means that, if we set the
minimum uncertainty bound, the constrained problem (5.28) may not
be feasible.

Example (5.37) Let us consider the interconnected system

. 0 1 0 1 2

X1 = B 3]x1+[1]u1+e13(t,x)[3 4])63

. Y 1 0 1 0

Xy = = _Z}JQ‘I“ [1]u2+823(t,x)[2 I]X3

. [0 1 0 30 1 5

X3 = 3 4]X3+ [1}u3+e31(t,x)[2 1]x1+e32(t,x) [4 6:|x2.
(5.38)

As shown in (Ikeda and Siljak [27]), this system is decentrally
stabilizable for any numbers e; replacing functions e;(¢, x). Now, let
us select matrices G; as

00 0 0 1 2]

G =
0 0 0 03 4]
00 0 0 1 0]

G, = (5.39)
00 0 0 2 1]
30 1 5 0 0]

Gs = .

2 1 4 6 0 0]

In (5.38) we consider the interconnection parameters e; as uncertain
piecewise-continuous functions ey R’ —[0,1] setting our sight on
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connective stability of system (5.38). When we choose the minimal
bounds &; =1 on the uncertain interconnection functions ez, x),
problem (5.25) is infeasible. It is infeasible even if the functions
e;{t,x) are replaced by numbers e;. The system (5.38) is quadrat-
ically stabilizable by the decentralized feedback laws

u,-(x,-) = K,-x,-, i= 1, 2, 3 (540)

as shown in [27], yet, we cannot compute K;s by solving problem
(5.28). Let us note at this point that problem formulation (5.28) is
more suitable for this example than (5.15). We again attribute the
failure to the fact that quadratic formulation of the problem does not
recognize the structure that satisfies the generalized matching con-
ditions because of the restrictive formulation Kp = LpY,, Uof Kp.
Removing the constraints on bounds «; and solving again prob-
lem (5.28), we obtain the decentralized control laws (5.40) with gain
matrices appearing as diagonal blocks in the overall gain matrix
Kp=diag{Kj, K, K3} having the numerical representation

—588 —6.66 0 0 0 0
Kp=1| 0 0 —067 —148 0 0 |. (541
0 0 0 0 —6.67 —882

The overall Liapunov matrix Pp obtained as

347 262 0 0 0 0
262 290 0 0 0 0
0 0 08 08 0 0
Po=1"9 0 08 18 0 0 (3-42)
0 0 0 0 277 284
0

0 0 0 284 397

guarantees robust stability of system (5.38) for the following bounds
on the interconnection functions

lews (2, x)] <0.6481, |exs(t,x)| <0.4007,

5.43
lesi (2, x)] £0.2192, |es(2,x)] <0.2192. ( )

As expected, the individual decoupled closed-loop subsystems, which
are obtained from (5.38) by using K of (5.41) and setting e;(, x) =0,
are all stable for any and all combinations of the subscripts i, j=1,2, 3.
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6. CONCLUDING REMARKS

A class of nonlinear systems has been considered which are composed
of a linear (possibly unstable) constant part and an uncertain additive
nonlinearity which is a discontinuous function of time and state of the
system. We have shown how the LMI methods can be used to stabilize
the system and, at the same time, maximize its robustness to nonlinear
perturbations. An attractive feature of the proposed framework is
its flexibility in accommodating various design constraints involv-
ing matching and generalized matching conditions, size of the gain
matrices, and the bounds on the nonlinear terms. Most importantly,
the framework is suitable for designing of feedback control laws
for robust stabilization of interconnected systems with decentralized
information structure constraints resulting in connectively stable
systems.
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