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This paper presents a new type of improved least-squares (ILS) algorithm for adaptive
parameter estimation of autoregressive (AR) signals from noisy observations. Unlike the
previous ILS based methods, the developed algorithm can give consistent parameter
estimates in a very direct manner that it does not involve dealing with an augmented
noisy AR model. The new algorithm is demonstrated to outperform the previous ILS
based methods in terms of its improved numerical efficiency.
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1. INTRODUCTION

The autoregressive (AR) modeling techniques have been widely used
in many signal processing applications, such as speech analysis,
spectral estimation and noise cancellation [3,4, 7). The normal least-
squares (LS) method is one of the frequently used AR modeling
techniques due to its simplicity and ease of implementation. However,
when the signal to be modeled is observed in noise, which is a very
common phenomenon in practical applications, the normal LS
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estimates of the AR parameters are biased and thus can produce
misleading results.

Several methods that can be used to consistently estimate AR
signals from noisy measurements are available, such as the modified
Yule-Walker (MYW) equations method [3], the maximum likelihood
(ML) method [8], the recursive prediction error (RPE) method [5],
the modified LS (MLS) method [6], and the improved least-squares
(ILS) methods [9,10]. Among them, the ILS methods are an effi-
cient algorithm for unbiased identification of noisy AR signals. The
distinctive feature of the ILS methods is that the estimate of the
measurement noise variance is derived in a simple yet effective man-
ner. With this estimated noise variance, the noise-induced bias in the
normal LS estimator can then be removed to yield consistent AR
parameter estimates.

In a wide range of signal processing applications, the AR
parameters may vary with time. The use of off-line identification
methods in these situations is obviously inappropriate. Instead, an
adaptive identification algorithm is need so as to track the time-
varying AR parameters. Needless to say, the numerical efficiency is
highly important for an adaptive algorithm to be practical or com-
petitive. In this paper adaptive identification of AR signals where
the signal observations contain white noise is studied. The MYW
method, though very simple from the numerical point of view, may
not be numerically stable during recursive estimation. The ML meth-
od is not only rather computationally demanding but also confined
to off-line identification. While the RPE method is suited for adap-
tive estimation, its employment of the Gauss—Newton algorithm in
minimization causes some extensive computations. The main draw-
back with the MLS method is that a series of computations of several
intermediate variables are needed in order to estimate the noise
variances, which can be rather time-consuming. On the contrary, the
fact that the ILS methods (i.e., the prefiltering based ILS (PILS)
method presented in [9] and the non-prefiltering based ILS (NPILS)
method presented in [10]) are based on linear regression and require a
small amount of computations at each time step makes them well
suited for adaptive estimation.

In this paper, a new form of direct adaptive ILS (DAILS) algorithm
is proposed for on-line estimation of AR signals corrupted by additive
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white noise. The proposed algorithm is characterized by its direct AR
parameter estimation structure, with its numerical efficiency being
greatly improved. That is, the underlying noisy AR(p) model, where p
is the model order, is identified in a direct manner so that there is no
need to deal with an augmented noisy AR( p+ 1) model as presented in
[9] and [10]. The procedure of this DAILS algorithm is composed of
the following steps. First, a normal LS estimate of the parameters of
the underlying AR(p) model, which is bound to be biased due to the
presence of observation noise, is computed. Second, the variance of
the white observation noise, which determines the noise-induced bias
in the normal LS estimate, is directly estimated in a novel way that is
based on use of the variables only associated with the underlying noisy
AR(p) model. Third, the consistent estimate of the AR parameters is
obtained via the well-known bias correction principle. It is shown that
this new DAILS algorithm not only retains the merits of the PILS
method and the NPILS method, but also possesses some important
computational advantages over the latter. Simulations are provided to
support the theoretical predictions.

2. NOISY AUTOREGRESSIVE MODEL
Assume that the pth-order AR random process x(z) is defined as
x() =ax(t—=1)+ -+ apx(t — p) + v(2) 1)
where v(?) is driving white noise having variance o2, and
al = [a1---ap) (2)

is the AR parameter vector.
The noisy measurement of the AR signal is described by

(1) = x(2) + w(2) ®3)

where w(7) is white noise having variance o2, which denotes meas-
urement errors.
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The three assumptions are imposed on the noisy AR(p) model (1)
and (3):

Al. x(1) is stationary;
A2. The order p is given;
A3. v(¢) and w(f) are independent of each other.

The problem of noisy AR modeling is concerned with estimating
the AR parameter vector a as well as the noise variances 02 and o2
from N noisy measurements {y(1),...,y(N)}.

Let

Y, =[y(t—1)-y(t—p)] (4)

W =[w(t—1)---w(t—p)]. ()

Combining (1) and (3) together and using (2), (4) and (5) gives rise to
a linear regression expression of the noisy AR model:

y(t) =y a+e() (6)
where
e(t) = v(t) + w(t) —w, a. (7)

As shown in [2], the normal LS estimate of a is defined as the
minimizer of the LS criterion J(a) = E[e(¢)?], and is given by

a s = R;ll'y (8)

where R, and r, are described respectively by

ro r cee Fp
r ro K .
R, = E[ytY;r] = . ) . )
. . ) r
rp_l e r 4] (9)
r
r;

r, = Elyy(1)] =
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with their entries r; (k=0,1,. .., p) being the autocovariances defined
as

re = E[y(2)y(t - k)]. (10)

Following the white noise and independence assumptions on v(f)
and w(f) and introducing

X, =[x(t=1)-x(t=p)] (11)

we get from (7) that
E[x,£(1)] = E[x,v(t)] + E[x,w(t)] — E[x,w, ]a=0 (12)

Elw.(t)] = Ewv(t)] + Elww(t)] — Elw,w, Ja = —(02I,)a = —02a

(13)
where 1, is an identity matrix of order p. Since
Y, =X + W, (14)
it follows from (12), (13) and (14) that
Ely,e(r)] = Efxe(t)] + Ewe(t)] = —o2a (15)
which, using (6) and (9), further yields
r, = Elyy()] = Ely,y/Ja+ Elye(t)] =Rja—oja.  (16)
Substitution of (16) into (8) leads to
as=R}'(Rja—oja)=a—o,R'a=a+Aa (17)
where
Aa= —ovay‘la. (18)

It is seen from (17) that the presence of measurement noise will
certainly lead to bias. In the meantime (17) explicitly indicates in
what way the asymptotic bias is related to the measurement noise
variance 02.
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The elementary idea of the ILS type methods is to apply the bias
correction scheme

a]Ls(t) =ars+ UiR;la]Ls(t - 1) (19)

to obtain an unbiased estimate of a. Note that practical application of
(19) requires the knowledge of the measurement noise variance 2. An
efficient technique for estimating o2 will be presented in the next
section.

3. ADAPTIVE ESTIMATION ALGORITHM

Following the derivation given in [10], we first consider identifying an
augmented noisy AR(p-+1) model that is equivalent to the underlying
noisy AR(p) model. That is, (1) is now replaced by

x(t) =aix(t—1)+ -+ apx(t —p) + @Gpr1x(t —p— 1)+ v(t) (20)

where @, 1=0, so that (20) and (1) constitute the augmented noisy
AR(p+1) model.
Define

a'=[a'a,.]=[a’0]. (21)

Then the normal LS estimate of the augmented parameter vector a is
given by

as =R, 'F, (22)

where
R, =E[y§/], T =E[5y(1)] (23)
v, =byt—p-1) (24)

Using the knowledge of a,,;=0 about the augmented noisy
AR(p+1) model (20) and (1), it is shown in [10] that the measure-

ment noise variance o2 can be estimated by means of

g

T__
2= Tﬁ_ﬁf (25)
k'R, a

where p" =[0---01]e R? "1,
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It is seen from (25) that estimation of o2 actually involves
identification of the augmented noisy AR(p+1) model due to the
use of a; g as well as _li; . Obviously, additional calculations are
incurred. Thus, the estimation scheme given in [10] is far from being
numerically efficient.

To achieve efficient implementation of the scheme (25) while with-
out actually identifying the augmented noisy AR(p+1) model, the
particular form of the regression vector y, given in (24) is exploited
to partition R, and T, as

= R, Tr r
Ry=| 1 | F=|~ 26
=l Wl oe= &
where 7,1 =E[y(0)y(t—p—1)], R, and r, are the same as defined in
(9), and T is the exchange matrix defined by

00 ...0°1
00 ..10

T=|: © © © [|eRFA (27)
01 ...00
10 ...00

Then applying the matrix inversion formula [2] to ﬁy_ ! gives

R R}' +R;'Tr,d"'r]TR;' —R;'Tr,d"!

y ~d‘1r;TR;l d—l (28)

where d =ry —1'yT TR;‘Try. It follows immediately from (21), (22),
(26) and (28) that

[lTﬁLs = —d-—ll';,rTR;ll'y + d’lrp+1 (29)

p'R,'a = —d"'r] TR} a. (30)

Substituting (29) and (30) into (25) yields

.
, I~ 1, Tagg
= T TTR Ta
y IRy

(31)

With (31), we may be able to work solely with the underlying noisy
AR(p) model.
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Therefore, the above derivation may be summarized as the
following DAILS algorithm for adaptive estimation of noisy AR

signals.

3.1. The DAILS Algorithm

Step 0

Step 1

Step 2

Step 3

Step 4

Step 5

Initialization:

(i) Set a;5(0)=0 and Py=11,, where v is a large positive
number.
(ii) Set £,(0) =0 and 7,,1(0) = 0.
(i) Let a;75(0)=a.5(0).

Use the recursive LS procedure to calculate a,¢(?):

d,s(t) = aps(t— 1) + Py, (v(r) — y/ drs(t — 1)) (32)
PI*IYty;rPFl
P=P_; ——=LL - 33
t t—1 1 + y;rPt_lyt ( )
where (/P;) ~ R} ! for very large 1.
Evaluate covariance estimates
R N 1 A
B(1) =& (t = 1)+ (yy(1) —H,(t - 1)) (34)

. 5 1 5
Ppe1 (1) = Fpa(t = 1) + 2 (y(O)y(t = p = 1) = Fpra (£ = 1)). (35)
Compute the measurement noise variance estimate 2(2):

Ppy1 (1) — By () Tés(2)

53(1) = . (36)
£ ()T(fP)ans(t— 1)
Find the AR parameter estimate a;; g(?) via
ans(t) = aps(t) + 62(2)(1P)aps(t — 1). (37)

If the chosen stop criterion is satisfied, output a;; 5(?), 6$(t)
and stop; otherwise, set t=¢+1 and go to Step 1.
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In signal processing tasks such as smoothing and deconvolution, an
estimate of the driving noise variance o2 is required. To this end, we
examine the LS errors

YO~y aws = (y/a+e() -y as =y, (a—aws) +e(r)  (38)
where (6) is used. By means of (8) and (9), it is easy to verify that

Ely,(y(t) = ¥/ aLs)] = Ely,y(1)] — Ely,y, Jas = 0. (39)

Following the white noise and independence assumptions on v(f) and
w(t), we obtain from (7) that

E[e(1)2] = E[(v(1) + w(t) — w, 2"
= E[(1)"] + Ew(1)’] + a" E[w,w/ ]a
=o0’+ol+a’(02,)a
=02+02+02a"a. (40)
Using (15), (38), (39) and (40), we may derive the average LS errors
as follows:
J(aws) = E[(y(?) -y, aLs)’]
= E[(y; (a —ars) + (1)) () — ¥/ ars)]
= (a—azs) E[y,(0(t) - ¥/ as)] + Ele() (1) — ¥/ azs)]
=0+ E[e(1)(y/ (a—azs) +&(1))]
= (a —azs) " Ely,e(0) + E[e(1)’]
= (a—as) (—o2a) + (02 + 02 +02a'a)
=02+ 02(1+a; ). (41)
Once the AR parameter vector a and the measurement noise variance
o2 have been estimated, the driving noise variance o? may be esti-

mated by virtue of (41). Specifically, at time step ¢, the driving noise
variance estimate 62(t) is computed via

62(0) = 1 = G401 + us(t) st — 1) (“2)
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where (1/£)F, ~ J(a.s) for very large ¢, and F, satisfies the recursive
relation [1]:

0 —ylast—1)°

ﬁ' =i7_ +
t —1 l+lePt_1yt

(43)

The above two Egs. (42) and (43) may be incorporated into the
DAILS algorithm to perform on-line estimation of the driving noise
variance o2.

Now some main algorithmic differences between the NPILS
algorithm presented in [10] and the DAILS algorithm proposed herein
are highlighted. The previous NPILS algorithm is based on the intro-
duced augmented noisy AR(p+1) model since it needs to calcu-
late the variables associated the augmented model, such as, ﬁy, r,
and a;g. In contrast, the current DAILS algorithm inherently works
with the underlying noisy AR(p) model. Since all the redundant
calculations related to the previous NPILS algorithm are removed, we
can achieve efficient implementation of the ILS type algorithms. As
will be seen in the numerical results given in the next section, the
DAILS algorithm can make a significant saving in the computational
load over the implementation of the previous NPILS algorithm while
maintaining the parameter estimation consistency.

Moreover, the advantages of the ILS type methods over the MYW,
the ML, the RPE and the MLS methods, which are mentioned in
Section 1, are retained by the proposed DAILS algorithm. In other
words, with its great suitability for adaptive estimation, the DAILS
algorithm either requires lower computational cost or maintains better
numerical stability than those methods.

4. EXPERIMENTAL RESULTS

The simulated example is concerned with identifying an AR(2) model
x(f) — L1x(t — 1) + 0.8x(z — 2) = v(¢) (44)

where 02 =1.0. The variance of the measurement noise w(f) is

assumed to be o2 = 0.7, so the signal-to-noise ratio (SNR) is

E[x’(1)]

2
Ty

SNR = 10logy,

= 8dB. (45)
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The proposed DAILS algorithm is used to perform adaptive
estimation, along with the normal LS method, the PILS method
coupled with the prefilter

1

P =154

(46)
and the NPILS method. All the four algorithms adopt the following
initial values:

as(0) =0, Po=10%. (47)

The performance criteria used for comparison are the relative error
(RE), the normalized root mean square error (RMSE), and the
number of flops (count of floating point operations). The RE and the
RMSE are defined as

RE = 20log,q ”—"’(ﬁzf'ﬂ (dB) (48)
M A 2
RMSE = 20log,, iZ”—a"l—j'”— (dB) (49)
M= al
where

1 M
m(a) = MZ i (50)

m=1

and &,, stands for the estimate of a in the mth run over a total of
M independent runs. Based on an ensemble average of M =200
independent trials and a sample size of N = 1000, the values of the RE
and the RMSE are plotted in Figures 1 and 2, while the numeri-
cal costs involved per recursion are listed in Table 1.

Figures 1 and 2 clearly show that the normal LS estimates are
seriously biased, whereas the three ILS based methods all yield good
estimation results. In particular, it is observed from Figure 2 that the
DAILS estimates are almost the same as the NPILS estimates in terms
of accuracy. On the other hand, it is seen from Table I that by
comparison with the NPILS method, an about 28% reduction in
computations per time step is achieved by use of the DAILS method
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TABLE I Numerical costs (1000 data points, 200 independent trials, SNR =8 dB)

Method LS PILS NPILS DAILS
flops # per recursion 52 269 157 113

due to no handling of the augmented noisy AR model. Moreover, the
numerical cost of the DAILS method at each time step accounts for
only about 42% that of the PILS method. All this illustrates that the
computational advantage of the DAILS method over the NPILS
method as well as the PILS method is very prominent. Thus the
DAILS algorithm is equipped with the greatly improved numerical
efficiency.

5. CONCLUSIONS

An adaptive ILS based algorithm for on-line identification of noisy
AR signals has been described. The proposed DAILS algorithm is
consistently convergent. Since the underlying noisy AR model is
identified directly, the DAILS algorithm is more numerically efficient
than the previous PILS and NPILS methods. The good performances
of the DAILS algorithm have been illustrated by the experimental
results.
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