Mathematical Problems in Engineering © 2001 OPA (Overseas Publishers Association) N.V.

Volume 6, pp. 557—598 Published by license under
Reprints available directly from the publisher the Gordon and Breach Science
Photocopying permitted by license only Publishers imprint.

Printed in Singapore.

Mixed H»/H . Control of Flexible
Structures™

D. P.DE FARIAS, M. C. De OLIVEIRA and J. C. GEROMEL'

LAC-DT/School of Electrical and Computer Engineering, UNICAMP,
C.P.6101,13081-970, Campinas, SP, Brazil

(Received 18 January 2000)

This paper addresses the design of full order linear dynamic output feedback controllers
for flexible structures. Unstructured H,, uncertainty models are introduced for systems
in modal coordinates and in reduced order form. Then a controller is designed in order
to minimize a given H, performance function while keeping the maximum supported
H,, perturbation below some appropriate level. To solve this problem we develop
an algorithm able to provide local optimal solutions to optimization problems with con-
vex constraints and non-convex but differentiable objective functions. A controller de-
sign procedure based on a trade-off curve is proposed and a simple example is solved,
providing a comparison between the proposed method and the usual minimization of an
upper bound to the H, norm. The method is applied to two different flexible structure
theoretical models and the properties of the resulting controllers are shown in several
simulations.
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1. INTRODUCTION

The control of flexible structures poses several challenges that may
be very difficult to handle by standard synthesis procedures. The
dynamics of such systems are usually high order and present many
closely spaced low frequency modes. Finite-element methods which
are the usual source of mathematical models of real world flexible
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structures are known to provide models which may not accurately
describe high order modes dynamics. Theoretical flexible structure
models are infinite dimensional and must be preprocessed by some
truncation or order reduction procedure before being used in con-
troller design. All such features ask for the introduction of some kind
of uncertainty modeling in the design process so that the obtained
controllers may succeed when applied to the real physical structure.
Furthermore, in view of the high order of the plant dynamics the
controller must be able to handle only a reduced set of measurements,
which in practice discards the use of a state feedback structure.

The most powerful procedures available in the literature to the de-
sign of controllers for uncertain systems are based either on H,, or
quadratic stability theory. The very particular form of flexible struc-
ture models leads in general to a highly structured uncertainty de-
scription. In this context, due to its inherent ability to deal with
structured uncertainty, the quadratic stability approach would be
much more advantageous than an H,, one. However, despite the
effort of many authors (see for instance [1, 2]), no necessary and suf-
ficient condition for quadratic stabilizability under output feedback is
available.

On the other hand, several results are known to handle the H,
controller design under output feedback [3], although most available
procedures are fit to deal with unstructured uncertainty, which may
turn the design very conservative. Despite this fact, many authors (see
for instance [4,5]) have been successful in providing uncertainty
models that worked well in an unstructured H,, design framework.
With respect to performance, this unstructured framework does not
easily admit the introduction of additional H,, performance con-
straints without increasing conservativeness, which generally asks for
some compromise solution. Some authors try to reduce conservative-
ness with a H,/u synthesis approach [6].

In order to try to overcome some of these difficulties we propose to
address this problem on a mixed H,/H,, framework. The approach
involves three steps: (a) setup of an H,, unstructured uncertainty
model to cope with plant uncertainty, (b) numerical solution to a
mixed control problem whose objective is the minimization of an H,
performance cost subject to the H,, constraint developed in Step (a),
and (c) development of a controller design procedure.
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The first step, the H,, unstructured model, is developed with the
introduction of a variational model around a given nominal plant in
modal coordinates. The same idea is extended to cope with reduced
order models. The second step, the solution to the mixed H,/H,
problem, is done by a numerical algorithm that is able to find a local
optimal solution to the mixed problem with respect to a six port
generalized plant. A controller parametrization is chosen such that the
set of controllers satisfying the H, constraint is given by a convex set
while the minimization is performed with respect to the actual H,
norm rather than some upper bound. The third step, the controller
design procedure, is based on the derivation of a strategy that provides
a trade-off curve with which the designer may choose the controller
that satisfies the compromise between robustness (in the H,, sense)
and performance (in the H, sense).

This design procedure is tested on two theoretical flexible structure
models and the performance of the obtained controllers is verified by
several simulations.

The notation used in the paper is standard. Upper-case italic letters
denote matrices while lower-case italic letters denote vectors. For a
matrix X, X’ is the transpose of X and X~ is the inverse of X. The
notation X > 0 means that X is a symmetric and positive definite real
matrix and trace [X] denotes its trace.

2. ROBUST H.. DESIGN

Flexible structure models are usually given in the form
X+Tx+ Ax=Bu (1)
y=Ex+Fx (2)
where Be R"*™ E,Fe R ™", T and A are diagonal n x n matrices
with entries
Fi,i = 2§iwi (3)

Ay = f 0

1

In this form x € R” is known as the modal coordinates. Many times
flexible structure theoretical and finite-element models are developed
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such that matrix I'=0, i.e., they are undamped, and damping is added
to the system a posteriori with the introduction of the damping factors
&;. This system can be represented by the state space equations

X = Apx + Byu (5)
y=Cyx (6)

where

An=[_0A _IFJ, Bn[g}, C=[E F]

In [4] a left-coprime factorization is applied to the Laplace trans-
form of the system in (1), (2) and a structured perturbation model
is developed from the real parametric uncertainty bounds along with
a particular weighting function. Although the nature of the perturb-
ation model is taken to be highly structured the actual design is per-
formed as if the perturbation were really unstructured, by finding a
standard full-order output feedback controller that satisfies a « level
constraint in the closed-loop H,, norm. Of course, provided there
exists a feasible solution to this relaxed problem, the obtained
controller will drive the system with some degree of conservativeness.
As stated in the introduction, if compared with available structured
uncertainty design methods, this approach has a much simpler
computational solution and that is the reason why it is accepted.

However, a strange situation may occur if there exists no feasible
controller which satisfies the unstructured design requirements. In this
case, one usual procedure is trying to find a less robust controller
relaxing the v level of the H,, constraint in the hope that the inherent
degree of conservativeness of the solution still provides a controller
which happens to be robust in face of the original structured uncer-
tainty level. It is clear that there are no guarantees that this will happen
and in many instances this procedure will simply not work.

In view of this fact, it is desirable that the control engineer be able to
modify the unstructured design requirements (and not only the ~ level)
in order to try to obtain a controller that will be useful for the original
structured problem. In the formulation of [4] that could be done, for
instance, by carefully tuning the weighting function, which does not
seem to be an easy task. Furthermore, possible changes in the order of
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the weighting function may contribute to increase even more the or-
der of the full design problem and, consequently, of the obtained
controller.

In order to overcome this difficulties we introduce a normalized
variational uncertainty model which is much simpler and naive than
the model described in [4] but which provides enough room for the
control engineer to change some of the available parameters in or-
der to adequately tune a controller. In this model the uncertainty
description is less realistic, in the sense that it is not directly drawn
from bounds in the real parameter range of variations, but is much
simpler and, since it does not deal with frequency dependent scalings
or weighting functions, it may be changed without increasing the order
of the generalized plant. The basic idea is to induce in the state space
models (5), (6) unstructured matrix perturbations in the form

0 I
A0= g Lagn s aor) )

B(A):[(1+3A2)B], C(A) = [E(I +ads;) F(I+abs)] (8)

which can be represented by the usual four port model

X = Ax + Byw; + Byu (9)
y = Cax + Dyyw (10)
z1 = C1x+ D1ou (11)
with
—-A T
0 0 0 0 0
B‘_[l I 0]’ =1y o)
1

Dp=a
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So, we can ensure that if the H,, norm of the closed-loop transfer
function from w; to z; is less than ~, then the system is robust to
unstructured perturbations in the form

wi=Azi, Al <y

In this case it is also immediate to conclude that (7), (8) is robustly
stable since the following structured perturbations are such that

A = block diag {A1, 0, a3}, Al <7, i=1,2,3

Notice that doing so we are also designing with the help of an
unstructured perturbation version of the desired structured model. It
is important to remark that, on the contrary of [4], we consider
perturbations on both B, and C, matrices. Also notice the role of the
scalar parameter o, which scales matrices A, and Aj;. It is easy to see
that the resulting robust design will be such that

Al < ()™, i=2,3

so that setting o > 1 we may lower the requirement of robustness face
to uncertainties in the input and output matrices without changing the
importance of robustness face to the dynamic uncertainty matrix A;.
As it will be seen in the experiments, this parameter will be very use-
ful in achieving feasible designs. Also notice that in the form it was
introduced (multiplying both matrices Dy, and D,;) it also works
reducing the influence of the term D;,A D, in the final design, which
appears multiplied by the square of a. Note that this term only
becomes significant because we have to consider in the synthesis
procedure the disturbances as being unstructured.

Finally, it is very easy to weigh the influence of the uncertain
matrices A;, i=1,2,3 in the obtained controller with the introduction
of multiplier matrices in B, and C;. For instance, one is allowed to
redefine

-A -T
_[o o o _|o o
B‘“[sl S 0}’ G=ls o
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such that the resultant uncertainty model becomes

0
AQ) = [ I }
—(I+81A)A =T+ 8$;4,)T

0
B(A) = [ ],
(I 4+ aSAy)B

C(A) = [E(I + al3S3) F(I + aA3S4)]

By carefully defining these scaling matrices we can actively change the
unstructured uncertainty model in order to achieve a desired robust
performance. For instance, defining the scaling matrix S; as a positive
diagonal matrix we may increase or decrease the importance of
considering uncertainty in selected modes. In this form, a priori
knowledge about bounds of the real system parameters can be taken
into account by the design procedure.

An important point is that this uncertainty model does not require
any frequency dependent weighting function, which means that the
order of the generalized plant is the same as that of the original plant,
and so is the order of the obtained controller.

Another drawback of the design based on structured uncertainty
bounds is that it may be difficult to convert these bounds if the order
of the state space model is to be reduced by some order reduction
procedure. This happens since standard order reduction procedures,
like balanced truncation [7, 8], destroy the diagonal structure in (1),
(2). On the other hand, a reduced order normalized variational
uncertainty model is immediately available. For instance, it is possi-
ble to extend the considerations above to the following uncertainty
model

A (A)= I+ A)Ap, B,(A) = I+ alsr)By,

Co(8) = Co(I + alry) (12)

where the matrices subscripted by r are obtained from the models (1),
(2) by some order reduction procedure.
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3. H, PERFORMANCE AND THE MIXED H./H..
CONTROL PROBLEM

In the analysis of flexible structures the time response to an impulsive
input is of great value in the comprehension of the system behavior,
and it is natural to consider as the closed loop performance index to be
minimized in the controller synthesis the H, norm of the closed loop
transfer function [9]. More specifically, denoting by 7'(z,w;s) the
transfer function from the input w to the output z and with respect to
the six port generalized plant

X = Ax + Bywg + Biwy + Bou (13)
y = C2x + Dyowo + Dyyw (14)
29 = Cox + Dou (15)

z; = C1x+ Dpu (16)

our objective is to design a controller that minimizes the H, norm of
the closed loop transfer function from wy to z, and keeps the H,, norm
of the transfer function from w; to z; under some prescribed level, i.e.,
to find a solution to the mixed H,/H,, control problem

min{||7(zo, wo; 5)ll = 17(z1, w15 8)llo <7} (17)

From the discussion in the previous section, by choosing the value of y
we control the trade-off between robustness and performance of the
design. In this sense the larger ~y, the easier it will be to satisfy the
mixed problem constraint; nonetheless, this will be accomplished at
the expense of reducing the acceptable level of perturbation to which
the system will remain stable.

4. NUMERICAL SOLUTION TO THE MIXED H./H.
CONTROL PROBLEM

Until today, there is no numerical algorithm in the literature that can
find an optimal solution (not even a local one) to the control problem
stated in the previous section. Both state and dynamic output feedback
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control problems remain unsolved. Imposing extra assumptions, for
instance w=wy=w;, some existing methods are able to find a sub-
optimal solution based on the minimization of an upper bound to
the objective function. This procedure, as illustrated in [3], may pro-
duce poor solutions, which do not present a sound decrease in
| T (20, wo; 5) ||2-

In this section we propose a numerical algorithm that is able to find
a local optimal solution to the mixed H,/H,, problem without any
additional assumption. The algorithm, generically described below,
may also be applied to other optimization problems formulated in the
same form.

The main point is the following. Applying suitable changes of
variables, it is possible to rewrite the mixed H,/H,, problem (17) in the
form

m}n{f(x) i xeX} (18)

where f(-) is a non-convex yet differentiable function and X is a
convex set.

4.1. A Conceptual Algorithm

In the following, the convex set X’ will always be considered as
described by an LMI (Linear Matrix Inequality), that is,

N
X = {x|F(x) =Fy +ZFixi>0}
=1

i=

where all matrices F;, i=1,...,N are real, square and symmetric.
Furthermore, we assume that x; is a feasible point, i.e., F (x;) > 0, and
define the following convex optimization problem

min{(Vf(x),2) : F(z) >0} (19)

Let z; be its optimal solution and, keeping in mind that x; is a feasible
solution,

(Vf(xk), 26 — xx) <0
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Therefore, defining dj. := zx — xx, two different situations are possible:

M

@

(Vf(x1), di) <0. In this case, since the constraint set is convex,
the point

X1 = X + oy

will always be feasible for 0 < a < 1. Furthermore, if we expand
f(-) in Taylor series, we obtain

FOaesr) = F () + (VS (x), de) + O(a?)

which makes clear that there is an « >0 small enough so that
S(xk+1) <f (xz). Thus, by performing an unidimensional search
through the direction d; we may simultaneously decrease the
objective function and find a new feasible point.

(Vf(xx), di)=0. In this case, with no loss of generality, we can
consider z;=x;. Hence, the necessary and sufficient optimality
conditions for the problem (19) can be written as

(ZaF (xk» =0
Vf (xk); = (Z,F;) =0
F(xx)>0, Z=2Z">0
One should notice that these are indeed the necessary optimality

conditions for problem (18), which implies that x; is also a local
optimal to the mixed problem.

It follows that the following numerical method converges to a local
optimal solution to the problem (18) (see [10]). The only hypothesis
which must be adopted is that there exists an initial feasible point xo,
which is equivalent to assuming that there exists a controller such that

the

H,, norm of the closed-loop transfer function from wq to zy is less

than the given > 0. Naturally, if there is no controller with this
property the mixed problem has no feasible solution. So, the following
algorithm can be stated:

¢y
@

Let xo be any point such that F(x) > 0. If there is no such xy,
problem (18) has no solution. Set the iteration counter k£ =0.
Solve the following convex optimization problem

zj = arg mzin{<Vf(xk),z) : F(z) >0}
Let dk =Zp— Xg and 0k = (Vf(xk), dk)
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(3) According to a prespecified precision, if 6; ~0, xx is a local optimal
solution, then stop. Otherwise go to Step 4.
(4) Solve the unidimensional search problem

oy = arg min{f(xx + ady) : 0<a <1}
[+

Let xi 4 1:=xx+oxdi, k—k+1 and go to Step 2.

This algorithm generates a decreasing sequence f(xx,1) < f(xx)
which converges to a local optimal solution.

4.2. Comments and Acceleration

The main computational work in the above algorithm is concentrated
in Steps 2 and 4. The unidimensional search (Step 4) depends
exclusively on the shape of the nonconvex function f(-) and thus, any
possible acceleration strategy should explore particular properties of
this function. On the other hand, Step 2 is the solution of a linear
objective optimization problem subject to LMI constraints, which
may be efficiently solved by many available interior-point methods.
Nonetheless, a closer look at this step may suggest the introduction of
some acceleration techniques.

In order to solve the problem in Step 2, primal interior point
methods (see [11]) may internally generate a sequence of approximate
minimizers to the convex penalized function

8(z) = (Vf(xk), z) + Bb(2)

where b(z) is a barrier function associated with the constraints. For
instance, take b(z) as the usual convex logarithmic barrier

b(z) = —log det[F(z)]

Starting from a feasible approximate minimizer this sequence is
generated reducing the value of 3 then performing Newton steps until
another approximate minimizer associated to each decreasing value
of (3 is available. At each Newton step an unidimensional search is
performed in the direction

dy :=dp + Bdy = —H ' (2)(Vf (xi) + BVb(2))
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where H(z) is the Hessian matrix of g(z) which obviously coincides
with the Hessian matrix of b(z). From the convexity of b(z) matrix
H(z) is positive definite, which implies that performing an unidimen-
sional search over dy the cost will indeed decrease (dy is a descent
direction) as long as 3> 0. For us, it is interesting to notice what
happens when (3 tends to 0, in which case dy — dj. In this case, roughly
speaking, the influence of the barrier function in the optimization
direction is kept at the minimum possible level, acting only in order to
deviate this direction when it is too close to the boundary of the
convex set.

Therefore, we may simply impose 5 — 0 at each iteration such that
in only one step a new feasible point z; with all desired properties
(smaller cost and feasibility) is produced. Doing this we are able
to introduce new information about the function f(-), the actual
objective function to be minimized, at each iteration. Hence the
determination of dj in Step 2 may be replaced by the determina-
tion of

di = —H (1) Vf (k)

It should also be noticed that the largest possible value of «, for which
X+ ad is still feasible, is given as [12]

Cmax = 1/ Amax [F ()™ (F(de) — F(0))F (i)™

and therefore the unidimensional search of Step 4 should be altered
to reflect the feasibility interval 0 < o < amax. In the linear case this
method is known as the affine scaling algorithm. 1t is interesting to
notice that setting H(x;)=1 the algorithm becomes a pure steepest-
descent algorithm and, since the constraints are not taken into account
when choosing the descent direction, dj reduces to the gradient of the
unconstrained problem.

Our experience with all versions of these algorithms shows that
replacement of d; by the affine scaling direction is effective in pro-
viding a significant reduction in the computational work required to
find a local optimal and generally does not alter the optimality de-
gree of the obtained solution when compared with the original Step
2. Furthermore, every time the algorithm stops in a local optimum we
can try reinitialize it by performing one step in the form of the original
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Step 2 which in some cases will provide a direction through which the
cost function can be even more decreased.

4.3. Solving the Mixed H,/H,. Control Problem

In order to be solved by the algorithm introduced above it is necessary
to rewrite the mixed H,/H,, control problem (17) in a suitable form. In
order not to obfuscate the reader with the algebraic complexity of the
formulae that arises in the output feedback case, we will introduce the
basic procedures with respect to a much simpler problem, the state
feedback control problem. Besides adding to the completeness of this
paper, state feedback results will be used by one of the possible output
feedback parametrizations to be introduced.

4.3.1. State Feedback

In the state feedback problem we assume the whole state vector is
being measured. With respect to the plants (13)—(16) we turn our
attention to the determination of the linear feedback law

u=Kx

which solves the mixed H,/H,, problem.
By performing the change of variables K=LX ', with X=X", we
may state that [3]

T (z1, w158)||oo <7 = (L, X) €X
where X is the convex set defined by all pairs (L, X) such that

[AX+XA'+BZL+L’B’2+BIB'1 0, 1 <0, x>0

CiX + DysL —’721

Notice that this set is an LMI. Furthermore, since every gain K
corresponding to a pair (L,X) € X stabilizes the system under con-
sideration, through the substitution of K it follows that the norm
1T (20, wo; s)||§ may be expressed as a function of L and X, namely [3],

f(L,X) = trace[(Cy + DoLX")P(Co + DoLX ")) (20)
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where trace[-] denotes the trace of (-) and

P= /oo B(A+BZLX_1)lBoB()e(A+leX_l)I’dt
0

is the closed loop controlability grammian. In this way, the mixed
H,/H,, state feedback problem can be rewritten in the form

min{ (LX) (LX) €}

where X is a convex set expressed by LMI, being thus solved by the
proposed algorithm. The only open question concerns the calculation
of the gradient of f(X, L), which can be found in Appendix A.

4.3.2. Output Feedback

Returning to the output feedback problem with respect to the gen-
eralized plant (13)—(16) we shall consider the following dynamic out-
put feedback controllers with the same order as that of the given plant

Xe = Acxc + By (21)
u=Ccx, (22)

and, with no loss of generality [3], we impose D{,D;; =1 and
Dy D5 =1

For the output feedback problem we devise two possible ap-
proaches that reduce the control problem to the form (18), being
thus solvable by the algorithm previously proposed. The first of them
which we describe in the sequel makes use of the well known observer
based parametrization. So, given the following particular controller
structure

Ac = Ao + BoscK + LsoCs, B.=—Ls, C.=K (23)
where

Aw =A+7MxC C1, B =By +7 TuC Dy,
Ly = —II,C) — BID’21
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and Il is the stabilizing semidefinite positive solution to the Riccati
equation

TIA; + AfIT — TI(C5C, — v 2C{ )T + BysBj; = 0
with
A=A —BD%Cs, By =B(I—DyDy)

the following are equivalent

@ ([T, wi9) [leo <y
(b) With respect to the auxiliary system

X = AooX + LooW1 + Bogol
G:4 z1 = Cix+ Dpu

u=Kx

there exists a state feedback gain K such that ||Tg(z1, wi;5)||, <.
(c) There exists (X, L) such that the LMI

AxX + XA +ByooL+L'B, + L L Y
o o0 T B200L L300 F Lo ()2 <0, X>0 (24)
CiX+ DL -1

is feasible and K=LX "',

For a proof of equivalence between items (a) and (b) see [3]. Item (c)
is a consequence of the state feedback parametrization that we have
just discussed.

In this way, considering X as the linear inequality (24) and
performing the change of variables K=LX~' in the controller
structure (23), as in the state feedback case, it is possible to calculate
the function f(X,L) = ||T(zo, wo;sH% in terms of the closed loop
observability grammian and rewrite the observer based output feed-
back control problem in the form

mip {/(L,X) : (LX) € X}

as desired.
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It is important to emphasize some aspects of the solution we are
proposing here. First of all, although the convex set (24) is equivalent
to an H,, constraint defined with respect to the auxiliary state
feedback plant G, the H, norm minimization is performed with respect
to the closed loop H, norm of T(zg, wy; s) of the original system rather
than that of G. In this second case, although the gradient calculations
are greatly simplified, it may be shown that the obtained solution is
very conservative since we are implicitly assuming that the closed loop
observability grammian is constrained to present a very particular
structure.

Also notice that under the additional assumption w=wo=w; a
suboptimal solution is available once it is possible to show that [3, 13]

T (20, wo; 8)||3 < trace[Collo Ch] + trace[(Co + DoK)X(Co + DoK)']

As we will see in the numerical experiments, considering the mini-
mization of this upper bound instead of the actual H, norm may
lead to a very poor solution, specially for low values of v. Of course,
the main advantage of this approach is that the change of variables
introduced above is able to render the whole problem convex.

The second possible approach to the mixed H,/H,, output feed-
back problem is the use of the general output feedback controller
parametrization as described, for instance, in [14,1]. In this case, all
controller matrices 4., B, and C, must be determined by optimization
procedures.

As it is shown in [14], the constraint || T(z;, wy; 8)||co < 7y is €quivalent
to the LMI constraints

A'Y + Y4+ FC, + C,F +¥*C.C1 ()
+Ya+ FC, + COF +4*C1C1 (¥) <0 (25)

B\Y + Dy F' I

AX +XA'+B,L+ LB, + BB, ()
+ XA’ + B,L + L'B), + BB ()2 <0 (26)

CiX + DL -1

[}; ” >0 27)



CONTROL OF FLEXIBLE STRUCTURES 573

Furthermore, for every feasible matrices (L, X, F, Y) the corresponding
controller can be calculated by the following steps [1]:

(1) Calculate

M = —A—XA'Y — L'B,Y — XC)F'
— Bi(B\Y 4+ Dy, F') — v %(XC} + L'D},)C,

(2) Choose a non-singular ¥ and let B,=V~'F;
(3) Calculate! U=({I—-XY)(V')~ " and set C,.=L(U)";
4) Set A. =V 'M(U) .

Some considerations about the choice of U and V should be made.
It is not difficult to see that the choices given above reduce the
controller transfer function to

C(s) = C.(sI — A;)"'B. = F[s(I — YX) — M']L

which does not depend on U and V. Those variables, however, define a
particular state space representation for the controller with, obviously,
the same transfer function.

So, setting the LMI (25)—(27) as the convex set X, it is clear that

”T(Zlvwl;s)”oo <y (L7X7F7 Y) ex

Finally, for any nonsingular choice of matrix ¥ and the corresponding
matrix U(X, Y, V), we are able to obtain a function f(L,X,F,Y) =
|7 (20, wo; s)||§ such that output feedback mixed H,/H,, problem with
a general controller can be written as

jmin {f(L,X,F,Y) : (L.X,F,Y) € X}

As a final remark, although theoretically speaking any choice of
matrix U and V is possible, one should be aware that with regards to
the numerical implementations of the unidimensional search and
gradient calculations some particular choices may lead to significant
simplifications.

'Notice that U is invertible since ¥ > X~ 1.
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5. CONTROLLER DESIGN PROCEDURE

With the tools developed in the previous sections we are able to
develop a mixed H,/H,, controller design procedure that will be used
in the experiments presented in this paper. In this setup, we wish
to provide the designer with the ability to select a controller that
represents an adequate compromise between robustness and perfor-
mance. So, with respect to the plants (13)—(16) we start determining
the minimum possible value of the closed loop H,, norm of the
transfer function from w; to z;

Ymin = 1in || T (21, wi;)|| 0

Notice that regardless of the output feedback controller parametriza-
tions introduced in the last section we will always be able to find the
same minimum value for vy,;,. Now, starting with a value of y=+,
slightly above ynin We find a feasible initial controller, run the algo-
rithm of Section 4 and get a local optimal solution to the mixed
H,/H,, control problem for any chosen controller parametrization.
Notice that if the value of «, is sufficiently close to ym;, the norm of
the obtained mixed controller will be approximately the A, norm of
T(zg, wo; 5) calculated with the minimal H,, controller. Now, setting
k=1 and observing that the algorithm in Section 4 always provides a
local optimal solution to the mixed H,/H,, problem we relax the value
of 4% > v —1 and run the algorithm taking as a feasible initial solution
the optimal solution associated to 7y, _;. In this way we may ensure
that the following property will always hold

1T (20, wos s, i) ll2 < IT (20, wos s, Ye—1) I

where the dependency of v is to emphasize that these norms are
evaluated for the optimal controllers obtained as explained. In this
manner we are able to draw a trade-off curve between robustness
(measured by the H,, norm) and performance (measured by the H,
norm) and adequately select a controller that satisfies the project
specifications. A summary of this design procedure is given below:

(1) Determine the minimal H, closed loop norm ~miy.
(2) Set vo=(14€)Ymin, € >0, and determine a local optimal solution
to the mixed H,/H,, control problem. Set k=1.
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(3) Starting from the mixed H,/H,, local optimal solution associated
to the value of ~;_1, set vx > vr_1 and apply the algorithm in
Section 4 to determine the current local optimal solution.

4) If v%> Ymaxs Ymax > Yo, draw a trade-off curve and select the
controller that most adequately fits the design specifications.
Otherwise increment k and go back to Step 3.

This design method is illustrated by the following simple numerical
example.

5.1. Example

In this example we consider the following system matrices

0 1 0 0
A= , By=B;= , By= ,
21 0 1

Co=[-1 0], C;=[0 0], C=[-1 1],
Dy=1, Dip=1, Dy =1

Notice that w=wy=w; and we will be able to compare the optimal
H,/H_, controller with the central controller and with that obtained
from the minimization of an upper bound to the objective function
[3, 13]. For this data the value of vy, = 12.01 and v, was set to 12.02.
Four designs were tried, namely, with the central H,, controller
labeled C, the suboptimal minimization of an upper bound to the H,
norm labeled S and the application of the proposed algorithm for
the two possible output feedback controller parametrizations discussed
in Section 4.3.2. For this simple example, both parametrizations
provided virtually the same result in terms of the minimized H, and,
for this reason, they are uniquely labeled as O. The trade-off curves
can be seen in Figure 1. Also plotted are the lower bounds provided
bY Ymin and ||T(zo, w;s)||» calculated with the nominal H, optimal
controller.

For low values of 7, we observe that the controller S provides
poor performance, even worse than that of the central controller C.
For large values of « the situation is reversed, which can be easily
understood, since the minimized upper bound becomes closer to the



576 D. P. DE FARIAS et al.

(3]

”T(zla w1, 3)“

FIGURE 1 Trade-off curves.

actual H, norm and the suboptimal controller tends to the optimal H,
controller. Denoting by v, =19.7 the || 7(z1, w; 5)||» calculated with the
H, optimal controller, we see that the controller O has the best
performance and indeed matchs the H, minimal norm. In fact, as
Figure 2 suggests, controller O approximately meets the global
optimality conditions since ||7(z;, w; $)||o 18 close to « for v <+, and
approximately equal to v, for larger values of . Also notice that
for v <7, |T(z1,w; $)||oo is always larger than the H,, norms cal-
culated with the controllers C and S, which explains its better H,
performance.

These curves were drawn taking 30 equaly spaced points between
Yo and ymax =60. Since the proposed algorithm converges to local
optimal solutions to the mixed H,/H,, problem, the degree of
optimality of each obtained solution may critically depend on the
initialization. In this way different discretization strategies over y may
change the shape of the trade-off curve, How this fact could be
explored will be the subject of further investigations.
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1T (21, w1; 8) |00

FIGURE 2 H, norms.

6. FLEXIBLE STRUCTURE DESIGNS

In this section we perform some numerical experiments that illustrate
the features of the design methods proposed in this paper applied to
typical flexible structure models. Although the design problems are
based on theoretical models, we believe that the specifications we draw
and the several experiments we conduct might illustrate how many of
the difficulties faced in actual flexible structures designs can be dealt
with the proposed strategies.

The flexible structures [15,16] we consider have infinite dimen-
sional linear models in the form (1), (2) with natural frequencies w;,
i=1,...,00, to be determined as the solution of given algebraic
equations. If the structure is excited by m impulsive input forces
applied at the points p;, j=1,...,m each row of the input matrix B is
calculated as

Bi = [¢i(p1) - 6i(p) -+~ di(pm)], i=1,...,00
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where ¢«p), i=1,...,00 are functions to be determined. Those func-
tions also let us evaluate the output displacements and velocities by

00 00

2(p,0) =) di(p)xt), 2(p,1) = di(p)H2)

i=1 i=1

which define the infinite dimensional matrices £ and F. In the sequel
we introduce two particular models we are going to deal with [17].

Model I The first model is an homogeneous variable cross section
rod with one free end as illustrated in Figure 3. In this figure both
perturbation (u,) and control (u.) forces are assumed to act axially and
z represents the axial displacement. Calling M|, the linear mass density,
E the modulus of elasticity and A4y the maximum cross section area it
is possible to determine time undamped linear model parameters in
the following way. Defining

My
EA,

the natural frequencies w;, i=1,...,00 are calculated as the zeros of
the algebraic equation

Jo(klw) =0

FIGURE 3 Model I: variable cross section rod.
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where J,(-) denotes the Bessel function of order n, while the entries of
function ¢(p) are determined by

_ 1 Tkl —p)wi) . _
¢i@)-m Ta(elan) i=1,...,00

We consider that the control input u, is placed at p=1 and that the
perturbation input u, is placed at p=0.63/. Furthermore we assume
that matrix B is partitioned in the form

B = [Bc Bp]

where the submatrices B, and B, account for u. and u,, respectively.
The control structure is collocated, that means, the measured output y
is also taken at p=/. We assume that both displacement and velocity
at p=1 are measured. In the following experiments the constants are
set to My=1kg/m, E4Ao=1N and /=10m.

Model II The second model is an homogeneous constant cross
section flexible beam simply supported at both ends as illustrated in
Figure 4. On the contrary of the variable section rod the perturbation
(4p) and control (u.) forces act transversally and z represents the
transversal displacement. Calling M, the linear mass density, E the
modulus of elasticity and / the area moment of inertia it is possible to
determine the undamped linear model parameters where the natural

FIGURE 4 Model II: constant cross section beam.
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frequencies w;, i=1,...,00 are given as

| EI
wi=(7ri)2 W, i=1,...,00

and the entries of function ¢(p) are determined by

- sin (P72
¢,(p)—sm(l) Mol i=1,...,00

For this second structure the control input #, is placed at p =3.5/ and
the perturbation input u, is set at p=0.65/. Once more we partition
matrix B in the form

B=[B. B,

in order to account for both inputs u. and u,. The control structure
is also collocated and y contains both displacement and velocity
measurements. In the following experiments My=1kg/m, EI=1N
and /=10m.

6.1. Reference Models

For practical purposes we truncate the given infinite dimensional
models taking only the first N=12 modes and consider the cor-
responding state space models in the form (5), (6), with 24 states,
as our reference models. Damping is added by taking £ =0.01 for all
modes. With respect to the matrices in the generalized plants (13)—
(16), we define the following augmented perturbation input

u
Up

where u,, is a measurement noise, and define matrices By and Dy as
By=[B, 0], Dy=[0 I]

Furthermore the control input is taken as u=u, so that B,= B,. The
open loop impulsive displacement response of both structures with
respect to the perturbation inputs u, are shown in Figures 5 and 6
as solid lines. In the same figures, also as solid lines, we find the
corresponding Bode diagrams.
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FIGURE 5 Model I: open loop impulsive responses and Bode diagrams.
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FIGURE 6 Model II: open loop impulsive responses and Bode diagrams.

6.2. Reduced Order Design

The design of reduced order output feedback controllers is still an
open problem in the literature. Most design procedures provide con-
trollers which have the same order as that of the generalized plant
to be controlled. In the control of flexible structure this point may
become critical due to the generally high order of the considered
plants. In this scenario, possible strategies are the design of full order
controllers followed by some possible controller reduction or the
design of controllers for a reduced plant. In the first case, the main
problem is how to reduce the controller without losing the properties
associated to the full order design. In the second case, the question to
be answered is how we can ensure that the controller designed for the
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reduced plant will be effective with respect to the original high order
plant. In this section we take the second way, trying to design reduced
order controllers that we hope will perform well face to the high order
system by introducing some robustness considerations in the design.
So, given a high order plant, a reduced order design procedure could
be outlined as follows: (a) reduce the high order plant by some order
reduction procedure, (b) design a controller for the reduced order
plant trying to minimize a given performance index while keeping
robustness in some sense, (c) check the design with respect to the
original high order plant.

In this paper, we perform Step (a) using the balanced-truncation
procedure [8]. This procedure consists in applying to a system of order
n in the form (5), (6) a special similarity transformation followed by
truncating the state vector to order n,. We choose the order of the
reduced dynamic #n, by looking at the index [7]

1/2
P U?

where o; are the singular values of the product of the controlability
and observability grammians associated to (5), (6). We truncate the
system to order n, when p(n,) becomes sufficiently less than 1.

Then the reduced order design problem is taken in the mixed H,/H
control problem context. Robustness is considered with respect to the
uncertainty model (12) while performance in the H, setup is measured
by the cost outpimt z, defined by

o~[f} ]

with respect to the augmented perturbation input wy. Notice that
the input associated to robustness (w;) is quite different from the
perturbation input (wg), which fits time design procedures proposed in
the previous sections in a very suitable manner. The particular results
for the two considered structures follow.

p(k) = (

Model I With respect to the order reduction procedure [8], as can be
seen in Figure 7, it is not easy to choose the order of the reduced
model. Since there is no abrupt reduction in the value of p (k) that may



CONTROL OF FLEXIBLE STRUCTURES 583

FIGURE 7 Model I: order reduction.

suggest internal dominancy of some reduced order model it is difficult
to find a single value below which p(k) can be considered sufficiently
less than 1. Almost arbitrarily we take n, =4. The impulse response of
the obtained reduced plant (dashed line) can be seen and compared
with the full order response (solid line) in Figure 5.

Robustness is introduced according to the model (12) with a = 10.
In this way we are mainly considering uncertainty in the dynamic
rather than in the input and output matrices. This is quite natural in
this setup since the main source of errors in the system description
comes with the truncation of some modes performed by the reduction
procedure. So, following the steps given in Section 5 we determined
~Ymin = 74.81 and set 9= 74.89. The minimal H, norm controller, i.e.,
the controller which minimizes ||7(zo, wo; 5)||> without taking care of
| T(z1,w1;9)|lc Was calculated, providing the closed loop norms
| T(z1, w1; 8)||oo = 557.3 and || T(zp, wo; $)||2=3.28. It is interesting to
notice that although this controller is unable to stabilize the given
reference model, the value of the associated H, and H,, norms still
provides guidelines for the whole design process. Then, we have run
the algorithm and plotted the design trade-off curve seen in Figure 8
for values of v between 7y and ymax =89~ 600. In this figure the
curves have been obtained using 8 x 10 equally spaced points and the
solid line corresponds to the closed loop H, norm with the local
optimal mixed H,/H,, controller while the dashed line shows the same
function calculated with the central controller. Notice that for large



584 D. P. DE FARIAS et al.
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FIGURE 8 Model I: trade-off curve.

values of «y the value of || T(zg, wo; 5)||2 approaches that of the optimal
H, controller, represented in the figure as a dotted lower bound line. In
this sense, as we can see, once again the design procedure was able to
provide H, cost that are near optimal. Since wy is not equal to w; we
may not compare this design with the suboptimal controller discussed
in the first example. Also remarkable is the fact that, in the considered
interval, the value of ||7(zo, wo; 5)||. associated with the central H,,
controller never decreases, which suggests that, on the contrary of
what happens in the first example, relaxing v without minimizing the
H, norm will not produce controllers better than the minimal central
H_, controller.

Keeping in mind that the main objective is to stabilize the reference
model, we might select a value of v which is sufficiently far from ypax,
since we know that the optimal H, is not stabilizing. As a compromise
solution we chose v* =271.5~0.5 x 557.3. As discussed in Section 2
we expect that the controller will be able to support unstructured
perturbations in the reduced model such that

1Al <3.68 x 1073, Al <0.37x 1073, i=2,3

For our purposes, although this level of robustness seems to be very
small, it is more than enough and we have been able to obtain re-
duced order controllers which stabilize the reference model with val-
ues of v up to 7 times «yo. So, with this choice of v* we are indeed
providing some extra robustness with respect to the reference model.
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Furthermore, in terms of performance || 7(zo, wo; 5)||2 is just 5% larg-
er than the optimal destabilizing H, norm. Closed loop controller
performance may be evaluated by looking at Figure 9, where the re-
sponses of the controlled reference model to an impulse at u, are
plotted for the local optimal mixed H,/H,, controller (solid) and
for the minimal central H,, controller (dashed). This closed loop
behavior seems to be compatible with controllers obtained by other
design approaches [9].

Continuing to illustrate the performance of the obtained controller,
although we have used the impulsive input as a valuable analysis and
design tool, it is also interesting to probe the controller performance
face to more realistic disturbance inputs which, on the contrary of the
impulse, typically may present a more attenuated spectral distribution
at high frequencies. Once the design procedure was based on a reduced
order model which does not accurately represents the high frequency
behavior of the reference model (see Fig. 5), we may expect that the
obtained controller performs even better when excited by low fre-
quency inputs. To check this, for both controllers considered before,
we simulate the closed loop response of the reference model with
respect to the test inputs A(A4, T') (solid line) and B(A, T') (dashed
line) depicted in Figure 10. The simulations for the optimal mixed
H,/H,, controller (solid) and for the optimal H,, controller can
be found in Figures 11 and 12.

n S
o
4

o
n

displacement (m)

=4

-0.5

time (¢)

FIGURE 9 Model I: closed loop impulsive response.
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FIGURE 10 Test disturbances A(44, T') and B(4y, T).
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FIGURE 11 Model I: closed loop response to disturbance A(1,20).
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FIGURE 12 Model I: closed loop response to disturbance B(1, 20).
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Model II Looking at p(k) plotted for the reference model II in
Figure 13, we notice that in this case it is much easier to choose the
order to be considered by the reduction procedure [8]. The abrupt
reduction in the value of p(k) at k=2 suggests the presence of a
dominant system of order two® so we take n,=2. The impulsive
response of the obtained reduced plant (dashed line) can be compared
with the full order response (solid line) in Figure 6.

For the reasons discussed in the previous example we consider the
uncertainty model (12) with & =20. Then we calculate ~yy;, =56.27
and set y9=56.33. In this case, however, as a consequence of the
more accurate description provided by the reduced order model, the
minimal H, norm controller is able to stabilize the reference mod-
el and provides the closed loop norms |7(z;, wi; )|/ =164.8 and
|| T(zo, wo; 8)]|2=3.17. So, we took 3 x 10 equally spaced points
between g and ymax = 370~ 170 and plotted the trade-off curves seen
in Figure 14. Once again the solid line corresponds to the closed
loop H, norm calculated with the local optimal mixed H,/H,, con-
troller while the dashed line shows the same function for the minimal
central H,, controller. In this case, as we know that the optimal H,
controller stabilizes the reference model, we may be less conservative
and choose v* =116.4 =~ 0.7 x 164.8. As for the model I, unstructured

FIGURE 13 Model II: order reduction.

2 Almost evident in the impulsive response and Bode graphs (Fig. 6).
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FIGURE 14 Model II: trade-off curve.

perturbation bounds can be easily calculated and the performance
level happens to be just 3% larger than the optimal H, norm. The
responses of the reference model to an impulse at u, are depicted in
Figure 15, where the closed loop response with the minimal central
H, controller (dashed), with the local optimal mixed H,/H,, con-
troller (solid) and with the optimal H, controller (dash-dot) have
been plotted. Notice that the impulsive response associated to the
optimal H, controller presents a lightly undamped high frequency
mode that is completely damped by the H,/H,, mixed design. Except
for this fact, the response of both controllers is almost identical, and

displacement (m)

FIGURE 15 Model II: closed loop impulsive response.
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much better than the response of the optimal H,, controllers. In this
sense, we may say that the extra degree of robustness achieved by the
mixed design provided adequate closed loop performance associated
to an additional high frequency damping not provided by the pure H,
controller. When working with reduced order models, which typically
do not accurately describe high frequency modes, this high frequency
damping is a very desirable and welcome property. At last, Figures 16
and 17 show the closed loop responses to the previously introduced
test inputs.

c'lisplgcement (m)
(=3

020 40 60

80, 100 120 140 160 180 200
time (7)

FIGURE 16 Model II: closed loop response to disturbance A(1, 40).
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FIGURE 17 Model II: closed loop response to disturbance B(1,40).
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6.3. Truncated Order Design

In order to illustrate the application of the more elaborate uncertainty
description (7), (8) we will try to design controllers for low order
truncated versions of the introduced infinite dimensional models which
are able to stabilize the given reference models. That truncation will
simply be performed retaining the first n,/2 modes of the considered
flexible structure Models I and II. It is worth noticing that, on the
contrary of what we have done in the last section, we do not mean to
propose the truncation followed by the determination of a mixed H,/
H, controller as an alternative to the design of low order controller,
since the truncation procedure may provide a very rough and im-
precise description of complex flexible structure dynamics. As we will
show, for the very simple models we are dealing with, truncation does
happen to provide an accurate description of the high order system
behavior, and, with the main intention of illustrating the interesting
features of the mixed H,/H,, controller design we are proposing, will
be considered along with the uncertainty models (7), (8). Neverthe-
less, the reader should be aware that the main application of the mixed
H,/H,, design with this uncertainty models (7), (8) is the project of
controllers based on imprecise linear models given in the form (1), (2).

With respect to this uncertainty models (7), (8), its main advantage
compared with (12), is the reduction of the degree of conservativeness
associated to the H,, constraint. From the developments in Section 2,
models (7), (8) is built in order to take into account the particular state
space representation of flexible structure models.

In the following examples, we consider H, performance as we did
in the reduced order design, defining the measured cost output zo, with

o[t} »e[s

The other inputs and outputs are also kept as in the reduced order
design.

Model I For this first model, in order to get a truncated model
with the same order as that of the reduced order design, we consider
only the first 2 modes of the system, which provide a state space
representation with order n,=4. The impulse response and the Bode
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diagram of the obtained truncated plant (dash-dot) can be seen and
compared with the full order (solid) and the reduced order (dashed)
plots in Figure 5. Notice that, as stated before, in this simple example
the reduced and the truncated plants almost coincide, which may not
be true for more complex flexible structure models.

In the uncertainty models (7), (8) we have also set o= 10. With these
settings, we have found v, =43.78 and set yo=43.82. Surprisingly
enough, the minimal H, norm controller is able to stabilize the ref-
erence model providing the closed loop norms ||7(z, wi; $)|| o = 386
and || T(zo, wo; 5)||2 = 1.47. Taking 9 x 10 equaly spaced points between
Yo and Ymax=97=~390 we plotted the trade-off curves seen in
Figure 18 for the optimal mixed H,/H,, controller (solid) and the
minimal central H, controller (dashed). As a compromise solution we
have chosen ~*=78.87 =~ 0.2 x 386. Notice that this value of +* is
about 5 times smaller than the value of ||7(zy, wi; 5)||co =386 asso-
ciated with the optimal H, controller and that the optimal mixed H,/
H, cost || T(zp, wo; 5)||oc = 1.81 is about 23% larger than the optimal
H, cost. So, we may expect that this controller will have a very
poor performance when compared with the controller obtained in
the reduced order design, which seems to be much more close to the
optimal H, performance. However, comparing the simulations in
Figures 19—-21 with those in Figures 9, 11 and 12 we notice that the
closed loop controller performances are very similar. We believe that

5‘0 160 200 2‘50 360 350

FIGURE 18 Model I: trade-off curve.
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FIGURE 19 Model I closed loop impulsive response.
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FIGURE 20 Model I: closed loop response to disturbance 4(1, 20).
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FIGURE 21 Model I: closed loop response to disturbance B(1, 20).
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this fact can be explained due to the differences in the uncertainty
models (7), (8) and (12). Once the uncertainty models (7), (8) fits best
the actual dynamic errors than model (12), the conservativeness
introduced by the requirement of an extra robustness level is such that
the closed loop performance does not seem to be significantly affected.
In that sense it is interesting to notice that the responses calculated
with the minimal central H,, controllers are slightly better in the
truncated design than in the reduced design.

Model II For model II we have kept only the first mode of the
original model which provides a state space model with n, =2 states.
As in the previous example, the reduced and the truncated plants
almost coincide, which can be seen in the impulsive response and Bode
diagrams in Figure 6 for the truncated (dash-dot), full order (solid)
and the reduced order (dashed) systems.

The uncertainty model is taken as (7), (8) with a=20. We have
calculated ~ypin=55.4 and set o= 55.5. The minimal H, norm con-
troller provides the closed loop norms | 7'(zy, wi;s) |leo=124 and
|| T (zo, wo; 8) ||2=1.75 and stabilizes the reference model. The trade-
off curve in Figure 22 is plotted taking 3 x 10 equally spaced points
between vy and “ymax =370 = 170, where the solid line is drawn
for the local optimal mixed H,/H,, controller and the dashed line
for the central H,, controller. We have chosen the value of
~v*=103.8~0.8 x 124 which gives an H, performance just 1% larger

|1T(fo,w0i8)||2
w in &~ n

[S]
n
M

80 70 80 90 100 ljy() 120 130 140 150 160

FIGURE 22 Model II: trade-off curve.
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than the optimal H, performance. The closed loop time simulations
can be found in Figures 23—25 for the minimal central H, controller
(dashed), the local optimal mixed H,/H,, controller (solid) and the
optimal H; controller (dash-dot). As in the reduced order design the
performance of the mixed design is very close to the optimal H,
performance with extra damping of the high frequencies, a fact that
becomes very clear in Figure 23.

6.4. Comments

Some comments about the solved problems are now in order. First, we
see that the performance of the algorithm and the associated design
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FIGURE 23 Model II: closed loop impulsive response.
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FIGURE 24 Model II: closed loop response to disturbance A(1,40).
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FIGURE 25 Model II: closed loop response to disturbance B(1,40).

procedure seem to be very satisfactory. In all the examples we can
notice that the value of the H, norm for large values of v indeed
matches the optimal H, norm (see Figs. 1, 8, 14, 18 and 22). Further-
more, the trade-off curves turned out to be a very useful tool, helping
in the selection of the desired levels of robustness/performance to
be provided by the mixed controller.

A second remark is that the design of reduced order controllers
based on models pre-processed by the balanced-truncation algorithm
may be very interesting if associated with the uncertainty model
(12). Even for plants for which it is difficult to chose an appro-
priate reduction order (as Model I), the introduction of robustness
considerations in a mixed H,/H, context seems to provide an
adequate framework for achieving low order controllers with good
performance.

Finally, notice that the only free parameter of the uncertainty
models introduced in Section 2 that have been changed in the exam-
ples was «, which is increased in order to emphasize the importance
of the imprecise description of the dynamics. None of the matrix
scalings have been used.

7. CONCLUSION

In this paper an unstructured H,, uncertainty model is introduced to
cope with the design of full order linear dynamic output feedback
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robust controllers for flexible structures. This model is built taking
into account perturbations around a given nominal linear model in
modal coordinates. The same uncertainty model is further extended to
cope with less structured reduced order system models.

Robust performance is considered in the mixed H,/H, setup for
a six port generalized plant. The controller is parametrized such that
the resultant problem is formulated as the minimization of a non-
convex but differentiable objective function subject to a convex
constraint. A numerical algorithm which is able to find a local optimal
solution to this problem is introduced.

A controller design procedure is developed providing a trade-off
curve that allows to choose a controller that best fits the robustness/
performance requirements. A simple numerical example illustrates the
method and provides a comparison with other procedures, namely
the suboptimal minimization of an upper bound to the H, norm and
the central H,, controller, in which the controller introduced in this
paper always achieves the best performance.

The procedure is applied to two different flexible structure theo-
retical models providing satisfactory results, which are verified by
several simulations.
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APPENDIX A: GRADIENT CALCULATION

In this appendix we calculate the gradient of function (20)

F(L,X) = trace[(Co -+ DoLX")P(Co -+ DoLX")']

Recalling that P is the unique positive definite solution to

(A + BoK)P + P(A + ByK) + BoBy = 0

where K= LX ~' one may calculate the gradient of f (L, X) by taking
the Lagrangean function

L = trace[(Co + DoK)P(Cy + DoK)'|+
+ trace[A{(A + B2K)P + P(A + BoK)' + BBy}

where A=A'. Imposing

oL
P (A + BK)'A + A(A + B1K) + (Co + DoK)'(Co + DoK) = 0
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it follows that

& _oL_
dK 0K
Now, since AK=ALX~'—KAXX~! an remembering that X=X’

of _df af_l(_K,deq_X_ldL'K).

2[B,A + Diy(Co + DoK)|P

8L dK~ ’ 80X 2 dK dK



