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The problem of heat transfer in a Positive Temperature Coefficient (PTC) thermistor, which may form one
element of an electric circuit, is solved numerically by a finite element method. The approach used is
based on Galerkin finite element using quadratic splines as shape functions. The resulting system of
ordinary differential equations is solved by the finite difference method. Comparison is made with
numerical and analytical solutions and the accuracy of the computed solutions indicates that the method is
well suited for the solution of the PTC thermistor problem.
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1 INTRODUCTION: THE PROBLEM STATEMENT

Positive Temperature Coefficient (PTC) thermistors prepared from doped semiconducting
BaTiO; ceramics are characterised by an increase in the electrical resistance with tempera-
ture. PTC thermistors can be used in various kinds of devices such as temperature sensors
and current regulation [1-4].

This study deals with a dimensionless mathematical model of the PTC thermistor as
follows:

Heat-flow is governed by the equation,

U =ty +y0W)|D:)?, O<x<1, t>0 1)

subject to boundary and initial conditions

u,=0, x=0, ¢t>0 )
uy+pu=0 x=1, t>0 ?3)
u(x,00=0, 0<x<l1 4

where u is the temperature, @ is the electrical potential, y is the ratio of the rate of heat
production in the thermistor and f is the surface heat transfer coefficient.
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The electrical potential is governed by the equation
(e(W)®,),=0, O0<x<l1l, t>0 5)

subject to boundary and initial conditions

®0,)=0, >0 (6)
o1,H)=1, t>0 7
Ox,0)=0, 0<x<l1 ®)

where the electrical conductivity o(u) was taken as
ow)=14+0—1)s )

where s is the location of the interface and a typical values of § is about 107>,

This problem has attracted attention recently both from the theoretical and experimental
point of view. The numerical solution of the problem has been the subject of many papers
over the last decade [5—14]. The engineering approach to the problem can be found in [15—
17] and references quoted therein. The present work covers the numerical and analytical
steady-state solution of the problem.

2 THE EXACT STEADY-STATE SOLUTIONS

Since the initial temperature of the device is equal to 0 and f > 0, assume monotonicity of
the temperature profile so that the point x = 0 will always be the hottest and will also be the
first point to reach the critical temperature u, = 1. Finally, the rate of heat loss at x = 1 will
equal the rate of internal heat generation and equilibrium will be attained. So, the steady state
may be one of the three scenarios shown in Figure 1 [12].

(a) (b) (c)

FIGURE 1 The steady-state configurations: (a) cold phase; (b) warm phase; (c) hot phase.
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By virtue of Eq. (9) the evolving problem defined by Egs. (1)(4) will move sequentially
through the cold, warm and hot phases. The values of  and y defined the particular steady-
state for cold, warm and hot phases, are [10]

)+
y5<ﬁ<y(l+§) (11)
B < yé. (12)

For each one of the cold, warm and hot phases Egs. (5)—(8) have the exact solution
Dx,)=x, 0<x<1, t>0. (13)

The solution of the Egs. (1)-(4) for cold and hot phases are the same as in [9].
In the cold phase s = 0 and so ¢ = 1 and the solution is

u(x)=v[%+(l;2x2)], 0<x<1 (14)

In the hot phase s = 1 and so ¢ =  and the solution is

u(x):y&[%+(l;2x2)], 0<x<1 (15)

In the warm phase the interface takes the values in the interval 0 < s < 1 and thus the
conductivity is ¢ = 1 + (6 — 1)s. Hence, Eq. (1) can reduce the following steady-state form
in the warm phase:

fu

dx2—|—y[1+(5—1)s]=0, 0<x<l1 (16)

subject to the conditions

=0, x=0 a7

du

a+ﬁu=0, x=1 (18)

If we consider Eq. (11) we obtained the exact solution as

u(x)=v[l+(6—1)s][%+@], 0<x<1 (19)
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Here we need to determine the location of interface s. Since the boundary condition u(x) = 1
at x = s we obtain a quadratic function of s

f(s)=as*+bs+c (20)

wherea=0—-1,b=1-(1+2/pf)0—1)andc=2/y—-(2/p) — 1.

Using inequality (11) it can be seen that b — 4ac > 0 i.e. function has two distinct roots.
However, only one of them, which is s = (—b + +/b? — 4ac)/2a, in (0, 1) since —b/2a > 1,
fO)=c<O0and f(1)=a+b+c> 0.

3 THE QUADRATIC SPLINE FINITE ELEMENT SOLUTION

In the numerical solution of the problem, Galerkin approach is used with quadratic spline
finite elements. For the construction of a finite-element solution of the problem we begin
denoting the coordinates of the node points on the interval [0,1] by x;, where
O=x; <---<xy_1 <xy=1.

Let ¢(x) be shape function satisfying the boundary conditions and is a linear combination
of the N + 1 shape functions expressed as

N+1

o) =Y aip;x) @1
i=1

where a;’s are arbitrary real numbers and ¢,(x) are the quadratic splines defined by

| (); —xi_1)%, R i1, xi]
h* 4 2h(x — x;) — (x —x3)°,  [xi, Xi1]
AX) = — 22
Pix) 2] [h— (x—xie)l, [xig1, Xiq2] @)
0, otherwise

where h = Xit+1 — Xi.
If the heat equation (1) is multiplied by ¢(x) and integrating over [0, 1] with respect to x and
utilizing the boundary conditions, we obtained the weak or variational form of the problem as

1
jo(<p(x>u, T @utty — 90@)p()) dx = —p(1)Bu(l, ) @3)

Assuming that the temperature u(x, ) can be approximated by

N+1

> 5o, @4)
i=1

where the functions b,(f)’s are as yet undetermined differentiable functions of time.
Substituting (21) and (24) into (23) yields a system of linear first-order ordinary differ-
ential equations for unknown vector b(¢) which can be written in matrix form as

db
CE+KQ—4 (25)
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where we have set
b; = bi(9)

1
Cj= JO‘Pi(x)(Pj(x) dx

1
Ky = | 0090, s+ B (D,)
1
i = 1000)| )
0

and where 1 <i,j <N + 1.

Therefore, the system of initial-value problem described by (25) must be solved for each
time level.

We can solve this equation system by a finite-difference method, using the forward dif-
ference for db/d¢ and the weight average for 5™. Hence, Eq. (25) takes the form

(C + BAK)L™D = (C — AK(1 — O)K)B™ + Atd (26)

in which 8™ = p(mAf), m =0, 1,2, ... . Initially, 5 can be determined from the initial
condition (4) and 0 < 0 < 1 is the weight factor. The cases § =0, § = 0.5 and 6 = 1 cor-
respond, respectively, to the explicit, Crank—Nicolson and fully implicit finite difference
methods.

4 NUMERICAL RESULTS AND DISCUSSION

In the numerical solution in the warm phase location of the interface was estimated in the
following manner [13]. The predicted temperature at a node point is such that at a time level
j+1, U{“ > 1 and U{Ll < 1. Thus moving boundary s is between adjoining values U{“
and U{ill. Since u(x, f) = 1 at x = s(¢), the location of the interface s can be estimated by
using a linear interpolation as

: 1 - U
¥ =x+———0 — (x,- —xH_l).
+1 +1
Ut - Ui

All numerical computations were performed with the weight factor § = 0.5. In order to
obtain the steady-state solutions we use the criteria

1
Z—tmax”U((,'"“) — U] o - U} s 05 x 107, m=0,1,2,...

for the method in which U,.("') denotes the nodal value u(ih, mAt).

The values of 8 and y were chosen satisfying the inequalities (10)—(12) for cold, warm and
hot phases, respectively. f = 0.2 was taken for all phases, but for cold phase y = 0.1, for
warm phase y = 0.5 and for hot phase y = 100 000.

It can be seen from the Table I that there is an excellent agreement between the numerical
solution and the exact solution for cold and hot phases. In the warm phase, there is little
difference between two solutions since the location of interface is calculated numerically. It is
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TABLE I Numerical and exact solutions at steady-state (Ax=0.025 and Ar=0.001)

Warm phase
Cold phase Hot phase
x (exact/numerical) Exact Numerical (exact/numerical)
0.0 0.55000 1.05920 1.03659 5.50000
0.1 0.54950 1.05824 1.03565 5.49500
0.2 0.54800 1.05535 1.03282 5.48000
0.3 0.54550 1.05054 1.02811 5.45500
0.4 0.54200 1.04380 1.02151 5.42000
0.5 0.53750 1.03513 1.01303 5.37500
0.6 0.53200 1.02454 1.00266 5.32000
0.7 0.52550 1.01202 0.99041 5.25500
0.8 0.51800 0.99758 0.97628 5.18000
0.9 0.50950 0.98121 0.96026 5.09500
1.0 0.50000 0.96291 0.94235 5.00000

TABLE II Steady-state times for cold phase

h At=0.1 At=0.01
0.1 90.0 89.9
0.05 90.0 89.9
0.025 222.0 89.9
0.0125 249.0 89.9
0.01 223.6 89.9
TABLE III  Steady-state times for hot phase
h At=0.1 At=0.01
0.1 102.3 102.2
0.05 150.3 102.2
0.025 420.5 102.2
0.0125 963.8 102.2
0.01 1148.8 102.2

TABLE IV  Steady-state times for warm phase

h At=0.1 At=0.01 At=10.001
0.1 48.5 6.3 6.4
0.05 145.4 6.2 6.3
0.025 398.2 6.2 6.3
0.0125 872.7 14.7 6.3
0.01 10008.6 19.5 6.3

also observed that, the time step Az = 0.1 is not enough to obtain the stable steady-state
times for different values of 4 for all three phases. In the hot and cold phases, if the time step
is reduced to Az = 0.01 we obtain the same steady-state times for the different values of 4 as
seen in Tables II and III, but for the warm phase we needed to use a finer time step
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FIGURE 2 The evolution temperature in the cold phase (Az = 0.025 and At = 0.01).
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FIGURE 3 The evolution temperature in the warm phase (Az = 0.025 and At = 0.001).
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FIGURE 4 The evolution temperature in the hot phase (Az = 0.025 and At = 0.01).

At = 0.001 as seen in Table IV. The evolving temperature profiles at the steady-state times
are represented in Figures 2—4 for cold, warm and hot phases, respectively.

5 CONCLUSIONS

A finite element solution to the PTC thermistor problem has been constructed using quadratic
spline spatial elements and finite difference approximation in time. The performance of this
algorithm has been examined by comparing the analytical and the numerical results. It is
observed that the numerical solution is shown to exhibit the correct physical characteristic of
the PTC thermistor problem. Therefore, the scheme can be extended to the solution of two
dimensional case of the problem.
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