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Some finite difference approximations are developed for an inverse problem of determining an unknown
parameter p(f) which is a coefficient of the solution # in a semi-linear parabolic partial differential
equation subject to a boundary integral overspecification. The accuracy and efficiency of the procedures
are discussed. Some computational results using the newly proposed numerical techniques are presented.
CPU times needed for this problem are reported.
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1 INTRODUCTION

Parabolic partial differential equations in two or three space dimensions with over-specified
boundary data feature in the mathematical modelling of many important phenomena. While a
significant body of knowledge about the theory and numerical methods for parabolic partial
differential equations with classical boundary conditions has been accumulated, not much has
been extended to parabolic partial differential equations with overspecified boundary data.

It is the purpose of the present paper to develop three different finite difference techniques
for the numerical solution of the following three-dimensional semi-linear time dependent
diffusion equation:

6w_62w w  Pw

E—W+6—yy+@+p(t)w+¢(x,y,z, 1), 0<x,y,z<1,
0<t<T, €))
with initial condition
wx,y,z,0) =f(x,y,2), 0<ux,y,z<]1, ?)
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and boundary conditions

w(0,y,2,0) =go(»,2,8), 0<t<T, 0<yz<]1, ?3)
w(l,y,z,) =g1(y,z,t), 0<t<T, 0<y,z<l]I, ()
w(x, 0,z,1) = ho(x,z,8), 0<t<T, 0<x,z<I, %)
wix, 1,z,8) = h(x,z,t), 0<t<T, 0<x,z<I, (6)
wx,»,0,8) = k(x,y,7), 0<t=<T, 0=<xy<]l, @)
w,y, 1,0 =k(x,y,f, 0<t<T, 0<xy<]I, ®

subject to the integral identity

1l gl
j J J w(x,y,z,)dxdydz=E(), 0<t<T, 9)
0J0JO

where f, go, g1, ho, M1, k1, k2, ¢ and E are known functions, while the functions w and p are
unknown.

Parabolic partial differential equations with an unknown parameter have many important
applications in science and engineering [1, 2, 4, 5, 7, 10-13].

Only in the last decade it has attracted some attention to the developement, analysis and
implementation of the numerical techniques for solving the diffusion equation with non-
classical boundary conditions.

The existence and uniqueness and continuous dependence on data for the solution pair
(u, p) to the problem (1)-(9) and other similar problems have been studied in [3, 6, 14].

The three-dimensional inverse problem (1)-(9) can model certain type of physical prob-
lems. Equation (1) can be used to describe a heat transfer process with an unknown source
parameter present. Equation (9) can be interpreted as a weighted thermal energy contained in
a portion of the spatial domain, at time ¢. Thus the purpose of solving this three-dimensional
parabolic inverse problem with energy overspecification is to identify the unknown parameter
p(?) that will produce at each time ¢ a desired energy distribution in a portion of the spatial
domain.

An overview of this paper is as follows:

The employed transformations and the method of evaluating the unknown parameter p(?),
is given in Section 2. Section 3 is devoted to the numerical finite difference schemes for the
solution of (1)-(9). The numerical integration procedure used to overcome the over-
specification boundary condition, is described in Section 4. This procedure utilizes the tra-
pezoidal numerical integration rule, which is a simple second-order accurate scheme. In
Section 4 we demonstrate how to construct a predicting-correcting mechanism and how to
use it to advance our computation step by step. The numerical differentiation formula or the
natural cubic spline functions employed to compute the values of the unknown parameter
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p(t), are described in Section 5. The numerical results produced by these schemes are pre-
sented in Section 6. The comparison of both accuracy and efficiency between the methods
developed are also made in Section 6. Section 7 concludes this paper with a brief summary.
Also some directions for further study are pointed out in this section.

2 THE NEW INVERSE PROBLEM

In this section we want to eliminate the term p(f)w(x, y, z, f) in (1) by introducing the fol-
lowing transformations:

u(x,y, z,t) = wx, y, z, f) exp ( Jt p(s) ds), (10)

0
r(f) = exp ( - J p(s) ds). (11)

0
So we have

w(x, y, z, t) = u(x, y, z, t) exp < — Jt p(s) ds), (12)

0
p=-22. 3

where #/(¢) = dr(¢)/dt.

Transformations (10) and (11) allow us to eliminate the unknown term p(f) from the
equation (1) and to obtain a new nonclassic parabolic partial differential equation which is
equivalent to the original inverse problem provided that some compatibility conditions are
satisfied. Employing the above pair of transformations (10)~(11), we can write (1)~(9) as
follows:

Up = Upx + Uy + Uz +r(O)P(X,y,2,0), 0=<x,y,2<1, 0<t<T, (14)

subject to
ux,y,z,0)=f(x,y,2), 0<xyz<l, (15)
u0,y,z,0) =qo(y,z,t), 0<t<T, 0<yz<l]I, (16)
ull,y,z,t) =q(y,z,1), 0<t<T, 0<yz<lI, 17
ux,0,z,t) =z(x,z,1), 0<t<T, 0<x,z<l, (18)
ulx,1,z,t) =z1(x,z,¢), 0<t<T, 0<x,z<lI, (19)
ux,y,0,8) =dp(x,y,f), 0<t<T, 0=<x,y<]1, (20)
u(x,y, 1,0) =di(x,y,), 0<t<T, 0=<x,y<]l, 21)

and

1ol gl
J J J ux,y,z,)dxdydz = r()E(f), 0<t<T. (22)
0JoJo
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The latter is equivalent to

B g, y, z, ) dedy dz

(o) = 0 @3)
where E(f) # 0 and also we have:

q90(y,z,0) =r(Hgo(y,z, 1), 0<t<T, 0<yz<], (24)
a(y,z, ) =r@Og1(y,z,1), 0<t<T, 0<yz<]1, 25)

zo(x,z, £) = r(Oho(x,z, 1), 0<t<T, 0<x,z<lI, (26)

z1(x,z,0) = r(Oh(x,z,1), 0<t<T, 0<x,z<l, 27

do(x,y,0,8) = r(Oko(x,y,0), 0<t<T, 0<x,y<l, (28)

di(x,y, 1,0 =r(Oki(x,y,t), 0<t<T, 0<x,y=<l. 29)

Note that with the transformations used, p(f) disappears and its role is represented im-
plicitly by #(#). So, we overcome the difficulties in handling with p(#). This means that a
predicting-correcting mechanism can be constructed easily.

It is worth mentioning that: if #(f) can be made known, then we can choose any appropriate
finite difference scheme to solve (14)—(21) numerically. So the key to the solution of our
inverse problem lies in retrieving the information about the boundary values from the
overspecification data (22), and this is the very place where the main difficulty exists [6].

3 THE DEVELOPED FINITE DIFFERENCE TECHNIQUES

The domain [0, 1]* x [0, 7] is divided into an M> x N mesh with the spatial step size
h=1/M in x, y and z directions and the time step size / = T'/N, respectively.
Grid points (x;, y;, z, t») are defined by

x=ih, i=0,1,2,...,M, (30)
y=jh, j=0,1,2,....M, Gy
ze=kh, k=0,1,2,...,M, (32)

t,=nl, n=0,1,2,...,N, (33)
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in which M and N are integers. The notations ik p" and 7" are used for the finite difference
approximations of u(ih, jh, kh, nl), p(nl) and r(nl), respectively.

The finite difference formula described in this section and to be applied at interior grid
points in the solution domain are the (7,1) second-order implicit finite difference scheme or
the (7,7) second-order implicit finite difference method or the (1,7) second-order explicit
finite difference technique, which approximate the solution of the three-dimensional semi-
linear diffusion equation.

Using the initial condition u(x, y, z, 0) = f(x, y,2), 0 < x,y,z < 1, equation (1) is solved
approximately at the spatial points (x;,;,2¢), commencing with initial values
u?d.‘k =f(xi,¥j,2k),1,j,k=0,1,2,..., M, and boundary values:

gtk = q0(¥j> 2ks 1), (34)
Uil = 1(3» 2k tag1)s 35)
ui i = 200X, Zks tat), (36)
Uitk = 210, 2k, ta), 37)
Wity = do(xi, j, tns1)s (38)
Uifhr = di(%i, s tna1)s (39)

for n=0,1,2,...,N — 1, where qo(x, z, 1), q1(x, z, t), z0(¥, 2, 1), z1(y, 2, t), do(x, y, t) and
di(x, y, t) are given by boundary conditions (24)—(29) and #(¢) will be found by the procedure
described in Section 4.

3.1 The (7,1) Implicit Finite Difference Method

The seven-point implicit method for solving the three-dimensional partial differential
equation (14) uses the following formula
sx( U 1,; k + u;'-:ll\j,k) + S)’( ij—1.k + uz,]+1 k)
+ sz( Ui} i+ uf’ﬁ+1) —(1+2s:+ 25, + 2sz)u:’ﬁ

fori,j,k=1,2,...,M — 1, where s, = I/(Ax)?, s, = I/(Ay)%, s, = /(Az)*.
In the case Ax = Ay = Az = h, we have

=5, =5 =s= I, 41)



116 M. DEHGHAN

and (40) becomes

n+1 n+1 n+1 n+1 n+1 n+1
S( U 1j.k +ut+1,1k +ul,J Lk +u1J+1k +uuk 1 +uuk+l)

— (1 + 68y} = —u?,, — Q"

ijk — x‘] k (42)

ij.k*

It is very easy to see that this procedure is unconditionally stable [9].

The resulting system of linear equations is strictly diagonally dominant, which guarantees
that it is solvable.

The computational molecule of this method involves 7 grid points at the new time level
and 1 at the old level. So in the following this will be referred to as the (7,1) formula.

The modified equivalent partial differential equation for this method is as follows [15]

ou o*u u u (Ax)? o*u
% e ap a2 0T 8
(Ay)2 62u (a2 o*u
+ 0{(Ax) , (A, (Az)*} = 0. 43)

So this scheme is second-order accurate in the spatial grid size. However there is no set of
values for which the method will be fourth-order accurate.

3.2 The (1,7) Explicit Finite Difference Method

The (1,7) explicit method uses the forward difference approximation for the time derivative
and the centred-difference approximation for the space derivatives applied at the point
(ih, jh, kh, nl).

So it follows that:

n+l __ n
Uik = Sx(“z 1k T Wiy, k) +Sy( Uijrxt uiJ+1,k)

+s; (“Zi,k—l + V?J,k+1) + (1= 280 — 25y — 252)u;  + I (“44)

fori,j,k=1,2,...,.M — 1.
In the special case Ax = Ay = Az = h, we will have:

n+1

—_ n n n n n
Uik = S(“i-l,j,k Fipk T Wik T W T U

) + (L= 6+ 17 (45)

Values of u;"“,i on the boundaries x =0,1, y=0,1 and z =0, 1, are provided by the
boundary conditions (34)—(39), at the appropriate grid points.
The range of stability for this procedure is

1

0<s5€ (46)
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It can be seen that the modified equivalent partial differential equation of the (1,7) formula
(45) is [15]:

o Sy Sy Pu_, OF o
or 2 0? 622 ox*
@y (Az)2 _ o
+5 (65, —l)y1 @ 6.~ 2
(Ax)(Ay) 0*u
T "oy
(Ax)(Az) | (W)(A2) 0'u
+ 4 rep + 4 % 0)20z2
+0{(A%)*, (W), (A2)'} = 0. 47)

The formula (47) is second-order accurate for all s > 0 as it can be seen by the modified
equivalent partial differential equation analysis.

In following this scheme will be referred to as the (1,7) explicit technique, because the
computational molecule of this method involves 1 grid point at the new time level and 7 at
the old level.

3.3 The Implicit (7,7) Finite Difference Scheme

We replace all spatial derivatives with the average of their values at the n and n + 1 time
levels and then substitute the centred-difference forms for all derivatives. So we get the
implicit (7,7) formula:

+1 +1
sx(“;"l—u,k + “7+1J,k) 21+ sc+sy+ sz)u,J i

n+1
+S)’( z,] 1k+u1J+1 k) +S2< l]k 1+uwk+1)

= —Sx(”x"'-u,k + "?+1J,k> 2(1 —sx — 8y — sz)u,J k
S)’(uw Lk + u1,1+1 k) ( ij,k—1 + ul\] k+1)
l
#5747 (S0 + 815E). (48)

In the case Ax = Ay = Az = h, the new finite-difference equation is

n+1 n+1 n+1 n+1 n+1
S( Ui le+ul+le+ulJ 1k+ul‘]+1k+ule+1 +uth+1)
n+l __ n n n n n n
—2(1 +3s)ujyy = _S(uiJ—l,k + Ui T Ui T Wik T g T uiJ,k+1)

—2(1 =39y, — (r” +rh) (¢§’J,k + ¢7Ii)- @)

This scheme is stable for every diffusion number s > 0.

In following this will be referred to as the (7,7) implicit technique, because the compu-
tational molecule of this technique involves 7 grid points at the new time level and 7 at the
old level.
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The resulting system of linear equations is strictly diagonally dominant, which guarantees
that it is solvable.
The modified equivalent equation of the (7,7) implicit formula (49) is as follows [15]

u_Ou Qu Ou_ . (AyOu ()0
o a2 oF o2 PT 12 o¢ 12 o
(AZ)264“ 4 4 4 _
At of(ax*, (Ay)*, (A2)*} = 0. (50)

This scheme is second-order accurate in the spatial grid size with no second-order cross-
derivative terms. However, there is no set of values of s for which the method will be fourth-
order accurate. Also, note that it has a leading error term which is independent of s.

4 TREATMENT OF THE NON-CLASSICAL BOUNDARY CONDITION

The treatment of the integral term in the parabolic partial differential equations with non-
classical boundary conditions is not an easy task. The presence of an integral term in a
boundary condition can greatly complicate the application of standard numerical techniques
such as finite differences, finite elements, spectral methods, etc. It is therefore important to be
able to convert the overspecification boundary value problems to a more desirable form, to
make them more widely applicable to problems of practical interest.

The accuracy of the quadrature must be compatible with that of the discretization of the
differential equation.

For this purpose, we approximate the integral in (9) numerically by the trapezoidal rule
[16]. The reason we choose the trapezoidal numerical integration procedure is because it is
very simple and has a truncation error of order 2. Note that the accuracy of the solution will
not reduce under this method.

In order to use (23) we evaluate the integral fol fol fol u(x, y, z, f) dx dy dz in a discrete form:

Firstly, the triple integral in (22) is approximated using the trapezoidal numerical in-
tegration rule [8] to give

1 pl pl h3 M M M
JJ J u(x,y,z,tn)dxdydzzgzzzciidjdku;&k, (51)
0J0JO i=0 j=0 k=0
where
do=dy=1, d=2 i=12,....M—1. (52)

As we mentioned already, given an initial guess of #(f), several numerical schemes can be
used to solve (14)—(21).

We employ three second-order finite difference schemes which are based on the (1,7)
explicit finite difference scheme, the (7,7) implicit technique and the (7,1) implicit finite
difference formula.

The numerical treatment we propose to overcome the non-linear boundary over-
specification, is a predictor—corrector type approach. We will use one of the finite difference
schemes discussed in Section 3, to carry out the numerical solutions level by level in the time
direction. Given the finite difference approximation values of u(x, y, z, t) and r(¢) at the nth
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leveln =0, 1,2, ..., we first assign an appropriate initial guess to (¢) for the (n + 1)st level.
With this initial guess, (14) can be solved to yield the corresponding finite difference
approximation values for u(x, y, z, f) at the (n + 1)st level. If the solution satisfies the over-
specified condition (22) within a prescribed tolerance, then the corresponding values for
u(x, y, z, t) and r(f) are accepted as correct numerical solutions for the two functions at the
(n + 1)st level. Otherwise, a new guess for 7(¢) is generated from (23). Computations are then
repeated with the new guess of #(¢). This predicting—correcting process is repeated until finally
(22) is satisfied with the desired accuracy and, thus, we advance to the next higher level [13].

Using (51), we can obtain the numerical approximation for fo fo Io u(x, y, z, ") dx dy dz.
Let us denote the result by v, where (m) means the numerical integration is done with the
approximation of v®*+1 corresponding to #+1( over [0, 1]°.

Denoting

dididi, (53)

Ma
Mx

M
o o % Z

i=0 j:

Il
)
-
Il

0

and using this notation, the finite difference form of the corrector (23) can be written as:
Dn+1(m)

rn+l(m+1) —
E@+1) °

(54)

5 IDENTIFYING THE MAIN UNKNOWN PARAMETER

After we obtained the values of #"s, we can convert them into the corresponding values of p”s
through the inverse transformations (10)-(11).
This can be done in two different ways, numerical differentiation or interpolating the data
of rs with smooth functions and then taking derivative.
The finite difference form of (13) is
n_ @

r=-r. (55)

For the direct numerical differentiation, the following formula is used:

rn+1 _ n—1

) =—mp—, n=23,...,N-1, (56)
2l .3
") = ii.z_‘l‘_rz__f_’ 57
3PN — 4Nl g N2
@Y = S (58)

For the natural cubic spline function interpolation, in each subinterval [#/~!, #/], we use a
cubic polynomial

cf'(t)——[(tf 1)’ mi=! (t—tf“)3mf]+£[(tf—t)rf‘1

+He— 7)) - [(t’ m'= + (e =7 )m],

(59)
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where m! =m" = 0 and m/~!, m/, m/*! satisfy the following tridiagonal system of linear
equations:
h 2h . h
Ay Ll ST idy BTy & ) S
6m + 3 m’ + 6m
forj=2,3,...,N—1
Finally, we use the least squares data fitting method to find a smooth functional approx-
imation for each of the data sets [8,14].

(Pt =20 + 1Y), (60)

=

6 NUMERICAL RESULTS

In this section we present one example to support our theoretical results. A problem for

which the exact solution is known is now used to test the different methods described in this

report for solving the three-dimensional parabolic partial differential equation with an

unknown source parameter. This is applied to solve (1)~(9) with p(f) and w unknown.
Consider (1)-(9) with

d(x,y,2,1) = (7?”2 - IOt) exp(f) sing(x +2y 4 32), (61)
£0(0..2,1) = exp(t)sin (2y + 32), (62
g1(1,y,z,t) = exp(t) sing(l +2y+32), (63)

ho(x, 0, z, 1) = expl() sin-Z— (x+32), (64)

h(x, 1,2, 1) = exp(f) sin%(x +2+432), (65)

ko(x, , 0, 7) = exp() sin%(x +2)), (66)

ki(x, y, 1, £) = exp(?) sing(x +2y+3), ©67)

E(r) = %5 exp(?), (68)

fG,y,2) = sing (x +2y + 32), (69)

for which the exact solution is
w(x, y, z, t) = exp(?) sing-(x + 2y + 32), (70)

and

p@) =1+ 10z (71)
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TABLE I Results for w from Test 1 with h =, s =1
(1,7) Explicit (7.1) Implicit (7,7) Implicit

e y z Exact u error error error

0.1 0.1 0.1 1.2340741 52%x1073 54%1073 57x1073
0.2 0.2 0.2 2.1991362 52x1073 55%x1073 58x1073
03 0.3 0.3 2.6848153 53x1073 55x1073 59%x1073
04 0.4 0.4 2.5852397 52x1073 53x1073 59x1073
0.5 0.5 0.5 1.9221155 54x%x1073 55%x1073 58x1073
0.6 0.6 0.6 0.8399953 53%x1073 54x1073 57x1073
0.7 0.7 0.7 —0.4252330 55%x1073 54%x1073 57%x1073
0.8 0.8 0.8 —1.5977660 52x1073 53x1073 57x1073
0.9 0.9 0.9 —2.4220068 51x1073 5.6x1073 55x1073

TABLE II Results for p from Test 1 with h =4, s =1
(1,7) Explicit (7,1) Implicit (7,7) Implicit

t Exact p error error error

0.1 1.500000 9.0x1073 9.4x 1073 92x1073
0.2 2.000000 9.1%x1073 9.3 %1073 9.0%x 1073
0.3 2.500000 92x1073 9.4% 103 9.1x1073
0.4 3.000000 9.1x1073 9.2x1073 92x1073
0.5 3.500000 9.1x1073 92x1073 93x1073
0.6 4.000000 89x1073 9.1x1073 92x1073
0.7 4.500000 89x1073 9.0x 1073 92x1073
0.8 5.000000 9.1x1073 9.1x1073 9.1%x1073
0.9 5.500000 9.2x1073 9.2x1073 9.0x 1073
1.0 6.000000 9.1x1073 9.4x1073 9.0x 1073

The results obtained for w}; , at T = 1.0, computed for / = 0.02, s = ¢ using the (1,7)
explicit finite difference method, the (7,7) implicit technique and the (7,1) implicit finite
difference scheme, are listed in Table I.

Although the (7,7) implicit method provides almost the same answer as the (1,7) explicit
scheme, it involves more computational work.

The results obtained for p” with A = 0.02,s = %, using the finite difference methods
developed, with p(f) defined as in (71) and it was considered to be unknown and found by
(55) are shown in Table II.

The CPU time for the (1,7) explicit method was 91.57 s and for the (7,7) implicit scheme
was 2005.6 s while the time for the (7,1) implicit formula was 1917.8 s.

The reason that we chose s =} for the test problem used, is that this value is in the range
of stability of the (1,7) explicit scheme discussed in Section 3. This forces the two un-
conditionally stable finite difference methods i.e. the (7,7) implicit technique and the (7,1)
implicit scheme to use a much smaller time step than is necessary. But, overall the numerical
results showed the computational superiority of the (1,7) explicit finite difference scheme for
the three-dimensional diffusion equation with an unknown source parameter.

7 CONCLUDING REMARKS

In this paper three numerical methods were applied to a three-dimensional diffusion equation
with an unknown parameter. The proposed numerical schemes solved this model quite
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satisfactory. Using the (1,7) explicit finite difference method or the (7,7) implicit technique or
the (7,1) implicit finite difference method for the three-dimensional semi-linear diffusion
problem with appropriate treatment on the unknown source parameter describe our model
well. The (1,7) explicit procedure is very simple to implement and economical to use. It is
very efficient and needs less CPU time than the implicit methods. In order to overcome the
integral overspecification boundary condition the trapezoidal numerical integration rule,
which is a second-order accurate scheme, was employed. Note that the (1,7) explicit finite
difference scheme discussed have greater restriction on stability, and is only useful over small
time steps. The implicit (7,7) finite difference scheme employed is slower than the (7,1)
implicit scheme. Note that the stability of the (7,1) scheme and the (7,7) implicit finite
difference method for every diffusion number is significant. Overall, a useful comparison
between the different finite difference techniques discussed in this article, showed the effi-
ciency of the (1,7) explicit technique compared to tedious work required by the (7,7) finite
difference method or the (7,1) implicit technique. The numerical test applied to these
methods gives acceptable results and suggests convergence to exact solution when /4 goes to
zero. Also we observed second-order accuracy, which is the best we can expect from the
schemes and the formula we used. In closing we mention the question of whether these
results can be generalized to cover other three-dimensional diffusion problems with an
unknown source parameter, such as the case in which the inhomogenous term
F =F(x,y,z,t,w, wx, Wy, w,, p), has more complicated structure. In this case, the soultions
will be more difficult to compute.
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