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In this paper, we revise the classical formulation of the problem depriving it of the concepts that are superfluous
from the mathematical point of view. We observe that a number of power stations can be substituted by a single
one that behaves equivalently to the entire set. Proceeding in this way, we obtain a variational formulation in its
purest sense (without restrictions). This formulation allows us to employ the theory of calculus of variations to
the highest degree. We then calculate the equivalent minimizer in the case where the cost functions are second-
order polynomials. We prove that the equivalent minimizer is a second-order polynomial with piece-wise
constant coefficients. Moreover, it belongs to the class C'. Finally, we present various examples prompted
by real systems and perform the proposed algorithms using Mathematica.
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1 INTRODUCTION

This work is embedded in the line of research entitled “Optimization of hydrothermal
systems”. The study of optimal conditions for the functioning of a hydrothermal system
constitutes a complicated problem which has attracted significant interest in recent decades.
Various techniques have been applied to solve the problem, such as functional analysis
techniques [1] and [2], calculus of variations [3] and [4], dynamic programming, both linear
and nonlinear, approximation methods such as Ritz’s method [5], neuronal nets, etc. These
studies contain numerous mathematical models which approximate reality to various degrees
of precision. For instance, one may consider hydraulic power stations of fixed or variable
load, connected or disconnected, connected in a line or forming a net, with or without
transport delays, with transmission losses taken into account or neglected, and so on.

Such a variety of mathematical models requires a comprehensive study of the problem that
may be extended to all hydrothermal systems.

In this paper we prove that power stations can be substituted by a single one that behaves
equivalently to the entire set. This supposes a significant simplification of hydrothermal models
and will also be useful for any method used to study the problem. It allows us to develop
algorithms that are simpler, more reliable, and which require less time for their execution, this last
feature is of crucial importance, for instance, in the problem of Economic Dispatching. Apart
from the computational advantages which consist in the possibility of reducing the number of
unknowns, there are other benefits, because an incorrect formulation can lead to important errors.
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The idea of introducing an equivalent thermal station is relatively old. Reference [1]
considers it in application to purely thermal problems, though the authors did not notice the
need to define the equivalent thermal station piece-wisely. This is to be expected since
the restriction of power positivity is forgotten. It is most important to stress the fact
that proceeding in this way can lead to incorrect conclusions. We will see in the present study
how to circumvent this problem in a definitive way.

The idea was also used in problems with hydraulic components, which is where it attains
its true value. For example, [6] describe the application of the discrete maximum principle to
the problem of optimum scheduling of multi-reservoir systems with a model two-reservoir
system and one equivalent thermal plant.

On the other hand, [7] considers the application of a modified algorithm based on
Pontryagin’s maximum principle to the solution of the problem of optimum economical load
distribution in a power system comprising an equivalent thermal power station and five river-
driven hydro stations in series.

The concept of the equivalent thermal station has been used up until now. However, many
authors do not take into account certain aspects of this approach that we discuss in this study.
Thus, [8] and [9] develop a short-term hydrothermal scheduling algorithm based on the
simulated annealing technique. In the algorithm, the load balance constraint, total water
discharge constraint, reservoir volume limits and constraint on the operation limits of the
hydrothermal generator and the equivalent thermal generator are fully accounted for.
A relaxation method for checking the limits is proposed and included in the algorithm. In
Ref. [10] an efficient short-term hydrothermal scheduling algorithm based on the evolutionary
programming (EP) technique is proposed. In the algorithm, the thermal generating units in the
system are represented by an equivalent unit. The power balance constraints, total water
discharge constraint, reservoir volume constraints and the constraints on the operation limits
of the equivalent thermal and hydro units are fully taken into account. The effectiveness of the
proposed algorithm is demonstrated through an example system and the results are compared
with those obtained by the classical gradient search and simulated annealing (SA) approaches.

We are going to add an important mathematical component to this study by proving sub-
stantial results ignored until now. Let us briefly present the contents of the rest of this study.

First, we revise the classical formulation of the problem depriving it of the concepts that
are superfluous from the mathematical point of view. We observe that a number of power
stations can be substituted by a single one that behaves equivalently to the entire set.
Proceeding in this way, we obtain a variational formulation in its purest sense (without
restrictions). This formulation allows us to employ the theory of calculus of variations to the
highest degree, and the problem is thus afforded a significant simplification.

Then, we shall calculate the equivalent minimizer in the case where the cost functions are
second-order polynomials. We prove that the equivalent minimizer is a second-order poly-
nomial with piece-wise constant coefficients. Moreover, it belongs to the class C'.

Finally, we present various examples prompted by real systems and perform the proposed
algorithms using Mathematica. We consider a wide variety of situations, which in all the
cases are resolved in a very satisfactory way, comparing with the methods employed by other
authors and stressing the advantages obtained.

2 DESCRIPTION OF THE PROBLEM

A hydrothermal system is made up of hydraulic and thermal power stations which
must jointly satisfy a certain demand for electrical power during a definite time interval.
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Thermal stations generate power at the expense of fuel consumption (which is the object of
minimization), while hydraulic stations obtain it from the energy liberated by water that
moves a turbine; a limited amount of water being available during the optimization period.
Let us now see the definitions of the elements which are present in any problem of hydro-
thermal optimization.

Let us assume that a hydrothermal system accounts for m thermal stations and » hydraulic
stations.

DEFINITION  The cost function of the ith thermal power station is the mapping
Fi:D;cR—->R

that relates the instant consumption of the ith thermal station with the power it contributes.
So that if we denote by P;(t) the power generated at the instant t, the consumption during the
optimization interval [0, T] is

T
Jﬂmww

0

By D; we denote the set of values of the power which can be generated by the ith thermal
power station.

DEFINITION  The function P:[0, T] — R is said to be admissible for F; if
Vte[0,T] P(t) € D;
The set of elements admissible for F; is denoted by F; and T= ], F.

DEFINITION  We call function of effective hydraulic contribution the mapping H: Qy — R
where

H(t, z1(0), 22(t), - . ., za(2), 2,(2), Z5(0), . . ., Z,(2))

is the power contributed to the system at the instant t by the set of hydraulic power stations,
being: z(t) the volume which is turbined by the instant t (in what follows simply volume) by
the ith power station, z/(t) the rate of water discharge at the instant t by the ith power station
and Qy C [0, T] x R*" the domain of definition of H.

DEFINITION  We say that 7= (z1, 22, ..., 2y) is admissible for H if:

() z; belong to the class KC', Vi = 1,...,n, (Continuous with the piece-wise continuous
derivatives).

(i) (t,z1(2),...,2,(1),2)(2),...,2,(t)) € Qu, YVt € [0,T).

The assumption that the derivatives of the admissible functions need not be continuous is
natural because it is equivalent to the assumption that the rate of water discharge has abrupt
variations, which is, in turn, possible in practice.

The set of the elements admissible for H is denoted by #.
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OBSERVATION  All the models rely on the hypothesis that at every instant of time the gen-
erated power H(t) is a function of the rate of water discharge q(t) and of the height of the
water jump:

H(1) = ©(q(2), h())

We will try to unify from our general point of view the diverse studies which differ in the way
of modeling the water height depending on the deposit geometry, in the technical char-
acteristics of the power station, in the choice of the simplifying hypothesis of the model, etc.

DEFINITION  The function
P[0, 71> R

expressing the power that has to be delivered to the system at each instant of the optimization
interval [0, T) is called the demanded power.

DEFINITION  The volume b; that can be turbined by the instant T is called the admissible
volume of the ith hydraulic power station.

DEFINITION  Under the above notation, let
b=(bi,..., b)eR"

be the vector of admissible volumes. We term the generalized hydrothermal problem the
problem

T = H,~T,,{Ps, {F)}", H, b}

of minimizing the functional
T m
F(Ply o YmsZls e e s Zn) = J Y Fi(ye) de
0 i=1

over the set 2 of admissible elements for T', defined in the following way:
E={y1,. s Ym 21,...,2n) € F x H| satisfy (1) and (2)}

(1) the equilibrium equation
Z yit) + H(t, z1(D), . . ., za(2), Z(D), - . ., 2, (1)) = Pa(t), Vt€[0,T]
i=1

(2) restrictions on the admissible volume

Z,'(O):O, Z,'(T)=bi (i=1,...,n)
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DEFINITION  We say that (P, ...,P,,,,Q) €Z is a solution of the problem if
V(yl,...,ym,R)GE

T m T _m
J ZF;(Pi(t))dtSJ ZFi(yi(t))dt
0 =1 0 =1

3 REDUCTION OF PROBLEM H,-T,, TO H,-T4

In this section we consider the possibility of substituting a problem with m thermal power
stations (H,—T,,) by an equivalent problem (H,—T;) with a single thermal power station: the
equivalent thermal plant.

It should be stressed that the theoretical result we are going to establish cannot be found in
the literature and that the theorem is of a general character because it does not depend on the
models used.

Let F;:D; CR — R(@=1,...,m) be the cost functions of the thermal power stations.

Throughout the paragraph we assume that

VéeD=Di+Dy+ - +Dy SR 3|(&,..., &) € [ [ Di such that

i=1

S&=¢ and 3 F(E)=_min [iﬂ(x,-)]
i=1 i=1 Z,-z‘x"zé i=1

In general, we shall assume that V¢ € D, the problem of minimization of the function
" | Fi(x;) under the condition Y7, x; = ¢, has a unique' solution (&, ..., &,).
i=1 i=1

DEFINITION  Let us call the ith distribution function the function YDy + D, +---+
D,, — D, defined by Y(&) = &, Vi=1,...,mwhere (&, ..., ¢E,) is the unique minimum of
Y i Fi(x;) subject to the condition Y i | x; = &.

DEFINITION ~ We will call equivalent minimizer of {F;}}, the function W:D; + D, + - -+
D,, — R defined by

Y() = min Fi(x;)
z:;x.:c[; ]

OBSERVATION It follows that Y ;- Wi(&) = & and Y i F(¥i(&)) = ¥(&)

THEOREM 1 Let ‘¥ be the equivalent minimizer of {F;}\' and {¥;}1' be the distribution
Sunctions. If (P(f), Q(t)) is a solution of the problem

A* = H,-T\{P4, (¥}, H, b)

!The uniqueness is not essential. Its lack can be understood as the existence of various distribution functions.
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then (¥1(P(1)), ¥2(P(®)), ..., Tun(P()), é(t)) is a solution of the problem
A =H,-T,{Pa, {F;}, H, b}

Proof If P(f), O(t)) is a solution of A*, then

P(t) + H(t, O(1), O'(t) = Pa(t), Vt€[0,T]
00)=0, o) =

Let us first check that (‘¥,(P(2)), Y2(P(?)), . .., ¥Ym(P(2)), Q(t)) is admissible and then prove
that it is a solution. Indeed, (¥ (P(¥)), ¥2(P(®)), ..., ¥n(P(¥)), O(t)) is admissible for A
because

Y WPO) = PO, Vic[0.T]
i=1

which yields the validity of the equilibrium equation for A, and Q readily implies the
fulfillment of the boundary conditions. .
It remains to see that (¥;(P(¢)), Y2(P(?)), . . . , ¥u(P(£)), O(£)) minimizes the functional

T m
[, o Fionar
i=1

We shall argue to this end by contradiction.
Let us assume that there exists (Py, ..., Py, R(t)) admissible for A,

Y " Pi(t) + H(t, R, R (1) = Pu(t), Vte[0,T]
i=1
with R(0) = 0, R(T) = b, satisfying
T m - T m
|, orpaya <[ Y- revaraya
i=1 i=l

This affords the desired contradiction. _
Indeed, if we consider P(f) = Y o, Pi(f), then V¢ € [0, T], P(f) is admissible for A"
because

P(t) +H(t R(t) R’(t)) = Py(t), Vtel0,T]
R(O) =0, R(T)

Moreover, we have that

Y(P() = me PO)) = 5 [ZF(x, ] < ZF(P ®), Vte[0,T]



OPTIMIZATION OF HYDROTHERMAL SYSTEMS 187

hence
T - T m . T m T
|, weonar < [ Y r@ma< | Y reeoya= | veow
0 0 =1 0 =1 0
which contradicts the assumption that P(¢) delivers the minimum. n

OBSERVATION In the case of thq “purely thermal” problem Ho—T,{Pa, {F;}]'}, one can
consider the equivalent problem I" = Hy—T{P,, {¥}}, where Y represents the equivalent
minimizer for {F;}T.

So that if P(7) is a solution of problem I and Y; are the distribution functions, then
(1 (P(D), Ya2(P(®)), ..., Yu(P()) is a solution of T.

Now taking into account the fact that I can only have a sole admissible function, say, Py,
this function will be the solution. This fact implies that the solution of the original problem
will be

(P1(Pa(0), P2(Pa(®)), . .., ¥m(Pa(t)))

OBSERVATION  The possibility of constructing an equivalent minimizer is due to the fact that
knowing the instant contribution of each of the thermal power stations of the set, one can
assign to every thermal power station the generation of power that delivers minimum to the
global instant cost of the fuel. Such a possibility does not exist in the case of hydraulic
stations. This is because there is no reasonable way to organize ‘“‘the distribution” on the
basis of the knowledge of the power generated by all the hydraulic power stations of the set.
Nonetheless, this is true if the inverse problem is considered:. to minimize the total water
consumption under the assumption that the fuel cost is prescribed.

Now that it has been demonstrated that any problem of the type (H,~T,,) can be sub-
stituted by another of the form (H,—T;), we can concentrate on the problems of this type
which constitute the true variational problem. Moreover, this variational problem has a
binding condition (the equilibrium equation)

W)+ H(t, Z(5), Z'(0) = Pa(t), Vt€[0,T]

which can be omitted, together with the unknown function y(¢), thus yielding the problem of
minimizing the functional

- T - -
FZ)=F(z,...,z,) = L W(Pu(t) — H(t, Z(t), Z'(¢))) dt

with the boundary conditions Z(0) = 0, Z(T) = b.

The unknown y(¢), which disappear in the new formulation and represents the contribution
of the thermal power stations of the system, can be recovered once the values of the other
unknowns are established. To define the partial contribution of each of these, one has to make
use of the contribution functions.
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4 EQUIVALENT MINIMIZER FOR THE COST FUNCTIONS:
Fi(x)=a; + B;X + y;x?

Let us calculate the equivalent minimizer in the case where the cost functions are second-
order polynomials. This assumption is systematically accepted in the studies on this topic.
Moreover, let us impose the natural restriction of positivity of the thermal power.

Let Fi(x) = o; + Bix + yx2 Vi=1,...,m where B; > 0,7, > 0 and D; = [0, co) are their
respective domains of definition. Without loss of generality, we assume that f; <
/}2 <...< [}m

LEMMA 1 If B; < B; and the function F:Dy x Dy X - -+ x Dy —> R,

m
F@ep, .o xm) = ZFi(xi)
i=1
attains at (ay, ..., ay) the minimum over the set
m
Co=1(x1,..0,Xm) |x,~20/\2x,~=a
i=1
then
a; =0 =a; = 0

Proof We shall argue by contradiction. Let us assume that ; < f;, ¢; = 0 and that a; > 0.
Consider the function

fe)=F(ai,...,ai+¢,....,ai—¢ ...,am) — F(ay,...,an)
f(&) = Fi(a; + €) + Fj(a; — €) — F(a;) — Fj(a))

It is clear that if (a),...,an) € C,, then (ay,...,a;+¢,...,ai—¢,...,a,) € C, for
0<e<a.

Let us show the existence of an ¢ such that f(¢) < 0, which contradicts the fact that F" has a
minimum in (ay, ..., a,) within C,.

We have that f is continuous and derivable at zero with f(0) = 0; therefore it suffices to
observe that f/(0) < 0. In fact,

f'(e) = Fi(ai + &) — Fj(a; — &)
) = Bi — B; +2vai + &) — 2y,(a; — ¢)

and, taking into account the fact that a; = 0, we have
[ =p—B—2y-a <0 u

The significance of this Lemma is the following: to provide the optimal functioning of
the thermal power stations once one of them is disconnected (i.e. generates zero), we have to
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disconnect as well all the stations whose coefficients f5; are greater than or equal to the
coefficient corresponding to the inactive station.

LEMMA 2 If B, < By <--- < B,,, then the parameters

1 k1 B
5 = — —_—— —L
¢ Z[Bk = ;“ﬁ]

j=17
satisfy
0=01 <0< < 0n

Proof
1 bl kgl
Skt =5 Bep1 ) == D= =5 Bin
2[ ;‘V' ;%‘ 2

LEMMA 3 The function
m
Fxi,....xn) = Y Filx)
i=1

attains the minimum over the set

Ce= {(x”""x'”)lxiZO/\in:f}
i=1

at the point (ay,...,ay) € (O,’g(ai >0 Vi) if
1 | "B
6>—|:ﬁm - Jilzam

Proof (Necessity) If (ay,...,a,) is an interior point where F attains its minimum, it is a
point of relative minimum of F on the set

[(xl,...,xm)l Zx,:z;]
i=1

It follows that for some A € R, it is a critical point of

F*xiy ooy xm) =F(xp, ooy Xm) = Ay + -+ x, — ©)
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We denote by IT the function [} —17; and by I'; the function I1/y;. Using the Lagrange
multipliers method we have that

fi+2yx1—4=0 pil +2IIx; — AN =0
By 42y, —A=0 By +2lIxy — A, =0

z = s
B+ 2Ypxm —A=0 Bplm+2Mx, — AL,y =0
Xi+x+-dx,=¢ xi+x+o4xy=¢

hence

1= Yoy BT+ 211 _ Yoy BTy + 210 _ 2 By +2¢
Y T > (/7 Z?":l(l/v,-)

Let us consider W, (&) as a function of the unknown x;

Zx_ ﬂl(l/yl) + 26 ﬁk
e (/r) 2y

() = S B/ +28 By [Zﬂk Z*i] ¢

Wi(&) = xi

2'ym Z:';l(l/vl) 2)’1{ Vi i=1 Vi

Letting

s-y[ge-£]

we see that

Ay <A< <Ay =0m
It is evident that for every £, the solution W, (&) is strictly increasing as a function of £. Thus

§ < 0m =>¥m(&) = am < ¥n(0m) =0
or, conversely,
Y. (&) =a,>0=¢> 6,

(Sufficiency) Since Cy is compact, the minimum of F clearly exists. If £ > 6,,, then

E> ANy, YhE=1,....m
Let us now consider

(ar,...,am) = (F1(O), ..., ¥n()
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a critical point of the convex functional

F*xp, ooy Xm) =F(x1, 0oy Xm) — Ay + -+ +x, — &)

where
1 T B /7 2
Z 1(1/ ))x)
We have that (ay, ..., a,) delivers the minimum value to F* and, consequently, it is also the

minimum of F under the restriction

{(xl,...,xm Zx,:é}
i=1

Moreover,

E> A=Y () =a, >0
so that (ay,...,ay) € E‘g. |
PROPOSITION 1 For every k =1, ..., m the kth distribution function is

i (Bi/1) +2¢ B
Y@ =1 22 (/1) 2%
0 if & <o

if 0y <6; <& <

with the coefficients dy

k
i=3[n2t-3-2]

i=1 =1 71

Proof In view of Lemma 3, if ¢ > J,, then the distribution functions W (&) are strictly
positive for all k£ and it remains to derive the expression for xy. If §,,_; < & < J,,, then the
minimum of Y [ | F;(x;) cannot be attained in the interior. According to Lemma 1, at least x,
must vanish. Thus, ¥,,(&) =0

The same argument applies to the remaining problem of dimension m — 1

Z,_] (ﬂl/yl) + 26 ﬁk

v =
O T

If 0p—p <& <bpy1, then ¥, () =0 and, arguing as above, ¥,_;(¢) =0, and for
k <m — 1 one has

Zl—l (B /yl) + 26 ﬂk

W&
N S T
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Finally, repeating the argument once again, we have that if J; < £ < J;1¢, then the kth dis-
tribution function is equal to zero if & < d;, and if 6y < E(k =1,...,)),

B/ 28 By

+ [ |
29 ji=] /vy 2y

Yi(6) =

In short, if §; < ¢ < J;41, then “the distribution” is performed between the first j thermal
power stations, while the rest of them remains inactive.

THEOREM 2  The equivalent minimizer is a second-order polynomial with piece-wise con-
stant coefficients

W) =D FA¥i&) =k + Be + 748 if 8 <& < B
i=1

~ 1 PRy S S
h=———— Bx=W -5 U= o + -
S R

k
Moreover, it belongs to the class C' and ¥'(5;) = B fori=1,...,m

Proof 1t is evident that ¥ is piece-wise equal to a second-order polynomial. The coeffi-
cients &, f3,, and 7, are obtained without difficulty in Ref. [1], where the question was
treated without taking into account any restrictions. It is clear that in our case, the coefficients
result from changing the sub-indexes m by k, the exception is the expression for &y, pre-
serving the sum with the upper limit m which represents the fuel consumptions of the
disconnected power stations (with zero generation).

Let us now see that the lateral limits of ¥ and W’ coincide with the only conflictive points
0. First of all, let us observe that

1 L &Bl B
‘Skzi[ﬁ";v, Zﬂ]z [ vkﬁk]

i=1

1, &1 &l 1 -Be
e B

i=1 i=1

24% 24% Z4v, 24%

i=1 i=1 i=1

Let us check that the lateral limits of ¥ coincide at d;:

"P((5+) — ak + ﬁk 5 |:ﬁk :};k ﬁk] + Jp= 5 [ﬁk = ﬂk:l

[8; — Bl
\P(é)_za’ Z4v, g = 24% i

i=1

k
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By analogy

W(;) = Gxy + Br_ 12['8"%(_131" ]:|+7—12[ﬂ ?kﬁk]

‘P(ék)—Zoc, Z4v

=1

4Vk 1
Finally:
2 m k /))2 1 k ﬁi +
Y(6,) = ; Lt BT N 5 4
@) = 2“’ Z4v, \;, = 2h T gy ik, YD
Finally, let us see that the lateral derivatives of W at the points J; coincide as well:
W'(5F) = B+ 2048k = B+ Be — Bi = B
V(%) = Bt + 29k10k = By + B — Bi—1 = Bs u

5 EXAMPLES

Let us now see a few examples which illustrate the practical importance of the results
established. First, let us calculate the equivalent minimizer for the following four cost
functions under the restriction of their positivity throughout the domain. The functions are
second-order polynomials and the coefficients are:

i o Bi Vi

1 0 4 0.001
2 0 4.2 0.002
3 0 45 0.001
4 0 4.7 0.002

The units for the coefficients of the thermal plants are: « in ($/4); f in (§/h.Mw) and y in
($/h.MW?). The coefficients d;, which appeared in the previous section, and the coefficients
O, Py and y, of the second-order polynomial ¥ are in this case:

k 5 o Bx T

1 0 0 4 0.001

2 100 —-3.33333 4.06667 0.000666667
3 325 -31.5 4.24 0.0004

4 575 —53.5417 4.31667 0.000333333

and the equivalent minimizer W ($/4) with ¢ in Mw:

4¢ 4 0.001¢2 if 0<¢<100
(&) = | —3:33333 +4.06667¢ + 0.000666667¢2  if 100 < & < 325
—31.5 4 4.24¢ + 0.0004&2 if 325 < ¢ < 575

—53.5417 + 4.31667¢ + 0.000333333&%  if 575 < ¢

is a second-order polynomial with piece-wise constant coefficients as is shown in Figure 1.
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Cost(3/h)
3000
2500 /
-,
2000 P :
1500 ‘
'm . . . N L -
500 o ’
-1 P(Mw)
100
8' 82 200 3008‘3 400 500 8:(!)

FIGURE 1 The equivalent minimizer.

On the other hand, since the restriction of power positivity has been omitted, the classical
solution is:

Y (€) = —53.5417 + 4.31667¢ + 0.000333333¢%  for all ¢

We now compare both solutions for different values of &, calculating the four distribution
functions ¥1(£), ¥2(), ¥3(&), Ya(d):

¢ ¥ k 21(9] ¥;() k P1(9]
75 Y(E) - 75 0 0 0
¥ (&) — 183.333 41,6667 —66.6667 —83.3333
150 (&) — 133.333 16.6667 0 0
Y(&) — 208.333 54.1667 —41.6667 —70.8333
400 W) — 280 90 30 0
Y(&)— 291.667 95.8333 41,6667 —29.1667
600 W) — 358333 129.167 108.333 4.16667
() — 358333 129.167 108.333 4.16667

Let us see the important errors that can be committed by the classical solution W, if the
restriction of power positivity is omitted, and how negative thermal power can sometimes be
produced, as is shown in Figure 2 for ¥,. It can be seen that the different solutions only
coincide for & > 6,.

()
100 W(E)—
50 1 ¢
369, 600
100 N 8)

FIGURE 2 Error in classical solution.
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No. of Unknowns
A

400

200 |

No. of Thermal Plants

1 3 6 12
FIGURE 3 Influence of no. of thermal plants.

Secondly, we analyze the influence of the equivalent thermal station on the number of
unknowns, and consequently, on the solvability of the problem. To this end, we take the Ritz
method [5] as the reference in resolving a hydrothermal system. The system consists of six
hydro-plants and we shall consider a variable number of thermal power stations. The set of
equations defining optimality consists of

No. of thermal plants 1 3 6 12
No. of unknowns 198 246 318 462

We see that once the equivalent thermal station is taken into consideration, the number of
unknowns drastically decreases. This fact yields a series of benefits. Firstly, we reduce the time
that the CPU needs to solve the problem. Secondly, and even more importantly, the method is
more reliable and its convergence is assured. The latter features lessen the importance of the
choice of the initial values used in the calculation, which are always difficult to foresee.

6 CONCLUSIONS AND FUTURE DIRECTIONS

In this article, we establish the framework for a significant simplification of the study of
optimization of hydrothermal systems, independently of the method used for their analysis,
by means of the change from a system of m thermal stations to a system that involves a single
thermal station called the equivalent thermal station. We obtain new theoretical results which
cannot be found in the existing literature. Our theorem is of a general character as it does not
depend on the choice of models.

Subsequently, we calculated the equivalent minimizer in the case where the cost functions
are second-order polynomials. We proved that the equivalent minimizer is a second-order
polynomial with piece-wise constant coefficients. Moreover, it belongs to the class C!.

Finally, we apply the method to the study of various examples and exhibit its advantages
compared to the methods employed by other authors: it reduces the time used by the CPU for
the numerical solution, increases reliability and assures convergence, and lessens the
importance of the choice of the initial values in the numerical realization. We have also seen
that other methods are liable to commit serious errors, such as, for instance, those where
negative thermal powers can appear.

As a perspective for further study, we may mention the problem of constructing
the equivalent thermal station in the cases where models are distinct from second-order
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polynomials. To be exact, when any other type of model is used. This is of significant interest
in the study of hydrothermal optimization, where the cost functional includes transmission
losses, since in this case the functional ceases to be quadratic.

Moreover, now that it has been shown that any problem of the type (H,-T,,) can be
substituted by another of the form (H,—T)), which is followed by another “pure thermal”
problem, we can concentrate on problems of the type (H,—Ti), which constitute the
true variational problem. This formulation allows us to employ the theory of calculus of
variations.
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