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1 INTRODUCTION

It is well known that the collection of two dimensional domains for which the eigenstructure
of the Laplacian is available explicitly contains rectangles and ellipses. It is not nearly so
widely recognized that the equilateral triangle also belongs to this class of regions. The
eigenvalues and eigenfunctions of the Laplacian on an equilateral triangle were first presented
by Lamé [4-6] and then further explored by Pockels [11].

However, Lamé did not provide a complete derivation of his formulas but rather simply
stated them and then showed that they satisfied the relevant equation and associated boundary
conditions. Most subsequent authors have either simply made reference to the work of Lamé
[13] or reproduced his formulas without derivation [11, 15]. One notable exception is the
work of Pinsky [10] where Lamé’s formulas are derived using the functional analytic tech-
nique of reflection operators due to Arnold. Another is the more recent work of Prager [12]
wherein these eigenfunctions are derived via an indirect procedure based upon prolonga-
tion/folding transformations relating the equilateral triangle and an associated rectangle.
Thus, there is presently a lacuna in the applied mathematical literature as concerns a direct
elementary treatment of the eigenstructure of the equilateral triangle.

It is the express purpose of the present work to fill this gap for the case of the Neumann
boundary condition. The parallel development for the Dirichlet problem appears in [8]. A
forthcoming part will present a corresponding treatment of the Robin problem. Not only will
we supply a derivation of Lamé’s formulas from first principles but we will also endeavor to
provide an extensive account of modal properties. Many of these properties are simply stated
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by Lamé and Pockels but herein receive full derivation. Other properties that are clearly
identified below are new and appear here for the first time.

Knowing the eigenstructure permits us to construct the Neumann function, and we do so.
The implications for related geometries are also explored. The primarily pedagogical and
historical exposition to follow gladly trades off mathematical elegance for brute-force, yet
straightforward, computation in the hope that these interesting results will thereby find their
natural place in introductory treatments of boundary value problems.

2 THE NEUMANN EIGENPROBLEM FOR THE EQUILATERAL TRIANGLE

During his investigations into the cooling of a right prism with equilateral triangular base [5],
Lamé was led to consider the eigenvalue problem

AT(x,y) +KT(x,y) =0, x,)) €T Z;—f(x,y) =0, (x,y)eor 2.1

where A is the two-dimensional Laplacian, 0?/dx? 4+ 9?/9)?, 1 is the equilateral triangle
shown in Figure 2.1, and v its outward pointing normal. Remarkably, he was able to show
that the eigenfunctions satisfying Eq. (2.1) could be expressed in terms of combinations of
sines and cosines, typically the province of rectangular geometries [7].

Lamé later encountered the same eigenproblem when considering the vibrational modes of
a free elastic membrane in the shape of an equilateral triangle [6]. The identical problem
occurs also in acoustic ducts with hard walls and in the propagation of transverse electric
(TE- or H-) modes in electromagnetic waveguides [3]. Lamé’s solution of this problem
actually proceeds from quite general considerations about precisely which geometries will
give rise to eigenfunctions composed of sines and cosines. These matters we now take up.

3 LAME’S FUNDAMENTAL THEOREM

Let us begin by stating that we will make some alterations to Lamé’s presentation of his
General Law of a Nodal Plane. First of all, rather than being concerned with three-dimen-
sional problems, we will restrict attention to two dimensions and hence will consider instead
nodal lines (i.e., lines along which an eigenfunction vanishes) and antinodal lines (along
which the normal derivative vanishes). Secondly, since we are not specifically interested in

(0,0) T (h,0)

FIGURE 2.1 Equilateral triangle with incircle.
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heat transfer but rather in the eigenproblem, Eq. (2.1), in its own right, we will replace his
notions of inverse/direct calorific symmetry by the less application-specific concepts of
antisymmetry/symmetry, respectively.

Motivated by his earlier work in crystallography, Lamé made the following observations
the cornerstone of his work on heat transfer in right prisms (see [8] for a complete elementary

proof).

THEOREM 3.1 (Fundamental Theorem) Suppose that T(x,y) can be represented by the
trigonometric series

T(x,y) =Y Aisin(Ax + wy + %) + B; cos(hx + wy + B;) (3.1)

with 2 + 12 = k2, then

() T(x,y) is antisymmetric about any line along which it vanishes.
(i) T(x,y) is symmetric about any line along which its normal derivative, OT /0v, vanishes.

The Fundamental Theorem has the following immediate consequences.

COROLLARY 3.2 With T(x,y) as defined by Eq. (3.1),

() If T = 0 along the boundary of a polygon then T = 0 along the boundaries of the family
of congruent and symmetrically placed polygons obtained by reflection about its sides.

(ii) if 0T /Ov = 0 along the boundary of a polygon then 0T /Ov = 0 along the boundaries of
the family of congruent and symmetrically placed polygons obtained by reflection about
its sides.

This corollary has far reaching implications for the determination of those domains which
possess eigenfunctions expressible in terms of sines and cosines (henceforth referred to as
“trigonometric eigenfunctions”). For example, Figure 3.1 illustrates that the diagonal of a
rectangle cannot ordinarily be a nodal line, nor for that matter an antinodal line, since the
rectangle has a complete orthonormal system of trigonometric eigenfunctions yet does not
possess the requisite symmetry unless it is either a square or has aspect ratio +/3 (see
Fig. 8.7). Here and below, solid lines denote lines of asymmetry while dashed lines denote
lines of symmetry. Furthermore, as illustrated in Figure 3.2, a right isosceles triangle may be
repeatedly reflected about its edges to produce the symmetry (denoted by +) required by
the Fundamental Theorem and in fact possesses trigonometric eigenfunctions obtained from
the restriction of those of a square with an antinodal line along a fixed diagonal.

FIGURE 3.1 Rectangular reflection.
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FIGURE 3.2 Symmetry of isosceles right triangle.

FIGURE 3.3 Symmetry of equilateral triangular lattice.

Next consider the equilateral triangular lattice of Figure 3.3 together with its supporting
symmetric structure. It suggests that the equilateral triangle might possess trigonometric
eigenfunctions since the Fundamental Theorem supplies necessary but not sufficient con-
ditions. By devices unknown, Lamé was in fact able to construct such a family of eigen-
functions but, before we can even describe them, we must first introduce his natural triangular
coordinate system. We will return to consider other regions with and without trigonometric
eigenfunctions in a later section.

4 TRIANGULAR COORDINATE SYSTEM

Reconsider the equilateral triangle of side 4 in standard position in Cartesian coordinates
(x,y) (Fig. 2.1) and define the triangular coordinates (u, v, w) of a point P (Fig. 4.1) by

u=r—y

V3 r\ 1

= x'§)+§(y_’) @.1)
V3 (h 1

7(5 )+z(y‘r>
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FIGURE 4.1 Triangular coordinate system.

where 7 = h/(2+/3) is the inradius of the triangle. The coordinates u, v, w may be described
as the distances of the triangle center to the projections of the point onto the altitudes,
measured positively toward a side and negatively toward a vertex.

Note that the triangular coordinates satisfy the relation

u+v+w=0. 4.2)

Moreover, the center of the triangle has coordinates (0, 0, 0) and the three sides of the triangle
are given by u =r, v=r, and w = r, thus simplifying the application of boundary condi-
tions. They are closely related to the barycentric coordinates (U, ¥, W) introduced by his
contemporary Mobius in 1827 [2]:

_r—u
T 3
r—v
V = .
3r @3)
r—w
W =
3r

satisfying U + V' + W = 1. These were destined to become the darling of finite element
practitioners in the 20th Century.

5 SEPARATION OF VARIABLES

We now commence with our original, complete, direct, and elementary derivation by
introducing the orthogonal coordinates (&, 77) given by

E=u, n=v—w, (5.1
Equation (2.1) becomes

o't T,

432 =0. 2

a§2+36:12+kT 0 (5.2)
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FIGURE 5.1 Modal line of symmetry/antisymmetry.

Hence, if we seek a separated solution of the form
S -glm) (5.3)
we arrive at
[fHf =0, ¢ +pg=0 o +3F =K. (5:4)
Thus, there exist separated solutions of the form
S - glv—w), (5.5)

where f'and g are trigonometric functions.
Before proceeding any further, we will decompose the sought after eigenfunction into parts
symmetric and antisymmetric about the altitude v = w (see Fig. 5.1)

T(u, v, w) = Ts(u, v, w) + To(u, v, w), (5.6)
where

T(u,v,w)+ T(u,w,v)
2 9

T(u,v,w)— T(u,w,v)
2 9

Ts(u,v,w) = T,(u,v,w) = (5.7)

henceforth to be dubbed a symmetric/antisymmetric mode, respectively. We next take up the
determination of T and 7, separately.

6 CONSTRUCTION OF A SYMMETRIC MODE

We first dispense with the eigenvalue k% = 0. Its corresponding eigenvector is constant and
we choose 700 = 3 for reasons that will become evident. There is no corresponding anti-
symmetric mode. Any multiple of this symmetric mode, shown in Figure 6.1, is called a
plane wave. We next search for symmetric modes which are not plane waves.
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FIGURE 6.1 Plane wave.

In light of the fact that 07, /0u must vanish when u = —2r and u = r while being even as a
function of v — w, we seek a solution of the form

T; = cos [g;{ (u+ 2r)] cos[f; (v — w)], 6.1)

where [ is an integer and [r//3r]* + 3,8% = k?. We will show that, by itself, this form cannot
satisfy the Neumann boundary condition along v =r. Observe that if it could then, by
symmetry, it would automatically satisfy the corresponding boundary condition along w = r.

Moreover, we will show that the sum of two such terms also does not suffice for the
satisfaction of the remaining boundary conditions. However, the sum of three appropriately
chosen terms of the form Eq. (6.1) does indeed satisfy said boundary conditions and thus
constitutes the sought after symmetric mode. In the course of this demonstration, the
expression for the eigenvalues k% will emerge.

Along v = r, we have v — w = u + 2r where we have invoked the fundamental relation
of triangular coordinates given by Eq. (4.2). In order to facilitate the calculation of the
normal derivative along v =r, we will utilize the coordinate system (w —u, w+ u). In
terms of these coordinates, u=—(1/2)(w—u)+ (1/2)w+u), v=—(w+un),
w=(1/2)w—u)+(1/2)(w+u), and v—w = —(1/2)(w — u) — (3/2)(w + u) so that

0T, 3 nl\ . nl
sl = (30— ) sinf (B4 w20

+ (%Bl +1n—21r) sin[(—g;l+ﬁ1>(u+2r)], 6.2)

which cannot be identically equal to zero —27 < u < runless / = 0 and 8, = 0 in which case
Eq. (6.1) degenerates to a plane wave. Thus, one such term does not suffice.
Hence, let us try instead a sum of the form

T = cos[;t—i (u+ 2r)] cos[f;(v —w)] + cos[g—’:’ (u+ 2r)] cos[B,(v — w)l, 6.3)
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with [2/(3P)F + 38> = [nm/(3r)F + 383 = k*. Along v = r, we now have

0Ty 3 nl\ . [ (=l
o Lo (Zﬁl “m) Sm[(;wl)(unr)]
+ (%ﬂl +17't_21r) Sin-(—;t—i+ ﬁl)(" + 2,.)]
+ (%ﬂz - -17%;) sin:(%—’:- + ﬂz)(u + 2,,)]

3 -
+ (Z B, + %) sin L(— ’;—’f n ,Bz)(u n 2r)], (6.4)

and the only way to get these terms to cancel pairwise is to choose I=m =, =f,=0
which once again produces only a plane wave. Thus, two such terms do not suffice.
Undaunted, we persevere to consider a sum of the form

T, = cos[;t—i (u+ 2r)] cos[f;(v — w)]
+ cos [7;—’: u+ 2r)] cos[f,(v — w)]

+ cos[% (u+ 2r)] cos[B5(v — w)l, (6.5)
with

2
5] =[5 sa=[5]wa=r (66)

Along v = r, we now have

oT, | _
ow+u) v=r -

B —%) sin (g—:-}- Bl)(u+2r):|
- nl

——+/31)(u + 2r)]

~N

(’;—'f +Ba) 0+ 2r)]

(—33? +B2) e+ 2r)]
n] (

% +Bs) u+ 2r)]

By + 21) sin (—% +B3)w+20), 6.7)

+
—
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There are now eight possible ways that cancellation may occur that all lead to essentially the
same conclusion. Hence, we pursue in detail only

nl N nl m

n
Gth=—3 18 3 -bh=-%

b TP 6

When added together, these three equations yield the important relation
I+m+n=0. 6.9)

With this consistency condition satisfied, we may add the first and last of Egs. (6.8) to obtain
bis
By =By =5, +m), (6.10)
r
which, when combined with the identity
\2
381 — BBy + B2) = (5) (m = Diom +1) (6.11)

obtained by rearranging the first of Egs. (6.6), yields

and, finally,
_ - l—
By = 7Z(m9r n); By = ﬂ:(’197' l); By = “ or m). 3

The eigenvalue may now be calculated as

K= 22—7 (g)z[l2 +m?+n*] = 547 G)Z[m2 + mn + n?], (6.14)

with the corresponding symmetric mode given by

" = cos[g—: (u+ 2r)] cos [w - w)]

+ cos [% (u+ 2r)] cos [n(ng; D v— w)]

+ cos [% (u+ 2r)] cos [n(l 9_r m) - w)], (6.15)

which never vanishes identically. Figure 6.2 displays the (0,1) symmetric mode.
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FIGURE 6.2 (0,1) Symmetric mode.

7 CONSTRUCTION OF AN ANTISYMMETRIC MODE

A parallel development is possible for the determination of an antisymmetric mode. In light
of the oddness of T, as a function of v — w, we commence with an Ansatz of the form

T, = cos [g_é (u+ 2r)] sin[B;(v — w)]
+ cos[’;—’:’ (u+ 2r)] sin[B,(v — w)]

n cos[’;—;' (u+ 2r)] sin[B5(v — w)]. 7.1)

As for the symmetric mode, one can establish that all three terms are in fact necessary for the
satisfaction of the Neumann boundary conditions.

Once again we are led to the conditions [+m+n=0k=
Q@/27)(w/r) [ + m? + n?] = (4/2T)(n/r)[m* + mn +n?], and By = n(m —n)/(9r), B, =
n(n — 1)/(9r), B3 = n(l — m)/(9r). Therefore, we arrive at the antisymmetric mode

"= cos[ (u+ 2r):| sm[—(——9:l)( — w)]

+ cos[— (u+2r) s1n[ (n = ( - w)]

+cos[ (u+2) sin [ )], (7.2)

which may be identically zero. Figure 7.1 displays the (0,1) antisymmetric mode.
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FIGURE 7.1 (0,1) Antisymmetric mode.

8 MODAL PROPERTIES

In what follows, it will be convenient to have the following alternative representations

1 2
" = 3 {cos [:;—7: (lu+mv+nw+ 3lr)] + cos [9—7: (nu+mv+Iw+ 3nr)]

2 2
+ cos [9—1: (mu+nv+w+ 3mr)] + cos [57:- (mu+lv+nw+ 3mr)]

2
+ cos [9—: (nu+ v+ mw+ 3nr)] + cos[z—: (lu+ nv+mw+ 3lr)] };
8.1)
1 2
"= 3 {sin[z—:(lu +mv+nw+ 3lr)] - sin[gg(nu +mv+iw+ 3nr)]
. |2n . | 2=
+ sm[; (mu+nv+Iw+ 3mr)] — sm[a (mu+ v+ nw+ 3mr)]
. |27 . [2n
+ sin ;(nu+ v+ mw+ 3nr)| —sin E(lu +nv+mw+3lr)| ¢,
8.2)

obtained from Egs. (6.15) and (7.2), respectively, by the application of appropriate trigo-
nometric identities.

It is clear from these formulas that both T;"" and 7" are invariant under a cyclic per-
mutation of ([, m, n), while T;»" = T?" and T"" = —T,»" (which are essentially the same
since modes are only determined up to a nonzero constant factor). Thus, we need only
consider n > m. Moreover, since T,%", T, >+, T, =", Tommtn Tom=mn and T, 7~ all
produce equivalent modes, we may also neglect negative m and n.

‘We may pare this collection further through the following observation due to Lamé [5].

THEOREM 8.1

(1) T™" never vanishes identically.
(ii) T;*" vanishes identically if and only if two of I,m,n are equal.
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Proof

(i) Note that a symmetric mode is identically zero iff it vanishes along the line of symmetry
v = w, since the only function both symmetric and antisymmetric is the zero function.
Along v=w,

n(m + n)

™" = cos [ 3 (u+ 2r):| + cos[—(u + 2r)] + cos[ ’:(u + 2r)], 8.3)

which may be trigonometrically recast as

n(m + n)

™" = 4cos [ &

(u+ 2r)] cos[— (u+ 2r)] + cos[ (u+ 2r)] 8.4

which cannot vanish identically for —2r <u <r.

(ii) Note that an antisymmetric mode is identically zero iff its normal derivative vanishes
along the line of symmetry v =w, since the only function both antisymmetric and
symmetric is the zero function. Along v = w,

ory"  m(m—n) 7l (n —1)
o—w - o 0s [5 (u+ 2r)] + Tcos[ (u+ 2r)]

n(l — m)
+ or c

os[g u+ 2r)], 8.5)

which may be trigonometrically recast as

or OT™  _ (m = n)cos| ™" + AN g
T o(v—w)
+ (m+ n){cos[; (u+ 2r)] - cos[g-:l (u+ 2r)]}
m nn
+n cos[g; (u+ 2r)] —-m cos[z: (u+ 2r)}. 8.6)
This equals zero iff m =norm = —2n (i.e. [ =n) or n = —2m (i.e. [ = m). |

FIGURE 8.1 (1,1) Mode.
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FIGURE 8.2 (0,2) Symmetric mode.

Hence, our system of eigenfunctions is {7;""(n > m); T,""(n > m)}. Figure 8.1 shows the
(1,1) mode whereas the symmetric and antisymmetric (0,2) modes are displayed in
Figures 8.2 and 8.3 while the symmetric and antisymmetric (1,2) modes are displayed in
Figures 8.4 and 8.5, respectively. We next show that this is a complete orthonormal set of
eigenfunctions and then go on to explore some features of these modes.

¥ x

FIGURE 8.3 (0,2) Antisymmetric mode.

FIGURE 8.4 (1,2) Symmetric mode.
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FIGURE 8.5 (1,2) Antisymmetric mode.

8.1 Orthonormality

By Rellich’s Theorem [7], eigenfunctions corresponding to distinct eigenvalues are guar-
anteed to be orthogonal. However, as we shall eventually discover, the multiplicity of the
eigenvalues given by Eq. (6.14) is quite a complicated matter. Thus, direct integrations
employing Eq. (8.1) and (8.2) confirm the orthogonality of our collection of eigenfunctions
{T"(n = m); T)""(n > m)}.

Furthermore, they may be normalized using

923
I"|1* = Tf =|T;"I>  (m # n), (8.7)
Nz = # (m* +n? #0), (8.8)
and
720112 = 27/24/3, (8.9)

by employing the inner product {f, g) = [ [, fg d4.

8.2 Completeness

It is not a priori certain that the collection of eigenfunctions {T7", T.*"} constructed above is
complete. For domains which are the Cartesian product of intervals in an orthogonal coor-
dinate system, such as rectangles and annuli, completeness of the eigenfunctions formed
from products of one-dimensional counterparts has been established [16]. Since the equi-
lateral triangle is not such a domain, we must employ other devices in order to establish
completeness. We follow the lead of Prager [12] and appeal to the well-known completeness
of the corresponding eigenfunctions of the rectangle.

For this purpose, we now introduce the triangle-to-rectangle (TTR) transformation pic-
torialized in Figure 8.6 for symmetric modes and in Figure 8.7 for antisymmetric modes. In
these figures, a solid line represents a Dirichlet condition (7' = 0) and a dashed line a
Neumann condition (07 /0v = 0), while the patterns of + signify symmetry/antisymmetry.
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FIGURE 8.6 Triangle-to-rectangle transformation (symmetric mode).

Restricting attention to the right half of the equilateral triangle, this coincides with the
prolongation transformation of Prager [12].

Commencing with the equilateral triangle in the southwest corner of each diagram, we
construct the remainder of each figure by performing three symmetric reflections across
triangle edges as specified by the Fundamental Theorem. In both cases, this leaves us with a
(shaded) rectangle of dimensions 34/2 x /3h/2.

For the symmetric mode (Fig. 8.6), this rectangle has strictly Neumann boundary condi-
tions, while, for the antisymmetric mode (Fig. 8.7), there are Neumann boundary conditions
along the top and bottom and Dirichlet boundary conditions on the sides. In both cases, the
corresponding eigenfunctions of the rectangle are known to be complete. By our construction
procedure for the modes of the equilateral triangle, they are seen to be precisely the
restriction of the corresponding modes of the associated rectangle possessing the indicated
pattern of nodal and antinodal lines.

For example, in order to construct a mode of the rectangle [v/3r, 4+/37] x [0, 3#] of Figure
8.6 with the displayed antinodal lines, we may confine ourselves to making the mode
symmetric about the indicated diagonal y = 47 — x/+/3 since the remaining antinodal lines
would then follow immediately from the Fundamental Theorem. We do this by suitably
combining the known complete orthogonal rectangular modes of the form
cos[un/(3r)(3r — y)] cos[v2n/(3+/37)(x — 37)], where p and v are positive integers.

Although this process is laborious, it is identical to that outlined in Sections 6 and 7 for the
construction of 7; and 7,. The end result is that these rectangular modes must be combined in
triplets satisfying p; + pp + p3 =0, v1 = py — p3, v2 = pi3 — py, v3 = py — pp. Hence, any
such mode of the rectangle will be given by a linear combination of the modes I7"" of Eq.
(6.15).

Similar considerations applied to the rectangle of Figure 8.7, whose modes are
cos[un/(3r)(3r — y)]sin[v27/(3+/37)(x — 37)], yield the one-to-one correspondence between
" of Eq. (7.2) and the modes of this rectangle which vanish along the indicated diagonal.

Qo - - —

FIGURE 8.7 Triangle-to-rectangle transformation (antisymmetric mode).
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Thus, if the equilateral triangle were to possess either a symmetric or an antisymmetric
mode not expressible as a linear combination of those we have found above then the same
would be true for its extension to the associated rectangle by the TTR transformation. This
contradiction establishes that our collection of equilateral triangular modes is indeed
complete.

8.3 Nodal/Antinodal Lines

As evidenced by Figure 6.1, the first eigenfunction of an eigenvalue problem can have no
nodal lines in the interior of the domain and thus must be of the same sign everywhere [1].
Hence, every other eigenfunction orthogonal to it must have nodal lines.

The structure of the nodal lines is nontrivial. For example, based upon the picture of the
(1,1) mode displayed in Figure 8.1, one might posit that the line segments connecting the
midpoints of the triangle sides are nodal lines. However, this cannot be the case since it
clearly does not possess the antisymmetry required by the Fundamental Theorem. We next
consider some properties of nodal/antinodal lines.

We commence by reconsidering the case m = n. Recall that we have already determined
that 7™ = 0. Furthermore, in this case, we may combine the terms of Eq. (8.1) to yield

21

" = cos[ 3;n r— u)] + cos[%n?-(r — v)] + cos[%r?m r— w)], (8.10)

which clearly illustrates that any permutation of (u,v,w) leaves T7"™ invariant. This is
manifested geometrically in the invariance of 7;"™ under a 120° rotation about the triangle
center (see Fig. 8.8). This invariance will henceforth be termed rotational symmetry.

We next rewrite Eq. (8.10) as

" =(—-1)"4 cos[g—f(r — u)] cos[’é—’: r— v)] cos[i—’:(r — w)] —-1. (8.11)

Thus, the nodal lines even in this special case are given by the transcendental equation
obtained by setting this expression to zero.

FIGURE 8.8 (2,2) Mode.
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In spite of this, there is in fact an inherent structure to the antinodal lines when m = n.

Straightforward differentiation of Eq.(8.10) establishes that 077" / 6u|v=r_ & my3r (k=0,...m) = 0.
Thus, by invoking rotational symmetry, an antinodal line (07;*™/0v = 0) occurs at
k k k
u=r——3r, v=r——3r;, w=r——3r (k=0,...,m). 8.12)
m m m

That is, there is a network of m — 1 equidistant antinodal lines parallel to each side of the
triangle which subdivides it into m? congruent equilateral triangles, each supporting a portion
of the mode similar to the (1,1) mode and “in-phase” with one another. This is in evidence in
Figure 8.8.

As first pointed out by Lamé [5], the modes 7™ are not the only ones that are rotationally
symmetric.

THEOREM 8.2

(i) T is rotationally symmetric if and only if m = n(= ) (mod 3).
(i) T*" is rotationally symmetric if and only if m = n(= I) (mod 3).

Proof

(i) T»" is rotationally symmetric iff it is symmetric about the line v = u. This can occur if
the normal derivative, 07™" /Ov vanishes there. Thus, we require that

o |
o(v—u)'v=¢

1 . |2=#
=-3 {(m =) smlig(lu + mu — 2nu + 3lr):|

.27

+ (m — n)sin [5; (nu + mu —2lu + 3nr)]
.27

+(n—m) s1n[§ (mu + nu —2Iu + 3mr)]
.27

+({—m) smli;; (mu + lu — 2nu + 3mr)]

+ (I — n)sin " (nu + lu — 2mu + 3nr)]

2_7t
9
. |2n
+m-=1 sm[a (lu + nu — 2mu + 3lr)]} =0, (8.13)

derived from Eq. (8.1). These terms cancel pairwise iff m = n(= [) (mod3).
(i) T;»" is rotationally symmetric if it is antisymmetric about the line v = u.
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®

FIGURE 8.9 (1,4) Symmetric mode.
This can occur iff 7" vanishes there. Thus, we require that

1| . [2n i
o, = 5{ sm[—é;(lu + mu — 2nu + 3lr)_

— sin z_n (nu + mu — 2lu + 3nr)]
v

(mu + nu — 2lu + 3mr)

+ sin —%E
| 97 |

2
— sin 9—7:(mu + lu — 2nu + 3mr)

2
+ sin —n(nu + lu — 2mu + 3nr)
| 9r
. 2=
— sin -9—r(lu + nu — 2mu + 3lr)]} =0, (8.14)
derived from Eq. (8.2). These terms cancel pairwise iff m = n(= I) (mod3). |

This is illustrated in Figures 8.9 and 8.10 which display the symmetric and antisymmetric
(1,4) modes, respectively.
Finally, we offer the following new result.

FIGURE 8.10 (1,4) Antisymmetric mode.
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THEOREM 8.3  The volume under T™" is equal to zero if and only if m* + n? # 0.

Proof The volume under T%° is obviously nonzero. Also, by Rellich’s Theorem [7],
eigenfunctions corresponding to distinct eigenvalues are orthogonal. Hence, all of the other
modes T™"(m?* + n* # 0) are orthogonal to 7% = 3 and thus the volume under these modes
is equal to zero. |

9 SPECTRAL PROPERTIES

In those physical problems in which Eq. (2.1) arises, the frequency f,, , is proportional to the
square root of the eigenvalue. Hence, from Eq. (6.14), we arrive at

4
Soun 0(3—7;—«/2; €:=m*+mn+n* 9.1)

Thus, the spectral structure of the equilateral triangle hinges upon the number theoretic
properties of the binary quadratic form m? + mn + n?.

Since T,»" and T,"" both correspond to the same frequency f, given by Eq. (9.1), it
follows that all eigenvalues corresponding to m # n have multiplicity equal to at least two.
However, this model degeneracy, as it is known in the engineering literature, extends also to
the case m = n. For example, the (7,7) and (2,11) modes, both corresponding to £ = 147,
share the same frequency. In fact, the multiplicity question is quite deep and we defer to [9]
for its definitive treatment.

Turning to the specific application of the vibrating equilateral triangular membrane for the
sake of definiteness, the collection of frequencies {f,,,} possesses an inherent structure.
Specifically, we can partition this collection of frequencies into distinct “harmonic sequen-
ces” so that, within such a sequence, all frequencies are integer multiples of a “fundamental
frequency”. Complete details appear in [9].

10 NEUMANN FUNCTION

Using Egs. (6.15), (7.2), and (8.7)—(8.9), we may define the orthonormal system of
eigenfunctions

¢ _— (m _—0 l 2 oo =m ...) (10.1)
s ”T"’"” 9 Ly Ly ’ ’ ’
¢ = m,n (m—o 1’27"' n=m 1 "') (10'2)
“ "Ta " ’ ’ ' '

together with their corresponding eigenvalues

_ 472

,,,,,,_W(m2+mn+n2) m=0,1,2,...;n=m,...). (10.3)
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The Neumann function [14] (variously called the modified, generalized, or pseudo Green’s
function) for the Laplacian with Neumann boundary conditions on an equilateral triangle is
then constructed as

G(x,y;xl’yl).:Z(bs‘ (x,J’)d%’ (x/’.)/)

m=1 Amm
+ 2:)(:) il ¢_:.”v”(x, y)¢;n'”(x/,_)/)/1:|n-’n¢;”v"(x’ y)¢;n,n(x,,y,) .

(10.4)

This may be employed in the usual fashion to solve the corresponding nonhomogeneous
boundary value problem, assuming that it is consistent.

11 RELATED STRUCTURES

We now turn to structures related to the equilateral triangle in the sense that they share some
or all of their eigenfunctions. Of particular interest are symmetry/asymmetry considerations
which show that the eigenfunctions of the equilateral triangle under mixed boundary con-
ditions (i.e. part Dirichlet and part Neumann) are not trigonometric.

11.1 Hemi-Equilateral Triangle

The right triangle obtained by subdividing the equilateral triangle along an altitude is shown
in Figure 11.1 and is christened forthwith the hemi-equilateral triangle. Thus, it may be
characterized as a right triangle whose hypotenuse has precisely twice the length of one of its
legs. Following Lamé [5] it is immediate that all of its modes (under Neumann boundary
conditions) are obtained by simply restricting the symmetric modes of the equilateral triangle
(thereby having an antinodal line along said altitude) to this domain. Rather than subdividing
the equilateral triangle to obtain a related structure we may instead consider regions
obtainable by combining equilateral triangles. We next consider a couple of examples of this
procedure.

FIGURE 11.1 Hemi-equilateral triangle.
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FIGURE 11.3 Antisymmetric mode of regular thombus.

11.2 Regular Rhombus

Lacking a better term, we will denote a thombus composed of two equilateral triangles by
regular rhombus. Thus, a regular rhombus has supplementary angles of 60° and 120°. Any
mode of the regular rhombus may be decomposed into the sum of a mode symmetric and a
mode antisymmetric about the shorter diagonal. As shown in Figure 11.2 and first observed
by Pockels [11], the symmetric modes may all be constructed by symmetric reflection of the
modes of the equilateral triangle. However, as shown by Figure 11.3, the antisymmetric
modes cannot be so constructed by reflections since this always leads to sign conflicts such as
that circled (different signs appearing in positions symmetric about a Neumann line and
hence positions of symmetry). A close inspection of Figure 11.3 reveals the following new
underlying principle: The eigenfunctions of the equilateral triangle with two Neumann
boundary conditions and one Dirichlet boundary condition are not trigonometric.

11.3 Regular Hexagon

A similar situation obtains for a regular hexagon which, of course, can be decomposed into
six equilateral triangles. As shown in Figure 11.4 and first observed by Pockels [11], any
fully symmetric mode (i.e. one where all of the edges of the component equilateral triangles
are antinodal lines) can be constructed by symmetric reflection of the modes of the equilateral
triangle. Yet, any fully antisymmetric mode, which is composed of antisymmetric reflections
about the interior triangle edges cannot be so constructed due to the inevitable sign conflicts
shown circled. A careful perusal of Figure 11.5 reveals the following new underlying
principle: The eigenfunctions of the equilateral triangle with two Dirichlet boundary
conditions and one Neumann boundary condition are not trigonometric.
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FIGURE 11.5 Fully antisymmetric mode of regular hexagon.

12 CONCLUSION

In the foregoing, we have filled a prominent gap in the applied mathematical literature by
providing a complete, direct, and elementary derivation of Lamé’s formulas for the eigen-
functions of the equilateral triangle under Neumann boundary conditions. In addition to its
innate mathematical interest, this problem is of practical interest as it relates to the calibration
of numerical algorithms for approximating the eigenvalues of the Laplacian upon triangu-
lated domains.

In addition, we have established the orthonormality and completeness of this collection of
eigenfunctions using the simplest of mathematical tools. Furthermore, we have made an
extensive investigation of the properties, especially of the nodal/antinodal lines, of these
modes. Lastly, the Neumann function has been specified and related structures have been
considered. Part I of this work [8] presented a parallel treatment of the Dirichlet problem
while Part III will deal with the much more difficult Robin problem.
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