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Abstract

We give a generalization of a binomial identity due to S. Simons using Cauchy’s integral
formula.

In [2] Simons proved a binomial identity which can be equivalently written as
" (n\ (m+k\ . ~=(n\[(n+k _k %
= -1 (1 ) 1
S () -2 (e 8

In [1] and [3] this identity is proved in different short ways. In this note, using Cauchy’s
integral formula as in [3], we give a generalization of (1). Consider the term

where ((g)) =p8B+1)---(B+k—1)/k! and «, [, z, y are indeterminates. By

Cauchy’s integral formula we have

(14+yt)* 1 7{(1+yz)°‘ dz
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With the substitution z = w/(1 — sw), where s is an indeterminate, we have dz =
dw/(1 — sw)? and
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We now distinguish some cases. First let s =y. Then
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Hence we have the identity

kz:; (n . k:) ((i))xkyn_k - k; (ﬁ I jZ B 1) ((i)) (1" Mty (2)

Substituting § with G4 1 identity (2) becomes
~ a BHEN & onk " (B—a+n\[B+Ek vk b ek
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k=0 k=0

In particular for o = identity (3) becomes

- « atk\ poakw s~ (n)[atk yn—k k, n—k
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In particular, when « =n we have Simons’s identity (1).

Suppose now that s = —x. Then
n « —a+n— - o ﬁ —a+n—1 —
fo = [t"](1 + (z + y)t)*(1 4 at)?~otnt :Z (k)( o )(m—i—y)kx k
k=0
and hence
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Substituting ( with (§+ 1, we have
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Finally for aa = we get

S ) n (@

Let now y =2s and f=2a—n-+1. Then
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Hence

[n/2]
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k= k=0

Similarly, for x = —2s and a = 28+n—1, after the substitution of g with g+1,
we have

oy (L4 (y = s)t2)27 ! 20+n+1\(B+k .
fo=1t"] (1 — s2t2)B+1 :;( n— ok )( L >32k(y_3) 2"
and thus
n n/2]
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S ()T e = 2 () (1)
(9)
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