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ON THE IRRATIONALITY OF A DIVISOR FUNCTION SERIES
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Abstract

Here, we show, unconditionally for k = 3, and on the prime k-tuples conjecture for k ≥ 4,
that

∑∞
n=1

σk(n)
n! is irrational, where σk(n) denotes the sum of the kth powers of the divisors

of n.

1. Introduction

For a positive integer n put
σk(n) =

∑

d |n

dk

for the sum of the kth powers of the (positive) divisors of n. In [4], Erdős and Kac showed
that the series

∞∑

n=1

σk(n)

n!

is irrational for both k = 1 and k = 2. The problem is mentioned also in [5], wherein it is
stated that the method does not seem to extend to k ≥ 3, and it appears as B14 in [6]. Let
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us quickly give proofs of the irrationality of these series when k = 0, 1, 2. Assume that the
given series is A/B, where A and B are positive integers. Multiplying by (n − 1)!, where
n > B, we get that

n−1∑

j=1

σk(j)
(n − 1)!

j!
+

σk(n)

n
+

σk(n + 1)

n(n + 1)
+

∑

j≥2

σk(n + j)

n(n + 1) · · · (n + j)
=

A(n − 1)!

B
.

The first of the above sums is an integer and the right hand side is also an integer. The
second sum is positive and, for k ≤ 2, its size is

≤ σ2(n + 2)

n(n + 1)(n + 2)
+

∑

j≥3

σ2(n + j)

n(n + 1) · · · (n + j)
$ 1

n
+

∑

m≥n

1

m2
$ 1

n
,

so that this term belongs to the interval [0, c/n], where c is an absolute constant. We shall
take n to be a prime n ≡ 1 (mod 4) such that (n + 1)/2 has no prime factor < y, where
y is a large positive real number. Such primes exist by Dirichlet’s theorem on primes in
arithmetical progressions. Then

σ1(n + 1)

n(n + 1)
≤ c1 log log n

n

for some constant c1, and

5

4
≤ σ2(n + 1)

n(n + 1)
≤ 5(n + 1)

4n

∏

q≥y

(
1 +

1

q2
+ · · ·

)

≤ 5(n + 1)

4n
exp

(
∑

q≥y

1

q(q − 1)

)
=

5(n + 1)

4n
eO(1/y)

=
5

4
+ O

(
1

y

)
(1)

whenever n > y. Thus, when k = 1, we get that σ1(n)/n = 1 + 1/n, and we conclude that
there is an integer in the interval [1/n, (c+1+ c1 log log n)/n], while when k = 2 we get that
σ2(n)/n = n+1/n, and so there exists an integer in the interval [1/4, 1/4+c/n+c2/y], where
c2 is the constant implied by the O symbol in (1). Choosing n (and y) to be sufficiently
large, we get a contradiction in the case k = 1 (and k = 2), which completes the proof.

In this paper, we make a modest contribution to the problem, proving two results about
the irrationality of the above series for k ≥ 3.

Theorem 1. The sum of the series

∞∑

n=1

σ3(n)

n!
(2)

is irrational.
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We recall the statement of the Prime k-tuples Conjecture (see [3, 7, 9]), which is due to
Dickson.

Conjecture 1. For any k ≥ 2, let a1, . . . , ak and b1, . . . , bk be integers with ai > 0 for each
i = 1, . . . , k. Suppose that for every prime number p there exists an integer n such that∏k

i=1(ain + bi) is not a multiple of p. Then there exist infinitely many positive integers n
such that pi = ain + bi is prime for all i = 1, . . . , k.

We have the following result for any positive integer k.

Theorem 2. The Prime k-tuples Conjecture implies that

∞∑

n=1

σk(n)

n!

is irrational.

Throughout this paper, we use the Landau symbols O and o as well as Vinogradov’s
symbols &, $ and ' with their regular meaning. The constants implied by these symbols
depend at most on k. We use p and q to denote prime numbers.

Acknowledgements. We thank the referee for a careful reading of the manuscript and for
suggestions which improved the quality of this paper. Most of this paper was written during
a very enjoyable visit by the first two authors to Williams College; these authors wish to
express their thanks to that institution for the hospitality and support.

2. Proof of Theorem 1

Our main tool is the following well-known theorem of Chen (see [1], [2]).

Theorem 3. Let a be an integer. There exists xa such that for x > xa, the interval [x/2, x]
contains & xa/ϕ(a)2(log x)2 prime numbers p ≡ 1 ( mod a) such that q = (p + 1)/2 is
either a prime or a product of two primes each one of which exceeds x1/10.

A proof containing the basic ideas for this theorem appears, for example, in Chapter 11
of [8]. Chen actually proved that for large even integers N there are & N/(log N)2 primes
p such that N − p is either a prime or a product of two large primes. Easy and well-known
modifications of Chen’s argument yield the above theorem.

To prove our Theorem 1 we assume that the sum of the series shown at (2) is rational
and deduce a contradiction. We write it, as we did for k = 0, 1 and 2 as A/B, multiply
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across by (n − 1)! for some large n (with n > B), and obtain

σ3(n)

n
+

σ3(n + 1)

n(n + 1)
+

σ3(n + 2)

n(n + 1)(n + 2)
+

∑

j≥3

σ3(n + j)

n(n + 1) · · · (n + k)
= (n − 1)!

(
A

B
−

n−1∑

j=1

σk(j)

j!

)
,

(3)

where the right hand side is an integer. In what follows, we shall exploit the above relation.
Since σ3(n) $ n3, we have

∑

j≥3

σ3(n + j)

n(n + 1) · · · (n + j)
$ 1

n
+

∑

m≥n

1

m2
$ 1

n
.

Furthermore, the sum appearing on the left hand side of formula (3) above is a positive
integer. We now let y be a large positive real number which we shall fix later, and take
a = 72

∏
5≤p≤y p. Note that, by Chebyshev’s bounds, this means that y ' log a. We let

x be large compared to a and m ∈ [x/2a, x/a] be such that p = am + 1 is prime and
q = (p + 1)/2 = (am + 2)/2 is either a prime or a product of two primes q1q2 each exceeding
x1/10. Choose n to be the prime n = p. We then note that

σ3(n)

n
= n2 +

1

n
.

Furthermore, writing n + 2 = am + 3 = 3t, we have that t is coprime to all primes q ≤ y,
and so obtain the inequalities

28

27
<

σ3(n + 2)

n(n + 1)(n + 2)
=

28

27

σ3(t)

t3

(
1 + O

(
1

n

))

<
28

27

∏

p>y

(
1 − 1

p3

)−1 (
1 + O

(
1

n

))

< 1 +
1

27
+ O

(
1

y2

)
,

since y <
√

x. Combining this with our estimate for the tail of the series we have, for n a
prime as above,

σ3(n)

n
+

σ3(n + 2)

n(n + 1)(n + 2)
+

∑

j≥3

σ3(n + j)

n(n + 1) · · · (n + j)
= An +

1

27
+ O

(
1

y2

)
, (4)

where An is a positive integer.

We now consider the remaining term σ3(n + 1)/(n(n + 1)).

Assume first that for some large x there is a prime p = am + 1 ∈ [x/2, x] such that
q = (p + 1)/2 = (a/2)m + 1 is prime. Then

σ3(n + 1)

n(n + 1)
=

σ3(2q)

2q(2q − 1)
=

9(q3 + 1)

2q(2q − 1)

=
9

4
q +

9

8
+

9q − 4

8q(2q − 1)
= Bn +

3

8
+ O

(
1

n

)
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with some integer Bn, where we have used the fact that q = (a/2)m + 1 ≡ 1 (mod 4),
because 8 | a. Summing up everything, we find that

1

27
+

3

8
+ O

(
1

y2

)
∈ Z,

which is impossible if y is chosen to be sufficiently large.

So, we are left with the more interesting part of the problem where q = q1q2, where
q1 > q2 > x1/10 holds for all the & xa/ϕ(a)2(log x)2 choices of primes p = am + 1 ∈ [x/2, x]
guaranteed by Chen’s Theorem 3.

We put

M =

⌊
σ3(n + 1)

n(n + 1)

⌋
=

⌊
9σ3(q)

2q(2q − 1)

⌋
.

Note that since q2 ≤ q1/2, we have that

σ3(q)

2q(2q − 1)
=

q3 + q3
1 + q3

2 + 1

2q(2q − 1)
=

q3 + q3
1 + O(q3/2)

2q(2q − 1)
=

q3 + q3
1

2q(2q − 1)
+ O

(
1

q1/2

)
.

Thus, using also the previous calculations of fractional parts (see (4)), we find that for large
x,

M +
26

27
− c0

y2
≤ 9q3 + 9q3

1

2q(2q − 1)
≤ M +

26

27
+

c0

y2

holds for all large x with some constant c0 > 0, an inequality which can be rewritten as

q2

(
4M + 3 − 9q +

23

27
− 2q(m + O(1))

q2
− 4c0

y2

)
≤ 9q3

1

≤ q2

(
4M + 3 − 9q +

23

27
− 2q(m + O(1))

q2
+

4c0

y2

)
.

From this inequality and the fact that q1 < qx−1/10, we find that

M

q
=

9(q3 + q3
1)

2q2(2q − 1)
+ O

(
1

q

)
=

9

4
+ O

(
1

x3/10

)

so

−2q(M + O(1))

q2
= −9

2
+ O

(
1

x3/10

)
.

Hence, we deduce that

4M + 3 − 9q +
23

27
− 2q(M + O(1))

q2
= L +

19

54
+ O

(
1

x3/10

)

holds with some non-negative integer L. Thus, for large x, provided that y < x3/20, we get
that

q2

9

(
L +

19

54
− 5c0

y2

)
< q3

1 <
q2

9

(
L +

19

54
+

5c0

y2

)
,
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which is equivalent to

q2
2

9

(
L +

19

54
− 5c0

y2

)
< q1 <

q2
2

9

(
L +

19

54
+

5c0

y2

)
. (5)

The above inequalities certainly tell us that L ≥ 0, provided that y is sufficiently large.
Further, the left hand side of the above inequality is > q2

2/27 if y2 > 220c0, so if y satisfies
the above inequality and x is large, then q2

2/27 ≤ q1 ≤ x/q2, and therefore q2 ≤ 3x1/3. Now
fix q2. Then the left hand side of the above inequality is ≥ (L + 1/3)q2

2/27 and the middle
term satisfies q1 ≤ x/q2. Thus, L + 1/3 ≤ 27x/q3

2. Since L ≥ 0 is an integer, it follows that
the number of possibilities for L is

1 +

⌊
27x

q3
2

⌋
≤ 81x

q3
2

. (6)

We now fix also L ≥ 0. Then q1 is a prime in the interval shown at (5) above such that
q1q2 ≡ 1 (mod a) and 2q1q2 − 1 = p is a prime. By the Brun sieve, the number of such
primes is

$ c0q2
2

y2
·
(

a

ϕ(a)2

)
· 1

(log(10c0q2
2/(9y2a)))2 .

Since q2 > x1/10, it follows that for large x we have 10c0q2
2/(9y2a) > x1/6. Thus, the number

of possibilities for q1 once q2 and L are fixed is

$ 1

y2
· a

ϕ(a)2
· q2

2

(log x)2
.

Summing up over all the possibilities for L shown at (6), we get that the total number of
possibilities for q1 when q2 is fixed is

$ 1

y2
· a

ϕ(a)2
· x

(log x)2
· 1

q2
,

and now summing up the above bound over all primes q2 ∈ [x1/10, 3x1/3], we get that the
total number of possibilities for p is

$ 1

y2

a

ϕ(a)2

x

(log x)2

∑

x1/10≤q2≤3x1/3

1

q2
$ 1

y2

a

ϕ(a)2

x

(log x)2
, (7)

where the fact that the last sum above is O(1) follows from Mertens’s estimate for the
summatory function of the reciprocal of the primes. Let c1 be the constant implied in
the Vinogradov symbol from Chen’s Theorem 3 and c2 be the constant implied in the last
Vinogradov symbol in (7). Comparing the estimates for the number of primes p under
scrutiny we get

c1ax

ϕ(a)2(log x)2
≤ c2ax

ϕ(a)2y2(log x)2

leading to y2 < c3, where c3 = c2/c1. Choosing y larger than this we complete the proof of
Theorem 1.
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3. Proof of Theorem 2

Let k ≥ 4. For i = 1, . . . , k we let Qi(X), Ri(X) ∈ Z[X] be the polynomials given by the
division algorithm:

(X + i)k = Qi(X)(X + 1) · · · (X + i) + Ri(X) i = 1, . . . , k,

where deg Qi(X) = k − i and deg Ri(X) ≤ i − 1. Note that when i = k we have that
Qk(X) = 1. For each of those i = 1, . . . , k for which Qi(−i) *= 0 choose distinct primes
pi > k such that pi ! σk(i)Qi(−i). (For any other i, for notational purposes, take pi = 1.)
As we have seen, Qk(−k) = 1 *= 0, so that pk ! σk(k)Qk(−k) can be arranged simply by
choosing pk > σk(k).

Let P =
∏k

i=1 pi and let m be a positive integer such that

(k!)2

i
m + 1 ≡ pi (mod p2

i ) i = 1, . . . , k.

By the Chinese Remainder Theorem, there are infinitely many such positive integers m and
they form the arithmetic progression m0 (mod P 2), where m0 is the first positive integer in
this progression. Given such an m, we choose n = (k!)2m and write m = m0 + #P 2 with
some nonnegative integer #. Then

n + i = i

(
(k!)2

i
m + 1

)
= ipi

(
(k!)2

i

P 2

pi
# +

(k!)2m0/i + 1

pi

)
.

Put

Ai =
(k!)2

i

P 2

pi
and Bi =

(k!)2m0/i + 1

pi

for i = 1, . . . , k.

One checks easily that we can apply the Prime k-tuples Conjecture 1 to the linear poly-
nomials Ai# + Bi. Indeed, the prime numbers dividing Ai are exactly the primes p ≤ k
together with the primes pi. Since Bi | (k!)2m0/i+1, we see that Bi is coprime to all primes
p ≤ k. Further, Bi ≡ 1 (mod pi) from the way m0 was chosen. To see that Bi is coprime to
pj if j *= i assume otherwise. Then pj | ((k!)2/j)m0 + 1 and pj | Bi | ((k!)2/i)m0 + 1. Hence,
pj | (k!)2m0 + j and pj | (k!)2m0 + i, so pj | (j − i), but this is false because pj > k. Thus,
the conditions for the applicability of the Prime k-tuples Conjecture 1 are fulfilled and we
can let # be large and such that Ai# + Bi = qi are all primes for i = 1, . . . , k. Put ai = ipi

and note that if m = m0 + #P 2, then n + i = aiqi for i = 1, . . . , k.

Now assume that the series
∞∑

j=1

σk(j)

j!
=

A

B
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with A and B coprime integers. Suppose n is sufficiently large, and in particular n > B.
Multiplying across by n!, we get

∑

j≤n

σk(j)
n!

j!
+

k∑

i=1

σk(n + i)

(n + 1) · · · (n + i)
+

∑

j≥k+1

σk(n + j)

(n + 1) · · · (n + j)
∈ Z. (8)

The first sum above is an integer, while the last sum is positive and, since σk(n) $ nk,

∑

j≥k+1

σk(n + j)

(n + 1) · · · (n + j)
=

σk(n + k + 1)

(n + 1) · · · (n + k + 1)
+

∑

j≥k+2

σk(n + j)

(n + 1) · · · (n + j)

$ 1

n
+

∑

j≥k+2

1

(n + j)2
$ 1

n
.

As for the intermediate terms, since qi is prime we have

σk(n + i)

(n + 1) · · · (n + i)
=

σk(ai)(qk
i + 1)

(n + 1) · · · (n + i)

=
σk(ai)

ak
i

(
(n + i)k + ak

i

(n + 1) · · · (n + i)

)

=
σk(ai)

ak
i

(
Qi(n) +

Ri(n) + ak
i

(n + 1) · · · (n + i)

)

=
σk(ai)

ak
i

Qi(n) + O

(
1

n

)
,

where for the above error term we used the fact that deg Ri ≤ i−1. Since n ≡ −i (mod pi),
we get that Qi(n) ≡ Qi(−i) (mod pi) so that Qi(n) = Qi(−i) + pi#i(n), for some integers
#i(n). Thus,

σk(n + i)

(n + 1) · · · (n + i)
=

σk(ipi)

(ipi)k
(Qi(−i) + #i(n)pi) + O

(
1

n

)
.

We add everything together, multiply formula (8) by (k!)kP k−1 and get

k∑

i=1

P k−1
i σk(ipi)

(k!)k

ik
1

pi
(Qi(−i) + pi#i(n)) + O

(
1

n

)
∈ Z,

where
Pi = Pp−1

i =
∏

1≤j≤k
j %=i

pj .

From this it follows that

k∑

i=1

P k−1
i

(k!)k

ik
σk(ipi)Qi(−i)

pi
+ O

(
1

n

)
∈ Z.
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At this moment, we observe that the sum on the left does not depend on n and so

∑

1≤i≤k

P k−1
i

(k!)k

ik
σk(ipi)

pi
Qi(−i) ∈ Z.

Using also the fact that σk(ipi) = σk(i)σk(pi) = σk(i)(pk
i + 1), we get that the above relation

implies
∑

1≤i≤k

P k−1
i

(k!)k

ik
σk(i)

pi
Qi(−i) ∈ Z.

This is a non-empty (since Qk(−k) = 1) sum of non-zero rational numbers whose reduced
denominators are distinct primes. Thus, the above sum cannot be an integer. The proof of
Theorem 2 is complete.

Note Added: March 2007. Shortly after this paper was submitted, we learned about the
recent appearance of the paper [10], where the same two results as the present ones have
been obtained. The proof of the case k = 3 in [10] also uses sieve methods but is rather
different, whereas the conditional proof for larger k’s is similar to ours. We thank Professor
Igor Shparlinski for pointing out this reference to us.
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