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Abstract
We analyze properties of the 2-adic valuation of an integer sequence that orig-

inates from an explicit evaluation of a quartic integral. We present a tree that
encodes this valuation.

1. Introduction

The integral

N0,4(a;m) =
∫ ∞

0

dx

(x4 + 2ax2 + 1)m+1
, (1)

with a > −1, is given by

N0,4(a;m) =
π

2
Pm(a)

[2(a + 1)]m+1/2
, (2)

where

Pm(a) =
m∑

l=0

dl,mal (3)

with

dl,m = 2−2m
m∑

k=l

2k

(
2m− 2k
m− k

)(
m + k

m

)(
k

l

)
, 0 ≤ l ≤ m. (4)

The reader will find in [2] a survey of the different proofs of (2), properties of
the coefficients dl,m in [6] and an introduction to the many issues involved in the
evaluation of definite integrals in [7].

The study of combinatorial aspects of the sequence dl,m was initiated in [3]
where the authors show that dl,m forms a unimodal sequence, that is, there exists



INTEGERS: 10 (2010) 212

an index l∗ such that d0,m ≤ · · · ≤ dl∗,m and dl∗,m ≥ · · · ≥ dm,m. The fact that
dl,m satisfies the stronger condition of log-concavity, i.e., dl−1,mdl+1,m ≤ d2

l,m, has
been recently established in [5].

We consider here arithmetical properties of the sequence dl,m. It is more conve-
nient to analyze the auxiliary sequence

Al,m = l!m! 2m+ldl,m =
l!m!
2m−l

m∑

k=l

2k

(
2m− 2k
m− k

)(
m + k

m

)(
k

l

)
(5)

for m ∈ N and 0 ≤ l ≤ m. The integral (1) is then given explicitly as

N0,4(2a;m) =
π√

2m! (4(2a + 1))m+1/2

m∑

l=0

Al,m
al

l!
. (6)

We present here a binary tree that encodes the 2-adic valuation of Al,m. Recall
that, for x ∈ N, the 2-adic valuation ν2(x) is the highest power of 2 that divides x.
This is extended to x = a/b ∈ Q via ν2(x) = ν2(a)− ν2(b). The expression

A0,m =
m∏

k=1

(4k − 1), (7)

given in [4], shows that ν2(A0,m) = 0.

Given l ∈ N we associate a tree T (l), the decision tree of l, that provides a
combinatorial interpretation of ν2(Al,m). It has the following properties:

1) Aside from the labels on the vertices, T (l) depends only on the odd part of l.
Therefore it suffices to consider l odd.

2) For l odd, define k∗(l) = &log2 l'. The index k∗ is determined by 2k∗ ≤ l < 2k∗+1.

3) The generations are labelled starting at 0; that is, the root is generation 0. For
0 ≤ k ≤ k∗, the k-th generation consists of 2k vertices. These form a complete
binary tree.

4) A vertex with degree 1 is called terminal. The edge containing a terminal ver-
tex is called a terminal branch. The k∗-th generation contains 2k∗+1 − l terminal
vertices. The tree T (l) has one more generation consisting of 2(l − 2k∗) terminal
vertices. It follows that T (l) has 2l − 1 vertices.

5) Each terminal vertex of T (l) has a vertex constant attached to it. These are given
in Lemmas 8 and 10. Each non-terminal vertex has two edge functions attached to it.
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The main results presented here is:

Theorem 1. Let l ∈ N. The tree described above, together with labels given in
Section 2, provides an explicit formula for the 2-adic valuation of the sequence
Al,m.

The complete results are described in Section 2 and illustrated here for l = 3.

The sequence {ν2(A3,m) : m ≥ 1} satisfies ν2(A3,2m−1) = ν2(A3,2m). Therefore
the subsequence A3,2m+1, denoted by C3,m, contains all the 2-adic information of
A3,m.
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Figure 1: The decision tree for l = 3

For instance, at the first level in Figure 1 we have two edges with functions 2m
and 2m−1 and the first generation consists of two vertices, one of which is terminal
with vertex constant 7. This vertex is adjacent to the terminal branch labelled
2m− 1.

This tree produces a formula for ν2(C3,m) by the following mechanism: define

f3(m) =






7 + ν2

(
m+1

2

)
if m ≡ 1 mod 2,

9 + ν2

(
m
4

)
if m ≡ 0 mod 4,

9 + ν2

(
m+2

4

)
if m ≡ 2 mod 4.

(8)

There is one expression per terminal branch. The numbers 9, 9, 7 are the ver-
tex constants of T (3) and the arguments of ν2 in f come from the branch labels
desscribed in Section 2. The tree now encodes the formula

ν2(C3,m) = f3(m), for m ≥ 1. (9)
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2. The Tree

In this section we describe a binary tree that encodes the 2-adic valuation of the
sequence Al,m. This value is linked to that of the Pochhammer symbol

(a)n :=

{
a(a + 1)(a + 2) · · · (a + n− 1), for n > 0
1, for n = 0,

(10)

via the identity
ν2(Al,m) = ν2((m + 1− l)2l) + l, (11)

established in [1]. This is a generalization of the main result in [4], namely,

ν2(A1,m) = ν2(m(m + 1)) + 1. (12)

The expression (11) can also be written as

ν2(Al,m) = l +
l∑

j=−l+1

ν2(m + j). (13)

To encode the information about ν2(Al,m) we employ the notion of simple se-
quences.

Definition 2. A sequence {an : n ∈ N} is called s-simple if there exists a number
s such that, for each t ∈ {0, 1, 2, . . .}, we have

ast+1 = ast+2 = · · · = as(t+1). (14)

In pictorial terms, s-simple sequences are formed by blocks of length s where
they attain the same value. In [1] it is shown that, for fixed l ∈ N, the sequence
{ν2(Al,m) : m ≥ l} is 21+ν2(l)−simple. For instance,

ν2(A2,m) = {5, 5, 5, 5, 6, 6, 6, 6, 5, 5, 5, 5, 7, 7, 7, 7, 5, 5, 5, 5, . . .}, (15)

is 4-simple.

Definition 3. Let l ∈ N be fixed. Define

Cl,m = Al,l+(m−1)·21+ν2(l) , (16)

so that the sequence {Cl,m : m ≥ 1} reduces each block of Al,m to a single point.
In particular, for l odd we have Cl,m = Al,l+2(m−1).
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The tree associated to l. We associate to each index l ∈ N a tree by the following
rule: start with a root vertex. This root is the 0-th generation of T (l). To the root
vertex we attach the sequence

{ν2(Cl,m) : m ≥ 1} (17)

and ask whether

ν2(Cl,m)− ν2(m) (18)

is independent of m. If the answer is yes, we label the vertex v0 with this constant
value. This is the case for l = 4 and the complete tree reduces to a single vertex.
If the answer is negative, we split the integers into classes modulo 2 and create a
vertex for each class. These two classes are attached to two new vertices

v1 )→ {ν2(Cl,2m−1) : m ≥ 1}

and
v2 )→ {ν2(Cl,2m) : m ≥ 1}.

Each positive answer produces the end of the branch and each negative one yields
two new branches that need to be tested. The process stops when there are no more
vertices that need to be tested.

Note. Assume the vertex v corresponding to the sequence {2k(m−1)+a : m ≥ 1}
produces a negative answer. Then it splits in the next generation into two vertices
corresponding to the sequences {2k+1(m−1)+a : m ≥ 1} and {2k+1(m−1)+2k+a :
m ≥ 1}. For instance, in Figure 2, the vertex corresponding to {4m : m ≥ 1}, that
is not terminal, splits into {8m : m ≥ 1} and {8m− 4 : m ≥ 1}. These two edges
lead to terminal vertices. Theorem 7 shows that this process ends in a finite number
of steps.
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Figure 2: The decision tree for l = 5
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Figure 1 shows the decision tree for l = 3. The branches are labelled according
to the arithmetic sequences they represent.

At the first generation we find the first appearance of a terminal vertex, namely
the one corresponding the edge marked 2m − 1. Its vertex constant is 7, stating
that

ν2(C3,2m−1) = ν2(m) + 7. (19)

The first step in the analysis of the tree T (l) is to reduce it to the case where l
is odd.

Theorem 4. The tree of an integer depends only upon its odd part, that is, for b
odd and a ∈ N, T (2ab) is the same tree as T (b) save possibly for different branch
labels and vertex constants.

The proof of this theorem is based on a relation of the 2-adic valuations of C2l,m

and Cl,m. We establish first an auxiliary result for Al,m.

Lemma 5. Let l, m ∈ N. Then

ν2(A2l,2m) = ν2(Al,m) + 3l. (20)

Proof. The result is equivalent to

ν2 (al/a−l) = 2l, (21)

where
ak =

(2m + 2k)!
(m + k)!

. (22)

This follows from

ν2 (al/a−l) =
l∑

k=1−l

ν2 (ak/ak−1) , (23)

and ak/ak−1 = 2(2m+2k− 1), so that each term in the sum (23) is equal to 1.

Corollary 6. Let l, m ∈ N. Then

ν2 (C2l,m) = ν2 (Cl,m) + 3l. (24)

Proof. The result follows from the identity

C2l,m = A2l,2[l+(m−1)·21+ν2(l)] (25)

and (20).
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Note. Corollary 6 and the fact that the index l is fixed yield the proof of Theorem
4.

From now on we assume l ∈ N is a fixed odd number. Consider now the sets

V l
k,a :=

{
ν2

(
Cl,2k(m−1)+a

)
: m ∈ N

}
(26)

for k ∈ N and 1 ≤ a ≤ 2k. Observe that, for fixed k ∈ N the 2k sets V l
k,a contain all

the information of the sequence {ν2 (Cl,m) : m ≥ 1}. For example, for k = 2, we
have

V l
2,1 = {ν2(Cl,4m−3) : m ∈ N} ,

V l
2,2 = {ν2(Cl,4m−2) : m ∈ N} ,

V l
2,3 = {ν2(Cl,4m−1) : m ∈ N} ,

V l
2,4 = {ν2(Cl,4m) : m ∈ N} .

These four sets correspond to the second generation in the tree shown in Figure 2.
We also introduce the difference between V l

k,a and the basic sequence {ν2(m) : m ∈
N}.

Note. The sets V l
k,a are attached to the vertices in the k-th generation of the

decision tree T (l). The terminal vertices of T (l) are those corresponding to indices
a such that the set

Sl
k,a :=

{
ν2

(
Cl,2k(m−1)+a

)
− ν2(m) : m ∈ N

}
(27)

reduces to a single value.

Theorem 7. Let l ∈ N be odd. Then k∗(l) = &log2 l'. The k∗-th generation contains
2k∗+1 − l terminal vertices. The tree T (l) has one more generation consisting of
2(l − 2k∗) terminal vertices. And these are the only terminal vertices.

A consequence of this result is that k∗(l) is the first generation in the decision
tree T (l) that contains a terminal vertex. This is the minimal k for which there
exists an index a, in the range 1 ≤ a ≤ 2k, such that V l

k,a is a constant shift of the
sequence {ν2(n) : n ∈ N}.

The proof is divided into a sequence of steps.

Lemma 8. Let l be an odd integer and observe that 2k∗ ≤ l < 2k∗+1. Then for a
in the range 1 ≤ a ≤ 2k∗+1 − l define j1(l, k∗, a) := −l + 2(1 + 2k∗ − a). Then

ν2

(
Cl,2k∗ (m−1)+a

)
= ν2(m) + γ1(l, k∗, a) (28)
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with
γ1(l, k∗, a) = l + k∗ + 1 + ν2 ((j1 + l − 1)!× (l − j1)!) . (29)

Therefore, the vertex corresponding to the index a is a terminal vertex for the tree
T (l) with vertex constant γ1(l, k∗, a). These are the vertices at the k∗-th generation.

Proof. We write k for k∗ for simplicity. Then

ν2

(
Cl,2k(m−1)+a

)
= ν2

(
Al,l+2(2k(m−1)+a−1)

)
(30)

= l +
l∑

j=−l+1

ν2

(
l + 2(2k(m− 1) + a− 1) + j

)
.

The bounds on a imply that 2 − l ≤ j1 ≤ 2k+1 − l showing that j1 is in the range
of summation. Morever it isolates the term 2k+1m; that is, (30) can be computed
as

ν2

(
Cl,2k(m−1)+a

)
= l +

j1+l−1∑

b=1

ν2(2k+1m− b) + k + 1 + ν2(m)

+
l−j1∑

b=1

ν2(2k+1m + b).

In the first sum we have b ≤ j1 + l − 1 = 1− 2a + 2k+1 < 2k+1, and in the second
one b ≤ l − j1 = 2

(
l − 1 + a− 2k

)
< 2k+1, by the choice of the upper bound on a.

We conclude that

ν2

(
Cl,2k(m−1)+a

)
= ν2(m) + l + k + 1 +

j1+l−1∑

b=1

ν2(b) +
l−j1∑

b=1

ν2(b).

This is the stated result.

Lemma 9. Let k∗ and l be defined as above, then

ν2

(
Al,2k∗+1m+a

)
= ν2

(
Al,2k∗+1m−a−1

)
, (31)

for any m ≥ 1 and 0 ≤ a < 2k∗+1 − l.
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Proof. Again, write k for k∗. Since 2k < a + l < 2k+1, 0 ≤ a ≤ 2k, and −2k+1 <
a− l < 0. Therefore,

ν2

(
Al,2k+1m+a

)
= l +

l∑

j=−l+1

ν2

(
2k+1m + a + j

)

= l +
l−1∑

j=−l

ν2

(
2k+1m− a− j

)

= ν2

(
Al,2k+1m−a−1

)
.

Now since the sets {2k+1m ± a | 0 ≤ a < 2k+1 + 2k − l,m ≥ 1} and {2k+2m ±
b | 2k+1 − l < b < l,m ≥ 1} partition the set {a | a ≥ l}, to prove the second half of
Theorem 7, we only need to show the following.

Lemma 10. Let k∗ and l be defined as above, then for a in the range 2k∗+1 − l <
a ≤ 2k∗ , and k = k∗, define j2(l, k, a) := −l + 2(1 + 2k+1 − a) and j3(l, k, a) :=
j2(l, k, a + 2k). Then

ν2

(
Cl,2k+1(m−1)+a

)
= ν2(m) + γ2(l, k, a) (32)

with

γ2(l, k, a) = l + k + 2 + ν2 ((j2 + l − 1)!× (l − j2)!) , (33)

and

ν2

(
Cl,2k+1(m−1)+a+2k

)
= ν2(m) + γ3(l, k, a) (34)

with

γ3(l, k, a) = l + k + 2 + ν2 ((j3 + l − 1)!× (l − j3)!) . (35)

This provides the vertex constants for the level k∗ + 1.

Proof. The proof is the same as that of Lemma 8, and thus omitted.

Example 11. In the case l = 3 we can take k = 1. On the higher level, the
restrictions on the parameter a imply that must have a = 1. A direct calculation
shows that j1(3, 1, 1) = 1 and γ1(3, 1, 1) = 7. For the bottom two vertices, a = 2, 4;
and we have j2(3, 1, 2) = 3, γ2(3, 1, 2) = 9; while j2(3, 1, 4) = −1, γ2(3, 1, 4) = 9.
This confirms the data on Figure 1.
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Example 12. For l = 5, the theorem predicts three terminal vertices at the level
k∗ = 2, corresponding to the values a = 1, 2, 3. This confirms Figure 2 with terminal
values given by γ1(5, 2, 1) = γ1(5, 2, 3) = 13 and γ1(5, 2, 2) = 14. Similar results can
be drawn for the level k = 3. As before, the tree produces an explicit formula for
the 2-adic valuation of C5,m. Indeed, define

f5(m) =






14 + ν2

(
m+2

4

)
if m ≡ 2 mod 4,

13 + ν2

(
m+1

4

)
if m ≡ 3 mod 4,

13 + ν2

(
m+3

4

)
if m ≡ 1 mod 4,

16 + ν2

(
m
8

)
if m ≡ 0 mod 8,

16 + ν2

(
m+4

8

)
if m ≡ 4 mod 8.

(36)

then,
ν2(C5,m) = f5(m). (37)

To finish the proof of Theorem 7, we need to establish

Lemma 13. There are no terminal vertices of level less than k∗.

Proof. The value of a vertex on the level u < k∗ is obtained from ν2

(
Cl,2u(m−1)+a

)
.

The proof of Lemma 8, shows that

ν2

(
Cl,2u(m−1)+a

)
=

v∑

i=0

ν2(m + i) + c,

for some constants v > 0 and c. The next lemma proves that this cannot happen.

Lemma 14. If

a∑

i=0

ν2(m + i) = ν2(m + b) + c (38)

for all m ≥ 1, and some constants a, b, c, then a = b = c = 0.

Proof. Suppose the lemma is not true and b > a. Choose m such that m+b = 2u for
some u, then

∑a
i=0 ν2(m + i) = ν2((b− a) · · · b). Therefore c = ν2((b− a) · · · b)− u.

Similarly choose m such that m+b = 2u+1, and conclude that c = ν2((b−a) · · · b)−
u − 1. This is a contradiction. The proof to the other two cases where 0 ≤ b ≤ a
and b < 0 are similar, and thus omitted.
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Figure 3: The tree for l = 9

Figure 4: The tree for l = 11

Figure 5: The tree for l = 13

Figure 6: The trees for l = 15
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The last set of figures shows how to produce the trees corresponding to l odd.
First determine n by 2n < l < 2n+1 and form a complete binary tree T where the
last level has 2n vertices. Now from T branch an odd number of vertices that yields
the decision trees T (l). The precise mechanism to determine this branching is given
in Lemma 8. Figures 3, 4, 5 and 6 show the four trees corresponding to the odd
indices l in the range 8 < l < 16.
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