
#A20 INTEGERS 10 (2010), 243-256

SQUARE-FULL DIVISORS OF SQUARE-FULL INTEGERS

A. H. Ledoan
Dept. of Mathematics, University of Rochester, Rochester, New York

ledoan@math.rochester.edu

A. Zaharescu1

Dept. of Mathematics,University of Illinois at Urbana-Champaign, Urbana, Illinois
zaharesc@math.uiuc.edu

Received: 8/17/09, Accepted: 2/11/10, Published: 5/24/10

Abstract
We consider some general real moments associated with square-full divisors of
square-full numbers and compute the contribution to these moments given by the
square divisors.

1. Introduction and Statement of Results

A positive integer n is called square-full if, in the canonical representation of n
into prime powers, each exponent is at least 2. Let L denote the set of square-full
integers, and define l by l(n) = 1 or l(n) = 0 according to whether n ∈ L or n /∈ L.
Let L(x) denote the enumerative function of the set L,

L(x) =
∑

n≤x

l(n),

where x is a real variable ≥ 1.
In 1934, Erdős and Szekeres [4] proved the asymptotic formula

L(x) =
ζ(3/2)
ζ(3)

x1/2 + O(x1/3),

where ζ(s) denotes the Riemann zeta-function. A simple proof of this result was
later given by Sklar [5]. In 1954, Bateman [1] improved this result by means of the
Euler-MacLaurin summation formula to

L(x) =
ζ(3/2)
ζ(3)

x1/2 +
ζ(2/3)
ζ(2)

x1/3 + O(x1/5).

Bateman remarked that, by more delicate methods, it is possible to sharpen the
error term above to O(x1/6(log x)2).

1Supported in part by NSF grant number DMS-0901621.
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In the present paper, we study some statistical properties of the square-full di-
visors of square-full integers. The probability that a randomly selected square-full
integer in the interval [1, x] is a square approaches ζ(3)/ζ(3/2) as x tends to infinity.
What is the probability that a randomly selected square-full divisor of a randomly
chosen square-full number ≤ x is a square? More precisely, does the ratio

∑

n≤x
n square-full

#{1 ≤ d ≤ n; d | n, d is a square}

∑

n≤x
n square-full

#{1 ≤ d ≤ n; d | n, d is square-full}

have a limit as x tends to infinity? This type of question leads us to consider some
general real moments associated with square-full divisors of square-full numbers,
and to compute the contribution to these moments given by the square divisors.

Fix two positive real numbers α and β. For each n, we consider the divisor sums

σsquare-full,α,β(n) =
∑

d1d2=n
d1,d2 square-full

dα
1 dβ

2

and

σsquare,α,β(n) =
∑

d1d2=n
d1 square,d2 square-full

dα
1 dβ

2 .

Here we note that σsquare-full,α,β(n) = σsquare,α,β(n) = 0, unless n is square-full.
Also, for n square-full and both α = 0 and β = 0, we see that σsquare-full,α,β(n)
counts the number of square-full divisors d of n with the property that n/d is
square-full, while σsquare-full,α,β(n) counts the number of square divisors d of n with
the property that n/d is square-full. We consider the weighted moments

Msquare-full,α,β(x) =
∑

n≤x
n square-full

(1− n/x)σsquare-full,α,β(n)

and

Msquare,α,β(x) =
∑

n≤x
n square-full

(1− n/x)σsquare,α,β(n).

We wish to see whether the limit

lim
x→∞

Msquare,α,β(x)
Msquare-full,α,β(x)
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exists. Further, we are interested to see for which values of α and β, if any, this
limit equals the proportion of squares in the sequence of square-full numbers, which
is ζ(3)/ζ(3/2). We will prove the following asymptotic formulas.

Theorem 1 Fix two real numbers α, β ≥ 0. As x→∞,

Msquare-full,α,β(x) ∼






ζ(2α− 2β + 1)ζ(3α− 3β + 3/2)ζ(3/2)
2(α + 1/2)(α + 3/2)ζ(6α− 6β + 3)ζ(3)

xα+1/2, if α > β,

ζ2(3/2)
(4α2 + 8α + 3)ζ2(3)

xα+1/2 log x, if α = β,

ζ(2β − 2α + 1)ζ(3β − 3α + 3/2)ζ(3/2)
2(β + 1/2)(β + 3/2)ζ(6β − 6α + 3)ζ(3)

xβ+1/2, if α < β,

and

Msquare,α,β(x) ∼






ζ(2α− 2β + 1)ζ(3/2)
2(α + 1/2)(α + 3/2)ζ(3)

xα+1/2, if α > β,

ζ(3/2)
(4α2 + 8α + 3)ζ(3)

xα+1/2 log x, if α = β,

ζ(2β − 2α + 1)ζ(3/2)
2(β + 1/2)(β + 3/2)ζ(3)

xβ+1/2, if α < β.

More accurate asymptotic formulas will be provided in the last section. As a
consequence of Theorem 1, we have the following corollary.

Corollary 2 Fix two real numbers α, β ≥ 0. Then

lim
x→∞

Msquare,α,β(x)
Msquare-full,α,β(x)

=






ζ(6α− 6β + 3)
ζ(3α− 3β + 3/2)

, if α > β,

ζ(3)
ζ(3/2)

, if α = β,

ζ(6β − 6α + 3)
ζ(3β − 3α + 3/2)

, if α < β.

It is easy to see from the associated Euler product that

ζ(6α− 6β + 3)
ζ(3α− 3β + 3/2)

>
ζ(3)

ζ(3/2)

for α > β, and
ζ(6β − 6α + 3)

ζ(3β − 3α + 3/2)
>

ζ(3)
ζ(3/2)

for α < β. Therefore, by Corollary 2,

lim
x→∞

Msquare,α,β(x)
Msquare-full,α,β(x)

≥ ζ(3)
ζ(3/2)

for all α,β ≥ 0, with equality exactly when α = β.
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2. Proof of Theorem 1

In this section, we give a detailed proof for the first part of Theorem 1, and we
indicate the modifications needed for the second part.

Proof. To commence, let s be a complex variable and consider the Dirichlet series

Fα,β(s) =
∞∑

n=1

σsquare-full,α,β(n)
ns

. (1)

Here we note that for any n,

σsquare-full,α,β(n) ≤ nmax(α,β)#{d1d2 = k; d1, d2 square-full}
( nmax(α,β)+O(1/ log log n).

(See, for example, Ramanujan [3] or Hardy and Wright [2].) Combining this with
the fact that σsquare-full,α,β(n) = 0 unless n is square-full, it follows that the Dirichlet
series (1) converges in the region )s > 1/2 + max(α,β).

By Perron’s inversion formula (see Titchmarsh [6], Section 9.42, pp. 300–301; or
Titchmarsh [7], Section 3.12, pp. 60–62), we have

Msquare-full,α,β(x) =
∑

n≤x

(1− n/x)σsquare-full,α,β(n)

=
1

2πi

∫ c+i∞

c−i∞

xs

s(s + 1)
Fα,β(s) ds,

(2)

for any c > 1/2 + max(α,β). We now rewrite Fα,β(s) as

Fα,β(s) =
∞∑

n=1

1
ns

∑

d1d2=n
d1,d2 square-full

dα
1 dβ

2

=
∞∑

d1=1
d1 square-full

∞∑

d2=1
d2 square-full

dα
1 dβ

2

(d1d2)s

=
∞∑

d1=1
d1 square-full

1
ds−α
1

∞∑

d1=1
d2 square-full

1
ds−β
2

.

Consider the Dirichlet series

H(s) =
∑

m square-full

1
ms

,
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which converges for )s > 1/2. Then

Fα,β(s) = H(s− α)H(s− β),

and substituting this into (2), we obtain

Msquare-full,α,β(x) =
1

2πi

∫ c+i∞

c−i∞

xs

s(s + 1)
H(s− α)H(s− β) ds.

Expressing the function H(s) in terms of ζ(s), we find that

H(s) =
∏

p prime

(
1 +

1
p2s

+
1

p3s
+

1
p4s

+ . . .

)

=
∏

p prime

(
1 +

1
p2s

+
1

p4s
+ . . .

)(
1 +

1
p3s

)

=
∏

p prime

1− 1/p6s

(1− 1/p2s)(1− 1/p3s)

=
ζ(2s)ζ(3s)

ζ(6s)
,

for )s > 1/2. Hence,

Msquare-full,α,β(x)

=
1

2πi

∫ c+i∞

c−i∞

xs

s(s + 1)
· ζ(2s− 2α)ζ(3s− 3α)ζ(2s− 2β)ζ(3s− 3β)

ζ(6s− 6α)ζ(6s− 6β)
ds,

(3)

for c > 1/2 + max(α,β). For brevity’s sake, let the integrand above be denoted by
V (s). For simplicity, we discuss in detail only the case α = β. The cases α > β and
α < β can be dealt with in a similar way.

Putting α = β in (3), we obtain

Msquare-full,α,β(x) =
1

2πi

∫ c+i∞

c−i∞

xs

s(s + 1)
· ζ2(2s− 2α)ζ2(3s− 3α)

ζ2(6s− 6α)
ds.

We deform the line of integration into a path which consists of the union of nine
line segments 





s = η + it, if |t| ≥ U ,
s = σ ± iU, if α + 1/6 ≤ σ ≤ η,
s = α + 1/6 + it, if T ≤ |t| ≤ U ,
s = σ ± iT, if ν ≤ σ ≤ α + 1/6,
s = ν + it, if |t| ≤ T ,
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where 0 < T < U are parameters to be chosen later. Let J1, . . . , J9 be the line
integrals on the corresponding line segments. Also, we set

η = α +
1
2

+
c1

log x

and
ν = α +

1
6
− c2

(log T )2/3(log log T )1/3
,

for some constants c1, c2 > 0. We will employ the Vinogradov-Korobov type zero-
free region (see Titchmarsh [7], p. 135)

σ ≥ 1− c3

(log t)2/3(log log t)1/3
, t ≥ t0,

where c3 > 0 is an absolute constant, in which

1
|ζ(s)| = O((log t)2/3(log log t)1/3).

Then, with an appropriate choice for c2, the function ζ(6s− 6α) will have no zeros
on or within the modified contour above. So the only poles of the integrand V (s)
inside the contour are double poles at s = α + 1/2 and s = α + 1/3. Letting the
apostrophe symbol stand for the derivative with respect to s and using γ to denote
the Euler constant, we see that the residue at s = α + 1/2 is

Res(V (s);α + 1/2) = A1(α + 1/2)γ +
1
4
A′1(α + 1/2),

where

A1(s) =
xs

s(s + 1)
· ζ2(3s− 3α)
ζ2(6s− 6α)

.

Similarly, the residue at s = α + 1/3 is

Res(V (s);α + 1/3) =
2
3
A2(α + 1/3)γ +

1
9
A′2(α + 1/3),

where
A2(s) =

xs

s(s + 1)
· ζ2(2s− 2α)
ζ2(6s− 6α)

.
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After a short calculation, we find that

Res(V (s);α + 1/2) =
4ζ2(3/2)γ

(4α2 + 8α + 3)ζ2(3)
xα+1/2 +

ζ(3/2)
(4α2 + 8α + 3)2ζ3(3)

× ((4α2 + 8α + 3)ζ(3)ζ(3/2) log x− 2{−9ζ(3)ζ ′(3/2)

+ 2ζ(3/2)(2ζ(3) + 9ζ ′(3))− 12α2(ζ(3)ζ ′(3/2)− 2ζ(3/2)ζ ′(3))

+ 4α[−6ζ(3)ζ ′(3/2) + ζ(3/2)(ζ(3) + 12ζ ′(3))]})xα+1/2

and that

Res(V (s);α + 1/3) =
216ζ2(2/3)γ

π4(9α2 + 15α + 4)
xα+1/3 +

36ζ(2/3)
π6(9α2 + 15α + 4)2

× (π2(9α2 + 15α + 4)ζ(2/3) log x

+ π2(−15ζ(2/3)− 18αζ(2/3) + 16ζ ′(2/3) + 60αζ ′(2/3)

+ 36α2ζ ′(2/3))− 72(9α2 + 15α + 4)ζ(2/3)ζ ′(2))xα+1/3.

For the case α > β, the integrand V (s) has a simple pole at s = α + 1/2, with
residue

Res(V (s);α + 1/2) =
ζ(2α− 2β + 1)ζ(3α− 3β + 3/2)ζ(3/2)
2(α + 1/2)(α + 3/2)ζ(6α− 6β + 3)ζ(3)

xα+1/2.

This provides the main term in the asymptotic formula for Msquare-full,α,β(x). The
integrand V (s) also has poles at s = α + 1/3, s = β + 1/2, and s = β + 1/3,
which produce smaller order terms. To this end, we remark that in the particular
case when α = β + 1/6, s = α + 1/3 and s = β + 1/2 coincide, and the integrand
V (s) has a pole of order two at this point. Consequently, in this particular case,
the corresponding asymptotic formula for Msquare-full,α,β(x) will have a main term
of size xα+1/2 followed by a second term of size xα+1/3 log x. By symmetry, the
asymptotic formula for Msquare-full,α,β(x) in the case α < β is the same as that in
the case α > β, by interchanging the roles of α and β.

Returning to the case α = β, Msquare-full,α,β(x) equals the contribution of the
residues of V (s) at s = α + 1/2 and = α + 1/3 computed above, plus an error term
coming from the nine line integrals. In virtue of the well-known estimates

|ζ(σ + it)| =






O(t(1−σ)/2 log t), if 0 ≤ σ ≤ 1,
O(log t), if 1 ≤ σ ≤ 2,
O(1), if σ ≥ 2,

we proceed to estimate the integral along our modified contour.
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On the line segments on which s = η + it, |t| ≥ U , we have |ζ(2η − 2α + i2t)| =
O(log x), |ζ(3η − 3α + i3t)| = O(1), and 1/|ζ(6η − 6α + i6t)| = O(1), so that

|J1|, |J9| = O

(∫ ∞

U

|xη+it||ζ2(2η − 2α + i2t)||ζ2(3η − 3α + i3t)|
|η + it||η + 1 + it||ζ2(6η − 6α + i6t)| dt

)

= O

(
xα+1/2(log x)2

∫ ∞

U

dt

t2

)

= O

(
xα+1/2(log x)2

U

)
.

On the line segments on which s = σ ± iU , α + 1/6 ≤ σ ≤ η, we have

|ζ(2σ − 2α + i2U)| = O(U (1−2σ+2α)/2 log U) if α + 1/6 ≤ σ ≤ α + 1/2,

|ζ(2σ − 2α + i2U)| = O(log U) if α + 1/2 ≤ σ ≤ η,

|ζ(3σ − 3α + i3U)| = O(U (1−3σ+3α)/2 log U) if α + 1/6 ≤ σ ≤ α + 1/3,

|ζ(3σ − 3α + i3U)| = O(log U) if α + 1/3 ≤ σ ≤ η, and

1/|ζ(6σ − 6α + i6U)| = O(log U),

so that

|J2|, |J8| = O

(∫ η

α+1/6

|xσ+iU ||ζ2(2σ − 2α + i2U)||ζ2(3σ − 3α + i3U)|
|σ + iU ||σ + 1 + iU ||ζ2(6σ − 6α + i6U)| dσ

)

= O

(
(log U)6

U2

[∫ α+1/3

α+1/6
xσU2−5σ+5α dσ

+
∫ α+1/2

α+1/3
xσU1−2σ+2α dσ +

∫ η

α+1/2
xσ dσ

])

= O

(
(log U)6

U2

[
max(xα+1/3U1/3, xα+1/6U7/6)

+max(xα+1/2, xα+1/3U1/3) + xη
])

= O

(
(log U)6

U2
max(xα+1/2, xα+1/3U1/3, xα+1/6U7/6)

)
.

On the line segments on which s = α + 1/6 + it, T ≤ |t| ≤ U , we have

|ζ(1/3 + i2t)| = O(t1/3 log t) = O(t1/3 log U) and

1/|ζ(1 + i6t)| = O(log t) = O(log U),
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so that

|J3|, |J7| = O

(∫ U

T

|xα+1/6+it||ζ2(1/3 + i2t)||ζ2(1/2 + i3t)|
|α + 1/6 + it||α + 7/6 + it||ζ2(1 + i6t)| dt

)

= O

(
xα+1/6(log U)4

∫ U

T

|ζ2(1/2 + i3t)|
t4/3

dt

)
.

Next, we decompose the interval of integration into diadic intervals. On each such
interval, we employ the mean value formula

∫ X

0
|ζ2(1/2 + it)| dt = X log X + (2γ − 1− log 2π)X + O(X1/2+ε)

(see Titchmarsh [7], Theorem 7.4, p. 143) to derive

∫ U

T

|ζ2(1/2 + i3t)|
t4/3

dt ≤
∑

T/2≤2k≤U

∫ 2k+1

2k

|ζ2(1/2 + i3t)|
t4/3

dt

≤
∑

T/2≤2k≤U

1
24k/3

∫ 2k+1

2k

|ζ2(1/2 + i3t)| dt

= O




∑

T/2≤2k≤U

1
24k/3

· k2k





= O

(
log T

T 1/3

)
.

It follows that

|J3|, |J7| = O

(
xα+1/6(log U)4 log T

T 1/3

)
.

On the line segments on which s = σ ± iT , ν ≤ σ ≤ α + 1/6, we have

|ζ(2σ − 2α + i2T )| = O(T (1−2σ+2α)/2 log T ),

|ζ(3σ − 3α + i3T )| = O(T (1−3σ+3α)/2 log T ), and

1/|ζ(6σ − 6α + i6T )| = O((log T )2/3(log log T )1/3),



INTEGERS: 10 (2010) 252

so that

|J4|, |J6| = O

(∫ α+1/6

ν

|xσ+iT ||ζ2(2σ − 2α + i2T )||ζ2(3σ − 3α + i3T )|
|σ + iT ||σ + 1 + iT ||ζ2(6σ − 6α + i6T )| dσ

)

= O

(
T 5α(log T )16/3(log log T )2/3

∫ α+1/6

ν

( x

T 5

)σ
dσ

)

= O

(
T 5α(log T )16/3(log log T )2/3

( x

T 5

)α+1/6
(

α +
1
6
− ν

))

= O

(
xα+1/6(log T )14/3(log log T )1/3

T 5/6

)
.

Lastly, on the line segment on which s = ν + it, |t| ≤ T , we have

|ζ(2ν − 2α + i2t)| = O(|t|(1−2ν+2α)/2 log(2 + |t|))

= |t|1/3+O((log T )−2/3) log(2 + |t|) and

1/|ζ(6ν − 6α + i6t)| = O((log(2 + |t|))2/3(log log(3 + |t|))1/3),

so that

|J5| = O

(∫ T

−T

|xν+it||ζ2(2ν − 2α + i2t)||ζ2(3ν − 3α + i3t)|
|ν + it||ν + 1 + it||ζ2(6ν − 6α + i6t)| dt

)

= O

(
xν

∫ T

−T
|t|2/3+O((log T )−2/3)(log(2 + |t|))10/3

×(log log(3 + |t|))2/3|ζ2(3ν − 3α + i3t)|
1 + t2

dt

)
.

The last integral above is O(1), since |ζ(3ν−3α+i3t)| = O((1+ |t|)θ) for some fixed
θ < 1/6. This, in turn, follows from known upper bounds for ζ(s) on the critical line
(see Titchmarsh [7], Theorem 5.18, p. 113) which go beyond the classical result of
Weyl (where the exponent equals 1/6), combined with the fact that 3ν−3α+ i3t =
1/2 + i3t + O(1/(log T )2/3). We deduce that

|J5| = O(xν) = O(xα+1/6−c2(log T )−2/3(log log T )−1/3
).

Collecting all estimates and taking

T = exp{(log x)3/5(log log x)−1/5}
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and U = x, we obtain

9∑

i=1

|Ji| = Oα(xα+1/6 exp{−c4(log x)3/5(log log x)−1/5}),

for some constant c4 > 0. The asymptotic formula for Msquare-full,α,α(x) from the
statement of Theorem 1 now follows by considering the contribution of the term of
size xα+1/2 log x in Res(V (s);α + 1/2).

For the second part of Theorem 1, one starts with the Dirichlet series

Gα,β(x) =
∞∑

n=1

σsquare,α,β(n)
ns

,

which converges for )s > 1/2 + max(α,β), and rewrites it as

Gα,β(x) =
∞∑

n=1

1
ns

∞∑

d1d2=n
d1 square

d2 square-full

dα
1 dβ

2

=
∞∑

d1=1
d1 square

∞∑

d2=1
d2 square-full

dα
1 dβ

2

(d1d2)s

=
∞∑

d1=1
d1 square

1
ds−α
1

∞∑

d2=1
d2 square-full

1
ds−β
2

= ζ(2s− 2α)H(s− β).

An application of Perron’s formula then gives

Msquare,α,β(x) =
1

2πi

∫ c+i∞

c−i∞

xs

s(s + 1)
· ζ(2s− 2α)ζ(2s− 2β)ζ(3s− 3β)

ζ(6s− 6β)
ds.

This integral is similar to the one from the first part of Theorem 1, and a similar
argument to the one above completes the proof of the theorem. !
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3. Generalizations

If one is interested in more accurate asymptotic formulas than the ones stated in
Theorem 1, one can derive such formulas from the proof above. There are many
cases to consider, according to which of the points s = α + 1/2, s = α + 1/3,
s = β + 1/2, and s = β + 1/3, are within or outside the contour of integration,
and according to whether those points which lie inside the contour are distinct or
overlapping, producing simple or double poles.

As examples, we conclude the paper by gathering below the resulting asymptotic
formulas in some of these cases. If α = β, then

Msquare-full,α,α(x) =
4ζ2(3/2)γ

(4α2 + 8α + 3)ζ2(3)
xα+1/2 +

ζ(3/2)
(4α2 + 8α + 3)2ζ3(3)

× ((4α2 + 8α + 3)ζ(3)ζ(3/2) log x− 2{−9ζ(3)ζ ′(3/2)

+ 2ζ(3/2)(2ζ(3) + 9ζ ′(3))− 12α2(ζ(3)ζ ′(3/2)− 2ζ(3/2)ζ ′(3))

+ 4α[−6ζ(3)ζ ′(3/2) + ζ(3/2)(ζ(3) + 12ζ ′(3))]})xα+1/2

+
216ζ(2/3)2γ

π4(9α2 + 15α + 4)
xα+1/3 +

36ζ(2/3)
π6(9α2 + 15α + 4)2

× (π2(9α2 + 15α + 4)ζ(2/3) log x

+ π2(−15ζ(2/3)− 18αζ(2/3) + 16ζ ′(2/3) + 60αζ ′(2/3)

+ 36α2ζ ′(2/3))− 72(9α2 + 15α + 4)ζ(2/3)ζ ′(2))xα+1/3

+ Oα(xα+1/6 exp{−c(log x)3/5(log log x)−1/5})

and

Msquare,α,α(x) =
4ζ(3/2)γ

(4α2 + 8α + 3)ζ(3)
xα+1/2 +

1
(4α2 + 8α + 3)2ζ2(3)

(−8ζ(3/2)ζ(3)

+ (4α2 + 8α + 3)ζ(3/2)ζ(3) log x + 9ζ(3)ζ ′(3/2)− 18ζ(3/2)ζ ′(3)

+ 12α2(ζ(3)ζ ′(3/2)− 2ζ(3/2)ζ ′(3))− 8α[−3ζ(3)ζ ′(3/2)

+ ζ(3/2)(ζ(3) + 6ζ ′(3))])xα+1/2

+ Oα(xα+1/6 exp{−c(log x)3/5(log log x)−1/5}).
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If α > β and α += β + 1/6, then

Msquare-full,α,β(x) =
ζ(2α− 2β + 1)ζ(3α− 3β + 3/2)ζ(3/2)
2(α + 1/2)(α + 3/2)ζ(6α− 6β + 3)ζ(3)

xα+1/2

+
ζ(2α− 2β + 2/3)ζ(3α− 3β + 1)ζ(2/3)
3(α + 1/3)(α + 4/3)ζ(6α− 6β + 2)ζ(2)

xα+1/3

+
ζ(2β − 2α + 1)ζ(3β − 3α + 3/2)ζ(3/2)
2(β + 1/2)(β + 3/2)ζ(6β − 6α + 3)ζ(3)

xβ+1/2

+
ζ(2β − 2α + 2/3)ζ(3β − 3α + 1)ζ(2/3)
3(β + 1/3)(β + 4/3)ζ(6β − 6α + 2)ζ(2)

xβ+1/3

+ Oα,β(xα+1/6 exp{−c(log x)3/5(log log x)−1/5})

and

Msquare,α,β(x) =
ζ(2α− 2β + 1)ζ(3α− 3β + 3/2)

2(α + 1/2)(α + 3/2)
xα+1/2

+
ζ(2β − 2α + 1)ζ(3/2)

2(β + 1/2)(β + 3/2)ζ(3)
xβ+1/2

+
ζ(2β − 2α + 2/3)ζ(2/3)
3(β + 1/3)(β + 4/3)ζ(2)

xβ+1/3

+ Oα,β(xα+1/6 exp{−c(log x)3/5(log log x)−1/5}).
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