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Abstract
It is shown that the Stirling numbers of the first kind can be expressed in the form[n

k

]
=

∑n−1
j1<j2<···<jk−1

(n−1)!
αQ[j1,j2,...,jk−1]

, where Q is a product of k − 1 linear factors
in the indices j1, j2, . . . , jk−1 and α is a normalization coefficient determined by the
condition

[
k
k

]
= 1. Several types of Q’s are shown to yield Stirling numbers (“be

Stirling”), and some more are conjectured to do so. The complete characterization
of the set of Q’s that are Stirling is not yet available. This set can be divided into
subsets, within each of which different Q’s are related by permutational symmetries.
The case Q = j1 · j2 · · · jk−1 is due to Adamchik (1997).

1. Introduction

The Stirling numbers of the first kind [1],
[n

k

]
, with n = 1, 2, . . . and k = 1, 2, . . . , n,

are most commonly specified by the initial value
[1
1

]
= 1 and the recurrence relation

[
n + 1

k

]
= n

[n

k

]
+

[
n

k − 1

]
. (1)

They can also be obtained from either the horizontal generating function

Gh(x;n) =
n∑

k=0

[n

k

]
xk = x(x + 1) · · · (x + n− 1) (2)

or the vertical generating function [2]

Gv(z; k) =
∑

n≥k

[n

k

] zn

n!
=

1
k!

(
log

1
1− z

)k

=
1
k!

( ∞∑

i=1

zi

i

)k

. (3)

The expression
[n

k

]
=

n−1∑

j1<j2<···<jk−1

(n− 1)!
j1 · j2 · · · jk−1

(4)
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was derived by Adamchik [3]. It can be shown to satisfy the recurrence relation and
the initial value. It also follows from the horizontal generating function via

Gh(x;n) = (n− 1)!x
(
1 +

x

1

)(
1 +

x

2

)
· · ·

(
1 +

x

n− 1

)

= (n− 1)!
n∑

k=1

∑

1≤j1<j2<···<jk−1≤n−1

xk

j1j2 · · · jk−1
.

Since the Stirling number
[n

k

]
is the number of permutations of n indices with k

cycles it follows that it can be expressed in the form

[n

k

]
=

∑

i1,i2,...,ik≥1
(i1+i2+···+ik=n)

n!
k! · i1 · i2 · · · ik

. (5)

This expression also follows from the vertical generating function by noting that it
can be written in the form

Gv(z; k) =
1
k!

k∏

j=1




∞∑

ij=1

zij

ij





and expanding in powers of z.

Equation (5) can be written as

[n

k

]
=

∑

i1,i2,...,ik≥1
(i1+i2+···+ik=n)

(n− 1)! · (i1 + i2 + · · · + ik)
k! · i1 · i2 · · · ik

=
∑

i1,i2,...,ik−1≥1
(i1+i2+···+ik−1≤n−1)

(n− 1)!
(k − 1)! · i1 · i2 · · · ik−1

, (6)

where n in the numerator was replaced by the sum of indices that appear multi-
plicatively in the denominator, allowing a reduction of the summand into a sum of
terms with slightly simplified denominators. The transition from the expression on
the first line above to the second involves retaining one of k equivalent terms, and
multiplying by k.

Equqation (6) can be proved by induction, showing that it satisfies the initial
value and the recurrence relation, Equation (1). The latter follows by noting that
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Equation (6) yields
[
n + 1

k

]
=

∑

i1,i2,...,ik−1≥1
(i1+i2+···+ik−1≤n)

n!
(k − 1)! · i1 · i2 · · · ik−1

= n ·
∑

i1,i2,...,ik−1≥1
(i1+i2+···+ik−1≤n−1)

(n− 1)!
(k − 1)! · i1 · i2 · · · ik−1

+
∑

i1,i2,...,ik−1≥1
(i1+i2+···+ik−1=n)

n!
(k − 1)! · i1 · i2 · · · ik−1

.

The first term on the right-hand-side is equal to n ·
[n

k

]
and the second is

[
n

k−1

]
,

both by the induction hypothesis, the latter via Equation (5).
The expression for the Stirling numbers of the first kind given by Equation (6)

can be written in terms of the summation indices

j1 = i1

j2 = i1 + i2
...

jk−1 = i1 + i2 + · · · + ik−1

in the form

[n

k

]
=

n−1∑

j1<j2<···<jk−1

(n− 1)!
(k − 1)!j1 · (j2 − j1)(j3 − j2) · · · (jk−1 − jk−2)

. (7)

Either one or the other of the two sets of summation indices j1 < j2 < · · · <
jk−1 ≤ n− 1 and 1 ≤ i" ≤ n− 1 ; " = 1, 2, . . . , k− 1 will be convenient in different
contexts. We refer to the first set as the j-indices and to the second as the i-indices.
The expression obtained from Q[j1, j2, . . . , jk−1] by transforming to the i-indices
will be denoted P [i1, i2, . . . , ik−1].

The two expressions presented above for the Stirling numbers of the first kind,
Equation (4) and Equation (7), turn out to be members of a much richer set of
expressions. They are, in fact, “extreme” members of that set, in a sense that will
be clarified below.

In the present article we deal with a multitude of expressions of the form

[n

k

]

Q
=

n−1∑

j1<j2<···<jk−1

(n− 1)!
αQ[j1, j2, . . . , jk−1;n]

. (8)
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Q is a product of k−1 factors, denoted qm[j1, j2, . . . , jk−1;n], each of which is linear
in the variables j1, j2, . . . , jk−1, n, with integral coefficients. The normalization
coefficient α is determined by demanding that

[
k
k

]

Q
= 1. Note that in this case

the sum reduces to a single term with j1 = 1, j2 = 2, . . . , jk−1 = k − 1. For a
certain (fairly large) set of forms of Q the sum specified in Equation (8) will be
found to be equal to the Stirling numbers of the first kind. Such Q’s will be said
to possess the Stirling property (or “be Stirling”). When Q does not depend on n
(such as in Equations (4) and (7)) we shall refer to it as homogeneous. Otherwise
it will be referred to as inhomogeneous. Expressions for Q that involve k factors
will also be encountered, in which case the numerator has to be modified to n!.
Q will be referred to as minimal when it consists of precisely k − 1 factors. When
Q is a minimal homogeneous expression we refer to Equation (8) as the standard
form.

The sum in Equation (8) depends on the multiset of (k − 1)-tuples {(j1, j2, . . . ,
jk−1) ; 1 ≤ j1 < j2 < · · · < jk−1 ≤ n − 1}. Transformations of the summa-
tion indices under which this multiset is invariant will be referred to as multiset
automorphisms. Obviously, while the form of Q is affected by such (non-trivial)
transformations, the sum is invariant. Such transformations account for some of
the multitude of expressions for the Stirling numbers of the first kind, mentioned
above. Note, in particular, that the normalization coefficient is not affected by
such transformations. The two “extreme” identities presented above, Equations (4)
and (7), possess distinct normalization coefficients (1 and (k− 1)!, respectively), so
they cannot be associated with one another via such a multiset automorphism. In
fact, we will obtain identities with various other values of the normalization coef-
ficient, and the following conjectures (or, if slightly reformulated, open problems)
are proposed on the basis of the results presented below:

Conjecture. The normalization coefficients are integers.

This conjecture implies that the normalization coefficients are divisors of (k − 1)!.

Conjecture. The set of values of the normalization coefficients for Q’s with a
minimal number of factors is the set of divisors of (k − 1)!.

The set of Q’s that possess the Stirling property has not been fully characterized.
Nor has it (so far) been possible to specify a criterion that Q should satisfy to be
Stirling. The following appears to hold, providing a necessary condition that Q has
to satisfy to be Stirling,

Conjecture. If Q is Stirling, then, given n, the set of values of the factors qm

comprising Q determines the indices j1, j2, . . . , jk−1.
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An additional conjecture and an open problem are stated later on.
We have (arbitrarily) restricted our systematic attention to minimal homoge-

neous Q’s consisting of factors that are either single indices or differences of two
indices. Equations (4) and (7) belong to this class. However, application of multiset-
automorphisms yields Q’s of a more general form.

The structure of this paper is as follows: In section 2 we introduce two types of
multiset automorphisms that generate families of symmetry related expressions for
the Stirling numbers of the first kind. In section 3 we derive several expressions
for the Stirling numbers of the first kind. In section 4 we present a comprehensive
treatment of Q’s that consist of one single index and k − 2 differences of pairs of
indices, for k ≤ 6. Most of the expressions presented follow from the general results
presented in section 3, and a few depend on a single conjecture, stated below. For
larger k more cases are expected to be encountered whose proof requires further
types of general results.

It appears that a lot remains to be done to fully understand the multitude of
expressions for the Stirling numbers of the first kind that the present paper suggests.

2. Multiset Automorphisms of the Set of Summation Indices

In the present section we examine transformations of the set of summation indices
j1, j2, . . . , jk−1, (1 ≤ j1 < j2 < · · · < jk−1 ≤ n − 1) of the form ji → j∗i ; i =
1, 2, . . . , k − 1, that maintain the property 1 ≤ j∗1 < j∗2 < · · · < j∗k−1 ≤ n − 1.
The multiset of (k − 1)-tuples (j1, j2, . . . , jk−1) is invariant under such transfor-
mations. We shall refer to transformations that satisfy this property as multiset
automorphisms.

2.1. The T -Transformations

Consider the transformation of summation variables specified by

t1 :
{

j1 → j̃1 = j2 − j1
ji → j̃i = ji ; i = 2, 3, . . . , k − 1.

For any given value of j2, the range of values of j1, i.e., 1 ≤ j1 ≤ j2 − 1, is
identical with the range of values of j2 − j1. Hence, the multiset of ordered pairs
(j1, j2) is identical with the multiset of ordered pairs (j2 − j1, j2). This implies
that for an arbitrary F (j1, j2) the identity

∑n−1
j1<j2

F (j1, j2) =
∑n−1

j1<j2
F (j2− j1, j2)

holds.
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This transformation can be generalized. Let

ti :
{

ji → j̃i = ji−1 + ji+1 − ji

jm → j̃m = jm for m $= i

where i = 2, 3, . . . , k−2. Again, for a given set of values of j1, . . . , ji−1, ji+1, . . . , jk−1

the range of ji is the same as that of ji−1 + ji+1 − ji.
The transformations t1, t2, . . . , tk−2 satisfy the relations t2i = e, (e is the identity)

ti · ti+1 · ti = ti+1 · ti · ti+1, i = 1, 2, . . . , k− 3, and ti · tj = tj · ti, |i− j| ≥ 2. These
are the relations satisfied by the generators of the symmetric group Sk−1.

2.1.1. Some Elementary T -Transformations

The following are easily derived from the defining relations

ti(ji − ji−1) = ji+1 − ji

ti(ji+1 − ji) = ji − ji−1

t1t2 · · · t"j" = j"+1 − j1

ti+1ti+2 · · · ti+"(ji+" − ji) = ji+"+1 − ji+1 ,

and are often applicable.

2.1.2. T -Transformations on the i-Indices

The T -transformations obtain a very transparent form on the i-indices. Thus,

t"

{
i"

i"+1
=

{
i"+1

i"
; " = 1, 2, . . . , k − 2 , (9)

i.e., t" acts as the transposition (", " + 1).

2.1.3. Special Types of T -Transformations

The U (up)-transformation is defined by

U :
{

ji → jk−1 − jk−1−i ; i = 1, 2, . . . , k − 2
jk−1 → jk−1

.

To express the U -transformation in terms of the generators of the T -transformations
it is convenient to use the correspondence of the generators of the symmetric
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group with transpositions of consecutive indices. For k−1 even consider the permu-
tation u ≡ (1, k− 1)(2, k− 2) · · · (i, k− i) · · · (k−1

2 , k+1
2 ), and for k− 1 odd consider

u ≡ (1, k − 1)(2, k − 2) · · · (k
2 − 1, k

2 + 1)(k
2 ). For i < j the transposition (i, j) is as-

sociated with the product of generators titi+1 · · · tj−2tj−1tj−2 · · · ti. Replacing each
transposition in u by the appropriate product of generators we obtain an expression
that can be verified to be equal to U . As an illustraion consider k − 1 = 4. From
u = (1, 4)(2, 3) we obtain U = (t1t2t3t4t3t2t1)(t2t3t2). From the definition of U it
follows that it is an involution. This is even clearer noting the association with a
product of mutually commuting transpositions.

The D (down)-transformation is

D :

{
ji → ji+1 − j1 ; i = 1, 2, . . . , k − 2

jk−1 → jk−1

.

It can be written in terms of the generators defined above in the form D =
t1t2t3 · · · tk−2, and it satisfies Dk−1 = e.

2.1.4. An Invariance Property Under the T -Transformations

Consider minimal homogeneous Q’s. For n = k the indices involved in Q obtain
the values ji = i ; i = 1, 2, . . . , k − 1. Evaluating the k − 1 factors of Q for this
case we obtain a multiset of integers, denoted (s1, s2, . . . , sk−1), that we refer to as
the shadow of Q. Defining σ =

∏k−1
i=1 si, the normalization coefficient is given by

(k−1)!
σ .
The transformation ti converts ji into j∗i = ji+1− ji + ji−1. Obviously, for n = k

the value of j∗i is equal to that of ji, i.e., to i. Hence, we have:

Lemma 1. The shadow of Q is invariant under T -transformations.

However, different Q’s with a common shadow are not necessarily related by
a T -transformation. At least one instance involving two different Q’s with a com-
mon shadow, one of which, j2(j3 − j1)(j4 − j1)(j3 − j2), is Stirling and the other,
j1(j3− j1)(j4− j1)(j4− j2), is not, was encountered. This observation suggests the
following.

Open Problem. Are minimal homegeneous Q’s with a common shadow, which
are both Stirling, always related by a T -transformation?
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2.2. The I-Transformation

Consider the “inversion” (Ik−1-) transformation

I :






j1 → j∗1 = n− jk−1

j2 → j∗2 = n− jk−2

...
jm → j∗m = n− jk−m

...
jk−1 → j∗k−1 = n− j1

Clearly, 1 ≤ j∗1 < j∗2 < · · · < j∗k−1 ≤ n− 1.

2.3. Some Applications of the T - and I- Transformations

As a first illustration we consider the two expressions for the Stirling numbers
[n

3

]
,

i.e.,

[n

3

]
=

n−1∑

j1<j2

(n− 1)!
j1 · j2

,

which is a special case of Equation (4), and

[n

3

]
=

n−1∑

j1<j2

(n− 1)!
2j1 · (j2 − j1)

,

which is a special case of Equation (7). We note that the normalization coefficient
is equal to 1 in the first identity and to 2 in the second, so they cannot be related
to one another by a multiset automorphism. To illustrate this point we write the
summands explicitly for n = 4:

3∑

j1<j2

3!
j1 · j2

= 3 + 2 + 1 ,

3∑

j1<j2

3!
2 · j1(j2 − j1)

=
1
2
(6 + 3 + 3) .
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The transformations of the Q factor of the first identity under t1 and I2 are
presented in the diagram

(j2 − j1)j2
t1↔ j1j2

I2↔ (n− j1)(n− j2)
I2( (t1

(j2 − j1)(n− j1)
t2↔ j1(n + j1 − j2)

t1↔ (n + j1 − j2)(n− j2)
(10)

Hence, six distinct expressions for the Stirling numbers
[n

3

]
, four of them inho-

mogeneous, have been generated. This hexagon indicates that t1 and I2 do not com-
mute with one another. Rather, they satisfy the braiding relation t1I2t1 = I2t1I2,
or (t1I2)3 = e.

The Q factor in the second identity gives rise to the diagram

t1 ⊂ j1(j2 − j1)
I2↔ (n− j2)(j2 − j1)

t1↔ (n− j2)j1 ⊃ I2 (11)

indicating that the leftmost term is invariant under t1 and the rightmost term is
invariant under I2.

Note that while j1(n− j2) is Stirling, j2(n− j1) is not.
A further illustration is provided by application of the D-transformation and of

the U -transformation to Equation (4), yielding

[n

k

]
=

n−1∑

j1<j2<···<jk−1

(n− 1)!
(j2 − j1)(j3 − j1) · · · (jk−1 − j1)jk−1

, (12)

and
[n

k

]
=

n−1∑

j1<j2<···<jk−1

(n− 1)!
(jk−1 − j1)(jk−1 − j2) · · · (jk−1 − jk−2)jk−1

, (13)

respectively.
Equation (7) is invariant under all the T -transformations, hence, in particular,

both the U - and D-transformations.

2.3.1. Some Further T -Transforms of Adamchik’s Expression

Equation (4) has normalization coefficient α = 1. The (k−1)! T -transforms generate
that many images of this expression. Equations (12) and (13) are two of these. Many
others contain factors involving more than two indices, that we choose not to deal
with. The following are particularly interesting, and can be readily demonstrated
by induction.
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Let τ" = t1t2 · · · t", " = 1, 2, . . . , k − 2. Let Θ" = τ"τ"−1 · · · τ1. Then

Θm−1j1j2 · · · jk−1 = (jm − jm−1)(jm − jm−2) · · · (jm − j1)jmjm+1 · · · jk−1 . (14)

Let µ" = t"t"−1 · · · t2t1t2 · · · t"−1t". Let Ξ" = µ"µ"−1 · · ·µ1. Then

Ξm−1j1j2 · · · jk−1 = (j2 − j1)(j3 − j1) · · · (jm − j1)jmjm+1 · · · jk−1 . (15)

3. Some Further Identities

In the present section some general techniques and results will be presented. How-
ever, they do not account for all the cases that appear to be of interest.

3.1. Application of the Recurrence Relation: S-Derivation

Let
[n

k

]∗ be an expression that depends on two positive integers n and k, k ≤ n,
the asterisk serving to indicate that this is not necessarily a Stirling number.

Definition. S-derivation is defined by

S
[n

k

]∗
=

[
n + 1

k

]∗
− n ·

[n

k

]∗
.

From the recurrence relation for the Stirling numbers of the first kind, Equation
(1), it follows that

Lemma 2. If
[1
1

]∗
= 1 and S

[n
k

]∗ =
[

n
k−1

]
then

[n
k

]∗ =
[n

k

]
.

S-derivation can be written explicitly for
[n

k

]
Q

, when Q is homogeneous (inde-
pendent of n). Separating the sum over jk−1 in

[n+1
k

]
Q

into a sum up to n− 1 and
a term with jk−1 = n, one notes that the first term is equal to n ·

[n
k

]
Q

. Hence,

S
[n

k

]

Q
=

[
n

k − 1

]

Q̃

where Q̃ =
1
n

· Q|jk−1=n (16)

[
n

k−1

]

Q̃
is in general inhomogeneous although

[n
k

]
Q

was assumed to be homoge-

neous. This fact requires that we deal with inhomogeneous identities even if all
we desire is to establish the homogeneous ones. An exception of the inhomogeneity
noted here involves the case in which Q depends on jk−1 only as a multiplicative fac-
tor. This case yields a simple but important special case specified by the following
lemma, the proof of which is immediate.
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Lemma 3. If Q[j1, j2, . . . , jk−1] = Q′[j1, j2, . . . , jk−2]·jk−1 then S-derivation trans-
forms

[n
k

]
Q

into
[

n
k−1

]

Q′
.

This lemma allows the elimination of any number of isolated indices from the
top of Q. It means that if Q[j1, j2, . . . , jm] is Stirling, so is Q[j1, j2, . . . , jm] · jm+1 ·
jm+2 · · · jk−1.

When Q is homogeneous but not of the form specified in Lemma 3, Equation
(16) can be written in the form S

[n
k

]
Q

=
∑n−1

j1<j2<···<jk−2
n!

αQ|jk−1=n
. This is a non-

minimal (inhomogeneous) expression, Q|jk−1=n being a product of k− 1 factors. If
Q|jk−1=n can be written in the form Q′′ ·s1 ·s2, where s1 +s2 = n, then a procedure
that we will refer to as “partition of n” can be applied, yielding

S
[n

k

]

Q
=

β

α

n−1∑

j1<j2<···<jk−2

(n− 1)!
βQ′′ · s1

+
γ

α

n−1∑

j1<j2<···<jk−2

(n− 1)!
γQ′′ · s2

. (17)

Since the normalization coefficients α, β and γ are readily evaluated, it is easy to
show that β

α + γ
α = 1. If both sums on the right-hand-side of Equation (17) are

equal to
[

n
k−1

]
, then so is the left-hand-side. This procedure can be generalized to

any number of factors summing to n. A special case was applied to derive Equation
(6) above.

S-derivation can also be written explicitly when Q is a product of a homogeneous
expression in j1, j2, . . . , jk−2 and a factor of the form n−jk−1. In this case we have:

Lemma 4. Let Q[j1, j2, . . . , jk−1;n] = Q′[j1, j2, . . . , jk−2] · (n− jk−1). Then

S
[n

k

]

Q
=

n−1∑

j1<j2<···<jk−2

n!
αQ′[j1, j2, . . . , jk−2] · (n− jk−2)

. (18)

Proof. Write
[n+1

k

]
Q

and separate the sum over jk−1 into a term with jk−1 =
jk−2 +1 and a sum over jk−1 from jk−2 +2 to n. After replacing jk−1 in the second
sum by j∗k−1 = jk−1 − 1, that sum becomes n ·

[n
k

]
Q

. Hence, the right-hand-side of
Equation (18) is the first term specified above. !

Remark. The numerator in Equation (18) is n!, not (n− 1)!. The lemma can be
rewritten in the form

S : Q[j1, j2, . . . , jk−2] · (n− jk−1)→
1
n

· Q[j1, j2, . . . , jk−2](n− jk−2) .
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Further reduction can be achieved when Q′[j1, j2, . . . , jk−2] = Q′′[j1, j2, . . . , jk−3] ·
jk−2. In this case partition of n can be applied. Thus, for Q = Q′′[j1, j2, . . . , jk−3] ·
jk−2 · (n− jk−1) we obtain, after application of partition of n,

S
[n

k

]

Q
=

1
k − 1

·
[

n

k − 1

]

Q”·jk−2

+
k − 2
k − 1

·
[

n

k − 1

]

Q′′·(n−jk−2)

.

Hence,
[n

k

]
Q

is Stirling if both
[

n
k−1

]

Q′′·jk−2

and
[

n
k−1

]

Q′′·(n−jk−2)
are.

Taking Q′′[j1, j2, . . . , jk−3] = j1j2 · · · jk−3 we note that
[

n
k−1

]

Q′′·jk−2

is Stirling

by Equation (4). Hence,

S
[n

k

]

j1j2···jk−2(n−jk−1)
=

1
k − 1

·
[

n

k − 1

]
+

k − 2
k − 1

·
[

n

k − 1

]

j1j2···jk−3(n−jk−2)

,

allowing an inductive proof that
[n

k

]
j1j2···jk−2(n−jk−1)

is Stirling provided that
[n

2

]
n−j1

is. The latter is readily established. Finally we obtain

Lemma 5. We have
[n

k

]
=

n−1∑

j1<j2<···<jk−1

(n− 1)!
j1 · j2 · · · jk−2(n− jk−1)

.

This lemma will be generalized in the following section.

3.1.1. S-Derivation in the i-Indices

For an expression of the form
[n

k

]

P
=

∑

i1,i2,...,ik−1≥1
(i1+i2+···+ik−1≤n−1)

(n− 1)!
αP [i1, i2, . . . , ik−1]

S-derivation yields

S
[n

k

]

P
=

∑

i1,i2,...,ik−1≥1
(i1+i2+···+ik−1=n)

n!
αP [i1, i2, . . . , ik−1]

. (19)

Further reduction takes place when a partition of n in terms of some (or all) of
the factors comprising P is feasible. The case P = i1i2 · · · ik−1 was treated above
(Equation (6)), and additional cases will be dealt with below.
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3.2. Some Z Identities

The following identities are representative of a class of identities that we will refer
to as the Z (for zipper) identities:

For m = 0, 1, . . . , k − 1 let

[n

k

]

α,m
=

n−1∑

j1<j2<···<jk−1

(n− 1)!(
k−1
m

)
j1 · j2 · · · jm(n− jm+1)(n− jm+2) · · · (n− jk−1)

(20)
and

[n

k

]

β,m

=
n−1∑

j1<j2<···<jk−1

n!(
k

m+1

)
j1 · j2 · · · jm · jm+1(n− jm+1)(n− jm+2) · · · (n− jk−1)

(21)

Theorem 6. For all m, [n

k

]

α,m
=

[n

k

]
(22)

and [n

k

]

β,m
=

[n

k

]
. (23)

Proof. Write
[

n+1
k+1

]

α,m+1
and separate the sum over jm+2 into a term with jm+2 =

jm+1 + 1 and a sum over jm+2 from jm+1 + 2 to n− k + m + 2 (the maximal value
allowed by the condition jm+2 < jm+3 < · · · < jk ≤ n). In the first term introduce
the summation indices j∗i = ji − 1, i = m + 3,m + 4, . . . , k. In the second term do
the same for the index jm+2 as well. One obtains

[
n + 1
k + 1

]

α,m+1

=
[n

k

]

β,m
+ n ·

[
n

k + 1

]

α,m+1

. (24)

Apply partition of n to the expression on the right-hand-side of Equation (21), to
obtain

[n

k

]

β,m
=

m + 1
k

·
[n

k

]

α,m
+

k − (m + 1)
k

·
[n

k

]

α,m+1
. (25)

After verifying that the theorem holds for n = 1 (or, less trivially, for n = 2), we
make the induction hypothesis that Equation (22) holds for n (and all consistent
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values of k and m, i.e., k = 1, 2, . . . , n and m = 0, 1, . . . , k − 1). It follows from
Equation (25) that Equation (23) holds for n. Finally, it follows from Equation (24)
that Equation (22) holds for n + 1 and all m ≥ 1. The case m = 0 was established
above. This completes the proof of the theorem. !

Theorem 7. We have
[n

k

]

=
n−1∑

j1<j2<···<jk−1

(n− 1)!(
k−2
m

)
j1 · j2 · · · jm(jk−1 − jm+1)(jk−1 − jm+2) · · · (jk−1 − jk−2)jk−1

.

(26)

Proof. Apply S followed by Ik−2 to obtain the expression in the first part of The-
orem 6. !

Theorem 8. We have

[n

k

]
=

n−1∑

j1<j2<···<jk−1

(n− 1)!(
k−1
m

)
j1 · j2 · · · jm(jk−1 − jm)(jk−1 − jm+1) · · · (jk−1 − jk−2)

.

(27)

Proof. Apply S and then partition of n into jm + (n− jm). Each of the two sums
obtained is equal to

[
n

k−1

]
by Theorem 6. !

Remark. For m = 0 both Theorem 7 and Theorem 8 reduce to Equation (13)
(setting j0 = 0). For m > 0 they correspond to distinct shadows, that of Theorem
7 containing k − 1.

3.3. Identities Involving (j2 − j1)(j3 − j2) · · · (jk−1 − jk−2)

In the present section let Qπ = (j2 − j1)(j3 − j2) · · · (jk−1 − jk−2) . Equation (7)
states that j1 · Qπ is Stirling.

Lemma 9. jk−1 · Qπ is Stirling.
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Proof. Writing
[n

k

]∗ =
∑n−1

j1<j2<···<jk−1

(n−1)!
(k−2)!jk−1·Qπ

, we note that
[

k
k

]∗
= 1 and

obtain

S
[n

k

]∗
=

n−1∑

j1<j2<···<jk−2

(n− 1)!
(k − 2)!(j2 − j1)(j3 − j2) · · · (jk−2 − jk−3)(n− jk−2)

. (28)

Application of the Ik−2-transformation yields

S
[n

k

]∗
=

n−1∑

j1<j2<···<jk−2

(n− 1)!
(k − 2)!(jk−2 − jk−3)(jk−3 − jk−4) · · · (j2 − j1)j1

(29)

which is equal to
[

n
k−1

]
, by Equation (7). (The same result could be derived by

application of U to Equation (7), followed by application of S.) !

Since Qπ is invariant under Ik−1 it follows immediately that

Lemma 10. (n− j1)Qπ and (n− jk−1)Qπ are both Stirling.

Theorem 11.
[n

k

]
j"·Qπ

=
∑n−1

j1<j2<···<jk−1

(n−1)!
α"j"·Qπ

, " = 1, 2, . . . , k − 1, where α" =
(k−1)!

" , is a Stirling number of the first kind.

Proof. The proof is by induction, using Lemma 9 with k − 1 = " to start the
induction. To proceed, it is convenient to use the i-indices. Qπ becomes Pπ =
i2i3 · · · ik−1. An application of Equation (19) to the sum in the theorem, followed
by partition of n into (i1 + i2 + · · · + i") + i"+1 + i"+2 + · · · + ik−1, yields

S
[n

k

]

j"·Qπ

=
"

k − 1

∑

i1,i2,...,ik−1
(i1+i2+···+ik−1=n)

(n− 1)!
β"i2i3 · · · ik−1

(30)

+
k − 1− "

k − 1

∑

i1,i2,...,ik−1
(i1+i2+···+ik−1=n)

(n− 1)!
γ"(i1 + i2 + · · · + i")i2i3 · · · i"i"+2 · · · ik−1

where β" = (k − 2)! and γ" = (k−2)!
" . The second sum on the right-hand-side

incorporates the k − 1 − " equivalent sums obtained by cancellation of any one of
the factors i"+1, i"+2, . . . , ik−1. The summand in the first sum on the right-hand-
side of Equation (30) does not depend on i1, so this sum can be written as a sum
over i2, i3, . . . , ik−1 with the condition i2 + i3 + · · ·+ ik−1 ≤ n−1, showing that it is
equal to

[
n

k−1

]
by Equation (5). The summand in the second sum does not depend

on i"+1, which can similarly be eliminated from the set of summation indices. This
sum is also equal to

[
n

k−1

]
, by the induction hypothesis. !
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3.4. Expressions Involving (j2 − j1)(j3 − j1) · · · (jk−1 − j1)

In the present section let Qδ = (j2 − j1)(j3 − j1) · · · (jk−1 − j1) .

The case jk−1 · Qδ is taken care of by Equation (12).

Lemma 12. j1 · Qδ is Stirling.

Proof. Apply S followed by a partition of n into (n− j1) + j1 to obtain

S
[n

k

]

j1·Qδ

=
k − 2
k − 1

n−1∑

j1<j2<···<jk−2

(n− 1)!
(k − 2)j1(j2 − j1)(j3 − j1) · · · (jk−2 − j1)

(31)

+
1

k − 1

n−1∑

j1<j2<···<jk−2

(n− 1)!
(j2 − j1)(j3 − j1) · · · (jk−2 − j1)(n− j1)

.

Apply Ik−2 to the second sum on the right-hand-side to obtain

n−1∑

j1<j2<···<jk−2

(n− 1)!
(jk−2 − j1)(jk−2 − j2) · · · (jk−2 − jk−3)jk−2

,

which is equal to
[

n
k−1

]
by Equation (13). The first sum on the right-hand-side

of Equation (31) equals
[

n
k−1

]
by the induction hypothesis. Hence, the lemma

follows. !

3.5. Expressions Involving (jk−1 − j1)(jk−1 − j2) · · · (jk−1 − jk−2)

The expression (jk−1 − j1)(jk−1 − j2) · · · (jk−1 − jk−2)jk−1 is Stirling by Equation
(13).

We shall now prove

Lemma 13. We have

[n

k

]
=

n−1∑

j1<j2<···<jk−1

(n− 1)!
(k − 1)j1(jk−1 − j1)(jk−1 − j2) · · · (jk−1 − jk−2)

(32)

Proof. Application of S-derivation to Equation (32), followed by the application of
Ik−2, yields

S
[n

k

]
=

n−1∑

j1<j2<···<jk−2

n!
(k − 1)jk−2(n− jk−2) · jk−3 · jk−4 · · · j1

.
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Application of partition of n into (n− jk−2) + jk−2 yields

S
[n

k

]
=

k − 2
k − 1

·
n−1∑

j1<j2<···<jk−2

(n− 1)!
(k − 2)j1 · j2 · · · jk−3(n− jk−2)

+
1

k − 1
·

n−1∑

j1<j2<···<jk−2

(n− 1)!
j1 · j2 . . . jk−2

.

Both the first and the second sum on the right-hand-side are equal to
[

n
k−1

]
, the

former by Equation (20) and the latter by Equation (4). !

3.6. Identities With a Single Pair of Indices

In this section we consider expressions of the form

∑

j1<j2<···<jk−1

(n− 1)!
(jp − jq)(j∗) · Q′′ , where Q′′ =

k−1∏

i=1
i%=p;i%=q

ji ,

and where j∗ is either jp or jq.
Let

[n

k

]

γ
=

n−1∑

j1<j2<···<jk−1

(n− 1)!
(k − 1) · j1 · j2 · · · jk−2(jk−1 − jk−2)

and
[n

k

]

δ
=

n−1∑

j1<j2<···<jk−1

n!
(k − 2) · j1 · j2 · · · jk−3 · jk−1(jk−1 − jk−2)

.

Theorem 14. We have
[n

k

]
γ

=
[n

k

]
δ

=
[n

k

]
.

Proof. We first verify that the Theorem holds for n = k. Fixing k (arbitrarily)
we assume that the Theorem holds for n and show that it holds for n + 1. Write[n+1

k

]
γ

and separate the sum over jk−1 into a sum from 1 to n− 1 and a term with
jk−1 = n. Obtain, [

n + 1
k

]

γ

= n
[n

k

]

γ
+

[
n

k − 1

]

β

.

The second term on the right-hand side equals
[

n
k−1

]
by Theorem 6, while the first

term equals n
[n

k

]
by the induction hypothesis. Hence,

[n+1
k

]
γ

=
[n+1

k

]
. A similar

argument, using the other part of Theorem 6, proves the theorem for
[n

k

]
δ
. !
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We now consider two extensions of the theorem. We first show that it does not
hold if the indices in the single pair are not consecutive.

Consider
[n

k

]

ε
=

n−1∑

j1<j2<···<jk−1

2 · (n− 1)!
(k − 1) · j1 · j2 · · · jk−2(jk−1 − jk−3)

.

Note that
[

k
k

]

ε
= 1 and

[
k+1

k

]

ε
= k. Since

[
k
k

]
= 1 and

[
k+1

k

]
= k(k+1)

2 it is clear

that
[n

k

]
ε

is not a Stirling number.
The second extension we consider retains the consecutive indices in the single

pair, but allows them not to be at the top. Since application of S a sufficient
number of times reduces the expression to one with the pair at the top, we obtain

Theorem 15. We have
[n

k

]
=

n−1∑

j1<j2<···<jk−1

(n− 1)!
(" + 1) · j1 · j2 · · · j"(j"+1 − j")j"+2 · · · jk−1

=
n−1∑

j1<j2<···<jk−1

(n− 1)!
" · j1 · j2 · · · j"−1(j"+1 − j")j"+1 · · · jk−1

3.7. A Conjecture

Conjecture 16. The following holds:
[

n

2k + 1

]
=

n−1∑

j1<j2<···<j2k

(n− 1)!
2j1j2 · · · j2k−1(j2k − j2k−1 + j2k−2 − · · · + j2 − j1)

.

4. Comprehensive Exploration For Low k Values

A comprehensive search for all minimal homogeneous Q’s that consist of a product
of k − 2 differences of pairs of indices and one single index, for k ≤ 6, was carried
out. The corresponding expressions were normalized at n = k and then evaluated
for higher n to discard those that are non-Stirling. Most of the expressions that
pass this test are special cases of expressions that were shown to be Stirling above,
or can be related to such expressions by means of appropriate transformations. The
remaining expressions can be derived assuming that Conjecture 16 holds.

Of course, one should expect that for higher k the theorems derived above, along
with Conjecture 16, will not be sufficient to establish the Stirling property for all
possible candidates.
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4.1. The Cases k = 1,k = 2, and k = 3

These cases are mentioned for the sake of completeness. For k = 1 one obtains from
either the recurrence relation, Equation (4), Equation (5) or the combinatorial
meaning of the Stirling numbers of the first kind that

[n
1

]
= (n− 1)!.

For k = 2 one obtains
[n

2

]
=

∑n−1
j1=1

(n−1)!
j1

, which follows from both Equation
(4) and Equation (7).

The minimal identities corresponding to k = 3 were considered in section 2.3. Six
identities with the shadow (1, 2) and three with the shadow (1, 1) were presented in
Equations (10) and (11), respectively.

4.2. k = 4

In this case each normalization coefficient still corresponds to a unique shadow.
The orbit under the T -transformations (the T -orbit) is presented for each normal-
ization coefficient, and the Stirling property is established using the general results
presented in the previous section.

4.2.1. α= 6

The expression involving j1(j2 − j1)(j3 − j2) is a special case of Equation (7). It is
invariant under both t1 and t2.

4.2.2. α= 3

This case gives rise to the T -orbit

j1j2(j3 − j2)
t1↔ (j3 − j2)(j2 − j1)j2

t2 ( (t2
t1 ( (t1

j1(j2 − j1)(j3 − j1)
t2↔ j1(j3 − j2)(j3 − j1)

(33)

where we have skipped two intermediate expressions of a more complicated form.
The expression on the right-hand-side of the top row is a special case of Theorem
11, and that on the left-hand-side of the top row is a special case of Theorem 15.
The expressions on the left- and right-hand-sides of the bottom row are special cases
of Lemmas 12 and 13, respectively.
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4.2.3. α= 2

The sequence

t2 ⊂ (j2 − j1)(j3 − j2)j3
t1↔ j1(j3 − j2)j3

t2↔ j1(j2 − j1)j3 ⊃ t1 (34)

is closed because the leftmost member is invariant under t2 and the rightmost
member is invariant under t1. The intermediate as well as the rightmost expressions
are Stirling by Theorem 15, and the leftmost expression is Stirling by Lemma 9.

4.2.4. α= 1

The expressions corresponding to this normalization coefficient form the T -orbit

j1j2j3
t1↔ (j2 − j1)j2j3

t2 ( (t2
t1 ( (t1

(j2 − j1)(j3 − j1)j3
t2↔ (j3 − j1)(j3 − j2)j3

(35)

The expressions on the left- and right-hand-sides of the top row are special cases of
Equation (4) and Theorem 15, respectively. Those on the left- and right-hand-sides
of the bottom row are Stirling by Equations (14) and (15), respectively.

4.3. k = 5

Here we encounter the first suspected Stirling identity that does not follow from any
of the results presented above, requiring the application of Conjecture 16. We also
encounter, for the first time, examples in which the same normalization coefficient
is obtained for two different shadows. The notation s : Q will be used to specify
a shadow s and a representative expression Q. Wherever possible, this will be
followed by a brief indication of the reason for the specified Q to be Stirling. Orbits
under multiset-automorphisms are not examined.

4.3.1. α= 24

The expression j1(j2 − j1)(j3 − j2)(j4 − j3) is Stirling by Equation (7).

4.3.2. α= 12

The expression j2(j2 − j1)(j3 − j2)(j4 − j3) is Stirling by Theorem 11.
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4.3.3. α= 8

The expression j3(j2 − j1)(j3 − j2)(j4 − j3) is a special case of Theorem 11.

4.3.4. α= 6. Two Different Shadows

(1, 1, 1, 4) : (j2 − j1)(j3 − j2)(j4 − j3)j4 is Stirling by Lemma 9.

(1, 1, 2, 2) : j2(j2 − j1)(j4 − j2)(j4 − j3)
t1→ j1j2(j4 − j2)(j4 − j3),

is Stirling by Theorem 8.

4.3.5. α= 4

(1, 1, 2, 3) : j1(j2−j1)(j3−j1)(j4−j1)
t3t2t1−→ j1j2j3(j4−j3), Stirling by Theorem 15.

4.3.6. α= 3. Two Different Shadows

The shadow (1, 2, 2, 2) is represented by j2(j2 − j1)(j3 − j1)(j4 − j2). To establish
the fact that this expression is Stirling we apply S, partition of n into j2 +(n− j2),
followed by application of I3 to the resulting inhomogeneous expression. The two
expressions obtained are

∑n−1
j1<j2<j3

(n−1)!
3j2(j3−j1)(j3−j2)

and
∑n−1

j1<j2<j3
(n−1)!

3j2(j3−j1)(j2−j1)
.

None of these is Stirling, but summing their summands we obtain

n−1∑

j1<j2<j3

(n− 1)!
3j2(j3 − j2)(j2 − j1)

,

which is Stirling by Theorem 11.
The second shadow, (1, 1, 2, 4), gives rise to

j4(j2 − j1)(j3 − j1)(j4 − j3)
t2t1−→ j1j2j4(j4 − j3), Stirling by Theorem 14.

4.3.7. α= 2. Two Different Shadows, One of Which Depends on a
Conjecture

(1, 2, 2, 3) : j2(j3 − j1)(j4 − j1)(j3 − j2)
t1t2t3t1−→ j1j2j3(j4 − j3 + j2 − j1),

is Stirling if Conjecture 16 holds.

(1, 1, 3, 4) : t2 ⊂ j4(j2 − j1)(j4 − j1)(j3 − j2)
t3t2t1−→ j1j3j4(j2 − j1),

is Stirling by Theorem 15.
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4.3.8. α= 1

This is a special case of Equation (12).

4.4. k = 6

Here we encounter the first instance of a shadow that corresponds to no Q with the
Stirling property.

4.4.1. α= 120, 60, 40, 24

Each of these four cases corresponds to a unique shadow. Each has a member of
the form j"(j2− j1)(j3− j2)(j4− j3)(j5− j4) with " = 1, 2, 3, 5, respectively. These
expressions are Stirling by Theorem 11.

4.4.2. α= 30. Two Different Shadows

(1, 1, 1, 1, 4) : j4(j2 − j1)(j3 − j2)(j4 − j3)(j5 − j4) is Stirling by Theorem 11.
(1, 1, 1, 2, 2) : j2(j2 − j1)(j3 − j2)(j4 − j3)(j5 − j3), upon application of S followed
by partition of n into (n − j3) + (j3 − j2) + j2, yields three expressions. The one
obtained by cancellation of (n − j3) can be readily identified as Stirling. The one
obtained by cancellation of j2 can be transformed into the first one by application
of I4. Application of t1 to the third expression yields j1j2(j4− j3)(n− j3), which is
Stirling by application of S followed by partition of n.

4.4.3. α= 20

Application of S on (1, 1, 1, 2, 3) : j3(j2− j1)(j3− j2)(j4− j3)(j5− j3), followed by
partition of n, yields two expressions, both being Stirling by Theorem 11.

4.4.4. α= 15. Two Different Shadows

Application of S followed by partition of n on (1, 1, 1, 2, 4) : j4(j2−j1)(j3−j2)(j4−
j2)(j5−j4) yields a term that is Stirling, belonging to the case k = 5, α = 3, shadow
(1, 1, 2, 4), and a term that after application of I4 is Stirling, belonging to the case
k = 5, α = 12.

(1, 1, 2, 2, 2) : j1(j3 − j1)(j3 − j2)(j4 − j2)(j5 − j3), upon application of S
followed by I4, yields an expression that allows partition of n into (n − j4) +
(j4 − j2) + j2. The expression obtained by cancellation of (n − j4) is Stirling (see
k = 5, α = 3 above). However, neither of the other two expressions is Stirling.
We shall show that their sum is Stirling (which is sufficient). We apply S on the
term obtained by cancellation of the factor (j4 − j2), and we apply I4, followed
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by S, followed by I3, on the term obtained by cancellation of j2. The result-
ing expressions, 1

nj2(j3 − j1)(j3 − j2)(n − j3) and 1
nj2(j2 − j1)(j3 − j1)(n − j3),

yield sums that can be added, obtaining a standard sum containing the expression
1
nj2(j3− j2)(j2− j1)(n− j3). To show that this sum is Stirling we perform partition
of n to obtain three terms, each of which is Stirling.

4.4.5. α= 12

(1, 1, 1, 2, 5) : j5(j2−j1)(j3−j2)(j4−j2)(j5−j4)
S→ I4→ Stirling by case k = 5, α = 12 .

4.4.6. α= 10. Two Different Shadows, One of Which Depends on a
Conjecture

The expression (1, 1, 1, 3, 4) : j4(j2 − j1)(j4 − j1)(j4 − j3)(j5 − j4) reduces, after
application of S followed by partition of n, to a sum of two expressions, one of which
is Stirling if Conjecture 16 holds, and the other becomes, after application of I4, a
member of the case k = 5 α = 8.

The expression (1, 1, 2, 2, 3) : j3(j2 − j1)(j3 − j1)(j4 − j3)(j5 − j3) reduces, after
application of S, into a sum of two expressions. One of them belongs to the case
k = 5 α = 4, and the other, after application of I4, belongs to the case k = 5, α = 6.

4.4.7. α= 8

(1, 1, 1, 3, 5) : j5(j2−j1)(j4−j1)(j3−j2)(j5−j4)
S→ I4→ Stirling by case k = 5, α = 8 .

4.4.8. α= 6. Two Different Shadows

(1, 1, 1, 4, 5) : j5(j2−j1)(j5−j1)(j3−j2)(j4−j3)
S→ I4→ Stirling by Theorem 11 .

(1, 1, 2, 2, 5) : j5(j2−j1)(j3−j1)(j4−j3)(j5−j3)
S→ I4→ Stirling by case k = 5,α = 6 .
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4.4.9. α= 5. Two Different Shadows, One of Which Yields No
Stirling Expression

(1, 1, 2, 3, 4) : j1(j5 − j1)(j5 − j2)(j5 − j3)(j5 − j4) is Stirling by Equation (32).

The shadow (1, 2, 2, 2, 3) does not correspond to any expression that is Stirling.
This is the first case encountered of such a shadow.

4.4.10. α= 4

(1, 1, 2, 3, 5) : j5(j4 − j1)(j4 − j2)(j4 − j3)(j5 − j4)
S→ I4→ Stirling by Lemma 12 .

4.4.11. α= 3. Two Different Shadows

(1, 1, 2, 4, 5) : j5(j3−j1)(j5−j1)(j3−j2)(j4−j3)
S→ I4→ Stirling by case k = 5, α = 3 .

(1, 2, 2, 2, 5) : j5(j3−j1)(j3−j2)(j4−j2)(j5−j3)
S→ I4→ Stirling by case k = 5, α = 3 .

4.4.12. α= 2. Two Different Shadows, One of Which Depends on a
Conjecture

(1, 1, 3, 4, 5) : j5(j5 − j1)(j3 − j2)(j5 − j2)(j4 − j3)
T→ j1(j2 − j1)j3j4j5, where

T = t3t2t1t2t4t3t2t1. The rightmost expression is Stirling by Theorem 15.
The shadow (1, 2, 2, 3, 5) corresponds to expressions that are Stirling if Conjecture

16 holds.

4.4.13. α= 1

This is a special case of Equation (12).

5. Concluding Remarks

The multitude of expressions for the Stirling numbers of the first kind presented in
this article reveal a new facet of these time-honored entities. The results presented
are certainly incomplete. The conjectures and the open problem stated, as well as
the highly likely existence of additional expressions whose Stirling property can be
established, call for further work. The issue of q-analogues appears to be far from
trivial.

Acknowledgement. Helpful discussions with Professor Johann Cigler are grate-
fully acknowledged.



INTEGERS: 10 (2010) 297

References

[1] R. P. Stanley, Enumerative Combinatorics, Vol. I, Cambridge University Press, Cambridge
1997.

[2] L. Comtet, Advanced Combinatorics, Reidel, Dordrecht 1974.

[3] V. Adamchik, On Stirling numbers and Euler sums, J. Comput. Appl. Math. 79 (1997) 119-
130.


