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Abstract
Let A, B ⊆ Z be finite, nonempty subsets such that maxB − minB ≤ maxA −
minA, gcd(A+B−c) = 1, for some c ∈ A+B, and |A+B| ≤ |A|+2|B|−3−δ(A,B),
where δ(A,B) is 1 if x + A ⊆ B for some x ∈ Z, and is 0 otherwise. Assume one of
the following conditions holds true:

• maxA−minA ≤ |A| + |B|− 3,

• gcd(A− a) ≤ 2, for some a ∈ A,

• |A + B| ≤ 2|A| + |B|− 3− δ(B,A).

Then A+B contains a (|A|+ |B|−1)–term arithmetic progression with difference 1.

1. Introduction

For a subset A ⊆ Z, we let diamA = maxA − minA denote its diameter and |A|
its cardinality. We let gcd∗A = gcd(A − a0), where a0 ∈ A and gcd denotes the
greatest common divisor. Note that the definition of gcd∗A does not depend on the
choice of a0 and, by convention, gcd∗(A) = ∞ when |A| = 1. For A, B ⊆ Z, their
sumset is the set of all sums of one element from A and one element from B:

A + B = {a + b : a ∈ A, b ∈ B}.

Also, define

δ(A,B) =
{

1 if x + A ⊆ B for some x ∈ Z,
0 otherwise.

The study of the structure of subsets with small sumset has a rich tradition (see
[10] and [13] for two texts on the subject). A classical result of Freiman [4] [2] [10]
[13] states that if a set A of integers satisfies gcd∗A = 1 and
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|A + A| ≤ 3|A|− 4, (1)

then the diameter of A is at most 2|A|− 4. In other words, A is an interval with at
most |A|− 3 holes. Various versions of a generalization to distinct summands were
later found [5] [7] [12] [6]. Theorem A below is a recent version [6] that combines
all previous generalizations into a single (slightly) more general statement.

Theorem A. Let A, B ⊆ Z be finite and nonempty subsets with gcd∗(A + B) = 1
and diamB ≤ diamA. Let |A + B| = |A| + |B|− 1 + r. Suppose either

(i) |A + B| ≤ |A| + |B|− 3 + min{|B|− δ(A,B), |A|− δ(B,A)} or

(ii) |A + B| ≤ |A| + 2|B|− 3− δ(A,B) and gcd∗A = 1.

Then diamA ≤ |A| + r − 1 and diamB ≤ min{|A|, |B|} + r − 1.

Strangely enough, Theorem A remains true if the condition gcd∗A = 1 in (ii) is
relaxed to gcd∗A ≤ 2, and this can be shown by a short argument using Theorem
A as stated above. As this seems not to have been noticed before, we provide the
details of the following strengthening of Theorem A in the next section.

Theorem B. Let A, B ⊆ Z be finite subsets with gcd∗(A + B) = 1 and diamB ≤
diamA. Suppose either

(i) |A + B| ≤ |A| + |B|− 3 + min{|B|− δ(A,B), |A|− δ(B,A)} or

(ii) |A + B| ≤ |A| + 2|B|− 3− δ(A,B) and gcd∗A ≤ 2.

Then diamA ≤ |A| + r − 1 and diamB ≤ min{|A|, |B|} + r − 1.

As later became apparent, knowing that there are only a small number of holes
in a pair of sets with small sumset is not always sufficient. In part, this is be-
cause there are many subsets of small diameter that nonetheless have large sumset.
Working through examples, one quickly finds that, informally speaking, it is much
more difficult for the holes in a subset A with small sumset (and correspondingly
the holes in A+A as well) to occur in the interior of the set than near the boundary
(namely, near the maximum or minimum element). However, there have been few
results satisfyingly embodying this idea.

One such result occurred in a paper of Lev where long arithmetic progressions
were found in hA (where hA = A + (h − 1)A denotes the h–fold sumset) [8]. In
particular, it was proved that if diamA < 3

2 |A|− 1 and gcd∗A = 1, then A+A con-
tains at least 2|A|−1 consecutive integers [8, Corollary 1]. Another instance occurs
in a second paper of Lev characterizing large sum-free sets over Z/pZ [9]. Namely,
among other similar results from these papers, it was shown that if diamA < 3

2 |A|−1
and gcd∗A = 1, then A−A contains an interval of 2|A|− 1 integers [9, Lemma 3];
see also [1] for an application of this result.
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Very recently, G. Freiman showed in [3] that there is always a (2|A| − 1)–term
arithmetic progression in A + A when the sumset is so small as to satisfy (1). Now
|2A| ≤ 2 · diamA + 1 holds trivially with equality only possible when 2A is itself an
arithmetic progression with difference 1. Thus, when searching for long arithmetic
progressions in 2A, one can assume |2A| ≤ 2 · diamA, and now the assumption
diamA < 3

2 |A|− 1 from Lev’s paper can be used to show the assumption (1) holds
in Freiman’s paper except when diamA = 3

2 (|A|−1) precisely (in which case |A| must
be odd). Hence Freiman’s result implies that of Lev except in this one particular
case. However, this case can be handled by a simple separate argument using an
analog of Proposition 4 proved in the paper of Freiman.

The example

A = {0, 1, 2, . . . , k − r − 1, k − r + 1, k − r + 3, . . . , k − r + (2r − 1)},

for r = 0, 1, . . . , k − 3, shows the bound on the arithmetic progression length to be
best possible, while the example

A =
{

1, 2, . . . ,
⌈

k

2

⌉}
∪

{
x + 1, x + 2, . . . , x +

⌊
k

2

⌋}
,

for x ≥ k + 1, shows that the assumption |A + A| ≤ 3|A| − 4 from (1) is needed.
The paper of Freiman also delved into the issue of where the holes could occur in
A, but the other structural information is derivable from the bound on the length
of the arithmetic progression.

The goal of our paper is to extend the aforementioned result of Freiman to pairs
of distinct summands A and B.

Theorem 1. Let A, B ⊆ Z be finite and nonempty with diamB ≤ diamA ≤
|A| + |B|− 3 and

|A + B| ≤ |A| + 2|B|− 3− δ(A,B). (2)

Then A + B contains |A| + |B|− 1 consecutive integers.

Combining Theorem 1 with Theorem B will give the following corollary.

Corollary 2. Let A, B ⊆ Z be finite and nonempty. Suppose either

(i) |A + B| ≤ |A| + |B|− 3 + min{|B|− δ(A,B), |A|− δ(B,A)} or

(ii) diamB ≤ diamA, gcd∗A ≤ 2 and |A + B| ≤ |A| + 2|B|− 3− δ(A,B).
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Then A + B contains a (|A| + |B| − 1)-term arithmetic progression of difference
gcd∗(A + B).

The rest of the paper is organized as follows. In Section 2, we present the
notation that will be assumed for the remainder of the paper. In Section 3, we give
the derivations of Theorem B and Corollary 2. Section 4 is devoted to the proof of
Theorem 1. The structural consequences concerning the location of holes and such
will become apparent in the series of propositions and definitions leading up to the
proof of Theorem 1. The paper concludes with a few additional remarks.

2. Notation

Throughout this paper, we assume A, B ⊆ Z are finite, nonempty subsets normal-
ized so that

minA = minB = 0, (3)

and with

M = maxA and N = maxB, (4)

M ≥ N, (5)

|A + B| = |A| + |B|− 1 + r, (6)

so that A is assumed to be the set with larger (or equal) diameter. As all questions
are translation invariant, there is no loss of generality when assuming (3). Note, in
view of (3) and (5), that

δ(A,B) = 1 if and only if A ⊆ B. (7)

For a, b ∈ Z, we define [a, b] := {x ∈ Z | a ≤ x ≤ b} ⊆ Z. Note [a, b] = ∅ when
b < a. For a set X and an interval [a, b] ⊆ Z, the number of holes of X in [a, b] is
denoted by

hX(a, b) = |[a, b] \ X|.

When [a, b] is the default interval [minX,maxX], we skip reference to the interval,
that is,

hX = hX(minX,maxX),

and when we refer to a hole in X without reference to an interval, we simply mean
an element x ∈ [minX,maxX] \ X.
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Observe, in view of (3), (4) and (6), that

M = |A| + hA − 1, (8)

N = |B| + hB − 1, (9)

hA+B = M + N + 1− |A + B| = hA + hB − r. (10)

Also remark that, using (8), we can rewrite the condition diamA ≤ |A|+ |B|− 3 in
Theorem 1 as hA ≤ |B|− 2 and the condition (2) as r ≤ |B|− 2− δ(A,B).

3. Proofs for Theorem B and Corollary 2

First we give the derivation of Theorem B from Theorem A.

Proof. In view of Theorem A and our hypotheses, we assume gcd∗A = 2 > gcd∗(A+
B) = 1 and

|A + B| ≤ |A| + 2|B|− 3− δ(A,B). (11)

We may also use the notation and assumptions presented in Section 2. In particular,
minA = minB = 0, maxA = diamA = M and maxB = diamB = N . Let Bi =
B∩(i+2Z), for i = 0, 1. Note both B0 and B1 are nonempty, else gcd∗(A+B) = 2,
contrary to hypothesis. Since gcd∗(A) = 2 and minA = 0, we know M is even.
Hence diamB ≤ diamA implies diamB1 < diamA and diamB0 ≤ diamA; moreover,
δ(A,B1) = 0, and δ(A,B) = δ(A,B0).

Note that the hypothesis gcd∗(A + B) = 1 in Theorems A and B is simply a
normalization hypothesis; if gcd∗(A+B) = d ≥ 2, then A and B are both contained
in arithmetic progressions with difference d, and Theorems A and B can be applied
by considering A and B (appropriately translated) as subsets of dZ ∼= Z. Thus, we
can apply case (ii) of Theorem A to both the pairs (A,B0) and (A,B1) considered
(appropriately translated) as subsets of 2Z ∼= Z to find the following bounds (note
the conclusion of Theorem A holding implies the sumset satisfies the cardinality
bound corresponding to the first term in each of the minimums below, while the
second bound in each of the minimums corresponds to the case when (ii) fails to
hold in Theorem A):

|A + B0| ≥ min{|A| + |B0|− 1 + h, |A| + 2|B0|− 2− δ(A,B)}, (12)

|A + B1| ≥ min{|A| + |B1|− 1 + h, |A| + 2|B1|− 2}, (13)

where h := |{0, 2, . . . ,M} \ A|. Note hA = 1
2M + h and |A| = 1

2M + 1 − h, where
hA is as defined in Section 2.
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First let us show that diamA ≤ |A| + r − 1. Assuming by contradiction this is
false, then M = diamA ≥ |A| + r. We proceed in four cases depending on which
pair of bounds from (12) and (13) holds.

If

|A + B| = |A + B0| + |A + B1| ≥ 2|A| + |B0| + |B1|− 2 + 2h,

then combining with |A+B| = |A|+|B|−1+r ≤M+|B|−1 (in view of M ≥ |A|+r)
yields M ≥ 2|A|− 1+2h = M +1, where we use |A| = 1

2M +1−h for the equality,
which is a contradiction. If

|A + B| = |A + B0| + |A + B1| ≥ 2|A| + 2|B0| + 2|B1|− 4− δ(A,B),

then combining with (11) yields |A| ≤ 1, contradicting that gcd∗(A) = 2 +=∞. If

|A + B| = |A + B0| + |A + B1| ≥ 2|A| + 2|B0| + |B1|− 3− δ(A,B) + h,

then combining with (11) yields |B1| ≥ |A| + h = 1
2M + 1; however, since B1 ⊆

[1,M − 1] ∩ (1 + 2Z), this is impossible. Finally, if

|A + B| = |A + B0| + |A + B1| ≥ 2|A| + |B0| + 2|B1|− 3 + h,

then combining with (11) yields |B0| ≥ |A| + δ(A,B) + h = 1
2M + 1 + δ(A,B);

however, since B0 ⊆ [0,M ]∩2Z, we have |B0| ≤ 1
2M +1 with equality possible only

if B0 = [0,M ] ∩ 2Z, in which case A ⊆ [0,M ] ∩ 2Z = B0 and δ(A,B) = 1, whence
|B0| ≥ 1

2M + 1 + δ(A,B) cannot hold, and is thus a contradiction. Therefore, we
obtain a contradiction in all four cases and instead conclude that diamA ≤ |A|+r−1.
Since diamB ≤ diamA, this also implies diamB ≤ |A| + r − 1.

It remains to show diamB ≤ |B| + r − 1, for which we may assume |B| < |A|,
else this follows from diamB ≤ |A| + r − 1. But now (11) implies that |A + B| ≤
2|A|+ |B|−4. Consequently, the hypothesis (i) in Theorem A holds, and the result
follows by applying Theorem A(i), completing the proof.

Next, we give the proof of Corollary 2.

Proof of Corollary 2. As hypothesis (i) in Corollary 2 is symmetric with respect to
A and B, we may, without loss of generality, assume diamB ≤ diamA. Note both
hypotheses (i) and (ii) imply

|A + B| = |A| + |B|− 1 + r ≤ |A| + 2|B|− 3− δ(A,B),
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whence r ≤ |B|− 2− δ(A,B). Thus, if gcd∗(A + B) = 1, then Theorem B implies
that diamB ≤ diamA ≤ |A| + r − 1 ≤ |A| + |B|− 3− δ(A,B) ≤ |A| + |B|− 3, and
now Theorem 1 completes the proof.

On the other hand, if gcd∗(A + B) = d ≥ 2, then we can, without loss of
generality, translate A and B so that minA = minB = 0 and apply the just-proved
case gcd∗(A + B) = 1 in Corollary 2 to the sets A, B ⊆ dZ ∼= Z to complete the
proof. !

Note that taking A = {id | i = 0, 1, . . . , r−1} to be an arithmetic progression with
difference d ≥ 3 and length r ≥ 3 and taking B = {id | i = 0, . . . , r − 2} + {0, 1}
shows that the condition gcd∗A ≤ 2 is needed in Corollary 2, and thus also in
Theorem B. Finally, it is worth noting that

|A + B| ≤ |A| + |B|− 3 + min{|B|− δ(A,B), |A|− δ(B,A)}

holds if and only if

|A + B| ≤ |A| + |B|− 3 + min{|B|− δ(A,B), |A|}.

Indeed, if this were not the case, then |A + B| = 2|A|+ |B|− 3 and δ(B,A) = 1; as
the latter implies |B| ≤ |A|, it subsequently follows, from 2|A|+ |B|−3 = |A+B| ≤
|A|+2|B|−3−δ(A,B), that |B| = |A| and δ(A,B) = 0, which is impossible in view
of δ(B,A) = 1. The same argument, with the roles of A and B reversed, shows that
both these bounds are also equivalent to

|A + B| ≤ |A| + |B|− 3 + min{|B|, |A|− δ(B,A)}.

4. Proof of Theorem 1

In this section, the proof of the main theorem is provided. We assume throughout
this section all the notation and assumptions of Section 2. We begin by showing
that, when A has few holes, the interval [N,M ] is always contained in the sumset
of A and B.

Proposition 3. If hA ≤ |B|− 1, then

[N,M ] ⊆ A + B. (14)

Proof. Let x ∈ [N,M ]. Thus,

(x, 0), (x− 1, 1), . . . , (x−N,N)
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are representations (a, b) of x = a + b with a ∈ [0,M ] and b ∈ [0, N ]. If x /∈ A + B,
then each of these N +1 pairs must either have the first element missing from A or
the second element missing from B, whence hA + hB ≥ N + 1 = |B| + hB (in view
of (9)). But this contradicts hA ≤ |B|− 1.

We call a hole x in A left-stable (right-stable) if x (respectively, x + N) is a
hole in A + B. Similarly, a hole x in B will be called left-stable (right-stable) if x
(respectively, x + M) is a hole in A + B.

In view of Proposition 3, if x is a right-stable hole in A, then x + N lies to the
right of the interval [N,M ], and if x is a right-stable hole in B, then x + M also
lies to the right of this interval. These holes in A + B are called right holes. Also,
a left-stable hole in either A or B lies to the left of the interval [N,M ]. These are
left holes in A + B. Indeed, for a given integer, being a left-stable hole in A, being
a left-stable hole in B, and being a left hole in A + B are all equivalent.

A stable hole in A is one which is either right or left-stable, and likewise for B.
All other holes (in either A or B) are called unstable. We let hs

A and hs
B denote the

respective number of stable holes in A and B, and we let hu
A and hu

B denote the
respective number of unstable holes in A and B.

This classification of holes into ones which contribute to a hole present in A + B
(the stable ones) and those which do not contribute to any hole in A + B (the
unstable ones) will prove to be a very useful perspective.

To every hole x in A + B, we associate two stable holes xA and xB in A and B,
respectively, as follows:

• If x < N , we let xA := x and xB := x; thus, both xA and xB are left-stable.

• If x > M , we let xA := x−N and xB := x−M , so that both xA and xB are
right-stable.

We will later see that these mappings are injective, i.e., that xA = yA for holes x
and y in A + B implies x = y, and likewise xB = yB implies x = y. However, next
we prove a very important proposition—the key observation used in the proof—
which shows that if we have a left hole x /∈ A + B, then there must be many holes
in A ∩ [0, x] and B ∩ [0, x], with an analogous statement holding for right holes.

Proposition 4. If x ∈ [0, N ] \ (A + B), then

hA(0, x) + hB(0, x) ≥ x + 1. (15)

If x ∈ [M,M + N ] \ (A + B), then

hA(x−N,M) + hB(x−M,N) ≥ N − (x−M) + 1 = M + N − x + 1. (16)
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Proof. The proof is analogous to that of the previous proposition. If x ∈ [0, N ],
then

(x, 0), (x− 1, 1), . . . , (0, x)

are representations (a, b) of x = a + b with a ∈ [0,M ] and b ∈ [0, N ] (in view of
(5)). If x /∈ A + B, then each of these x + 1 pairs must either have the first element
missing from A or the second element missing from B, whence (15) follows. The
argument for when x ∈ [M,M + N ] is analogous, considering instead

(M,x−M), (M − 1, x−M + 1), . . . , (x−N,N).

Next, we show that no hole in A can be both left and right-stable.

Proposition 5. Let x ∈ [0,M ] \ A. If hA ≤ |B| − 2, then either x ∈ A + B or
x + N ∈ A + B.

Proof. If both x /∈ A + B and x + N /∈ A + B, then Proposition 3 implies x ∈
[M −N + 1, N − 1], whence applying both cases of Proposition 4 yields

M + 2 = (x + 1) + (M − x + 1)
≤ hA(0, x) + hB(0, x) + hA(x,M) + hB(x + N −M,N) (17)
≤ hA + 1 + hB + M −N + 1,

where the second inequality follows in view of (5). Now applying (9) yields hA ≥
|B|− 1, contrary to assumption.

The following shows there are also no holes in B which are both left-stable and
right-stable.

Proposition 6. Let x ∈ [1, N ] \ B. If hA ≤ |B| − 2, then either x ∈ A + B or
x + M ∈ A + B.

Proof. If both x /∈ A+B and x+M /∈ A+B, then applying both cases of Proposition
4 yields

N + 2 = (x + 1) + (N − x + 1)
≤ hA(0, x) + hB(0, x) + hA(x + M −N,M) + hB(x,N) (18)
≤ hA + hB + 2,

where the second inequality follows by (5). Now applying (9) yields hA ≥ |B|− 1,
contrary to assumption.
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From Proposition 5, it is easy to conclude that, when hA ≤ |B|−2, the mapping
x ,→ xA is injective, as previously alluded. Indeed, if xA = yA for holes x and y in
A+B, then either x = y±N or x = y; but if (without loss of generality) x = y+N ,
then y /∈ A + B and y + N /∈ A + B, in contradiction to Proposition 5.

With a similar reasoning for the second mapping, it follows that x ,→ xA is a
bijection between the set of all holes in A + B and the set of all stable holes in A,
and x ,→ xB is a bijection between the set of all holes in A + B and the set of all
stable holes in B. In consequence, we have that, when hA ≤ |B|− 2,

hs
A = hs

B = hA+B = hA + hB − r, (19)

where r is as defined in (10). Since hB = hu
B + hs

B and hA = hu
A + hs

A, we also have

hu
A = r − hB (20)

hu
B = r − hA. (21)

The next proposition is the trickiest part of the proof, showing that all left-stable
holes precede all right-stable holes, so there is no overlap. Recall that using (6) and
(8), the conditions hA ≤ |B|− 2 and r ≤ |B|− 2− δ(A,B) correspond to conditions
diamA ≤ |A| + |B|− 3 and (2) in Theorem 1.

Proposition 7. Suppose hA ≤ |B|−2 and r ≤ |B|−2−δ(A,B). If xB ∈ [0, N ]\B is
a left-stable hole and yB ∈ [0, N ]\B is a right-stable hole, then xB < yB. Likewise,
if xA ∈ [0,M ]\A is a left-stable hole and yA ∈ [0,M ]\A is a right-stable hole, then
xA < yA.

Proof. If xA ∈ [0,M ]\A is a left-stable hole, yA ∈ [0,M ]\A is a right-stable hole and
xA ≥ yA, then xB = xA ∈ [0, N ] \B is a left-stable hole and yB = yA − (M −N) ∈
[0, N ]\B is a right-stable hole with xB ≥ yB, in view of xA ≥ yA and (5). Therefore
we see that it suffices to prove the first assertion in the proposition, as the second
is an immediate consequence.

To that end, assume xB ∈ [0, N ] \ B is a left-stable hole and yB ∈ [0, N ] \ B
is a right-stable hole with xB > yB. Note that xB = yB cannot hold in view of
Proposition 6. Moreover, assume xB and yB are chosen minimally, meaning that
there are no stable holes z ∈ [yB + 1, xB − 1] \ B.
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Applying both cases of Proposition 4 to xB and yB + M , respectively, we find
that

|B| + hB + (xB − yB + 1) = (xB + 1) + (N − yB + 1)
≤ hA(0, xB) + hB(0, xB) + hA(yB + M −N,M)

+hB(yB, N)
≤ hA + hB + hA(yB + M −N,xB)

+hB(yB, xB), (22)

where we use (9) for the first equality. Note that if yB + M − N > xB, then, by
definition, hA(yB + M −N,xB) = 0. In this case, inequality (22) also holds true.

In view of the minimality of xB and yB, we see that

hB(yB, xB) ≤ hu
B + 2, (23)

with equality possible only if [yB + 1, xB − 1] contains all the unstable holes in B.
We also have the trivial inequality

hB(yB, xB) ≤ xB − yB + 1. (24)

If yB + M −N > xB, so that hA(yB + M −N,xB) = 0, then (22) and (24) imply
hA ≥ |B|, contrary to hypothesis. Therefore we may assume yB + M − N ≤ xB,
and now we also have the trivial inequality

hA(yB + M −N,xB) ≤ xB − yB + 1− (M −N), (25)

with equality possible only if all the integers in [yB + M −N,xB] are holes in A.
Applying the estimates (25) and (23) in (22) and using (8), (9) and (21), we

discover that

|A|− 2− r ≤ hB − hA. (26)

In view of (5), (8) and (9), we have

hB − hA ≤ |A|− |B|, (27)

with equality only possible when M = N . Combining (27) and (26) yields

r ≥ |B|− 2, (28)

whence our hypothesis r ≤ |B|−2−δ(A,B) implies that r = |B|−2, that δ(A,B) =
0, and that equality held in all estimates used to derive (28).
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As a result, δ(A,B) = 0 and (7) imply A ! B; equality in (27) implies M = N ;
and equality in (26) implies equality holds in both (25) and (23), whence all the
integers belonging to the interval [yB +M−N,xB] are holes in A and [yB +1, xB−1]
contains all the unstable holes in B.

Since A ! B, it follows that there exists z ∈ A with z /∈ B. Since all the elements
in [yB + M −N,xB] are holes in A and M = N , it follows that z /∈ [yB, xB]. Thus,
since [yB + 1, xB − 1] contains all the unstable holes in B, it follows that z /∈ B is
a stable hole in B. However, from the definition of stability, this means that either
z /∈ A+B or z +M /∈ A+B, which are both contradictions in view of z ∈ A, 0 ∈ B
and M = N ∈ B, completing the proof.

We are now ready to finish the proof of Theorem 1, which will follow from the
next proposition.

Proposition 8. Suppose hA ≤ |B|− 2 and r ≤ |B|− 2− δ(A,B). Then

J := [e + 1,M + c− 1] ⊆ A + B,

where e is the greatest left stable hole in B (let e = −1 if there are no left stable
holes) and c is the smallest right stable hole in B (let c = N + 1 if there are no
right stable holes). Moreover,

|J | = M − 1 + (c− e)

≥ |A| + |B|− 1 + hA(e + 1, c + M −N − 1) + hB(e + 1, c− 1)

≥ |A| + |B|− 1. (29)

Proof. In view of Proposition 7, we have e < c. By the definition of stability (and
that of e and c), there are no left holes in A + B greater than e and no right holes
in A + B less than than M + c. As every hole in A + B is either a right or left hole
(in view of Proposition 3), this means J := [e + 1,M + c− 1] ⊆ A + B. Note that

|J | = M − 1 + (c− e) = |A| + hA − 2 + (c− e), (30)

using (8). It remains to estimate c− e.
Let s = hA(e + 1, c + M − N − 1) + hB(e + 1, c − 1). Applying both cases of

Proposition 4 to e and c + M , respectively, we find that

(e + 1) + (N − c + 1) ≤ hA(0, e) + hB(0, e) + hA(c + M −N,M) + hB(c,N)

≤ hA + hB − s. (31)

Note that in (31) we used e < c, which implies e < c + M −N in view of (5).
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From (9) and (31), it follows that

|B| + hB + 1 + e− c ≤ hA + hB − s,

yielding
c− e ≥ |B| + 1− hA + s.

Combining the above estimate for c− e with (30), we obtain

|J | = |A| + hA − 2 + (c− e) ≥ |A| + hA − 2 + (|B| + 1− hA + s)

= |A| + |B|− 1 + s ≥ |A| + |B|− 1,

completing the proof.

Finally, we complete the proof of Theorem 1.

Proof of Theorem 1. We may, without loss of generality, assume minA = minB =
0. Since diamB ≤ diamA ≤ |A|+ |B|−3, we have hA ≤ |B|−2 in view of (8). Since
|A+B| := |A|+ |B|−1+r ≤ |A|+2|B|−3−δ(A,B), we have r ≤ |B|−2−δ(A,B).
Thus applying Proposition 8 completes the proof.

5. Concluding Remarks

We conclude with some brief remarks, for which we assume the notation of the
previous section, particularly concerning Proposition 8.

First, let us show that all the intermediary work and propositions leading up
to Theorem 1, save Proposition 4, are easily deduced from Theorem 1 itself. Let
J = [m,n] ⊆ A + B be a maximal length arithmetic progression with difference 1,
so |J | ≥ |A| + |B| − 1 by Theorem 1 and, consequently, n −M > m (in view of
hA ≤ |B|− 2). Since

[m,n−N ] + (B ∪ [m,n−M ]) ⊆ [m,n−N ] + [0, N ] ⊆ [m,n] = J ⊆ A + B and

(A ∪ [m,n−N ]) + [m,n−M ] ⊆ [0,M ] + [m,n−M ] ⊆ [m,n] = J ⊆ A + B,

we observe that

(A ∪ [m,n−N ]) + (B ∪ [m,n−M ]) = A + B.

Thus, Theorem 1 can be applied using (A ∪ [m,n − N ]) and (B ∪ [m,n −M ]) to
conclude that the bound |J | ≥ |A|+|B|−1 can be improved by one for each element
of [m,n−N ] \ A and each element of [m,n−M ] \ B.
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Since |J | ≥ |A| + |B|− 1 and

diamB = N ≤M = diamA ≤ |A| + |B|− 3, (32)

it follows that [N − 1,M + 1] ⊆ J ⊆ A + B, which yields Proposition 3. If x and
x + N are both holes in A + B, where x ∈ [0,M ], then J must lie entirely in one of
the intervals [0, x−1], [x+1, x+N−1] or [x+N +1, N +M ], all of which contain less
than |A|+ |B|− 1 elements in view of (32), contradicting |J | ≥ |A|+ |B|− 1. This
establishes Proposition 5. Likewise, if x and x + M are both holes in A + B, where
x ∈ [0, N ], then J must lie entirely in one of the intervals [0, x−1], [x+1, x+M−1]
or [x + M + 1, N + M ], all of which contain less than |A|+ |B|− 1 elements in view
of (32), again contradicting |J | ≥ |A| + |B| − 1. This establishes Proposition 6.
Now note, since e, c + M /∈ A + B, that J must live entirely in one of the intervals
[0, e− 1], [c + M + 1,M + N ] or [e + 1, c + M − 1]. However, the first two intervals
contain less than |A|+ |B|−1 elements in view of e ≤ N ≤M ≤ |A|+ |B|−3. Thus,
since |J | ≥ |A| + |B| − 1, we conclude that J ⊆ [e + 1, c + M − 1]. In particular,
we see that e < c (as otherwise |J | ≤ M − 1 ≤ |A| + |B| − 4, a contradiction),
which implies Proposition 7. Since e < c, the definition of e and c ensure that
[e + 1, c + M − 1] ⊆ A + B. Hence, since J ⊆ [e + 1, c + M − 1], the maximality
of J implies that J = [e + 1, c + M − 1]. Thus m = e + 1 and n = c + M − 1, and
now the improved bound on |J | from the previous paragraph implies the first (and
seemingly stronger) inequality from (29), namely,

|J | ≥ |A| + |B|− 1 + hA(e + 1, c + M −N − 1) + hB(e + 1, c− 1),

and Proposition 8 follows.

Next, it is important to note that Theorem 1 and Proposition 8 essentially show
that the sets A and B can be divided into left and right halves with each half
behaving independently (with respect to the sumset A + B) of the other. For
instance, taking the left halves AL = A ∩ [0, e] and BL = B ∩ [0, e] and appending
on a sufficiently long interval gives a pair of subsets whose sumset has the exact
same set of left holes as for the original sumset A + B, that is,

(AL + BL) ∩ [0, e] = CL := (A + B) ∩ [0, e] and

(AL ∪ [e + 1, x]) + (BL ∪ [e + 1, x]) = CL ∪ [e + 1, 2x]

for sufficiently large x ≥ e + 1 + min{gA(0, e), gB(0, e)}, where gA(0, e) denotes
the maximal size of a gap in AL ∪ {e + 1}—that is, the maximal number of
terms in an arithmetic progression with difference 1 contained in [0, e] \ A—and
gB(0, e) is similarly defined. Note gA(0, e) ≤ hA(0, e) ≤ hA ≤ r and gB(0, e) ≤



INTEGERS: 10 (2010) 349

hB(0, e) ≤ hB ≤ r. The right holes of A + B can be independently studied in a
similar manner via the right halves AR = A∩ [c + M −N,M ], BR = B ∩ [c,N ] and
CR = (A+B)∩ [M + c,M +N ]. Indeed, as seen from the previous two paragraphs,

(AL ∪ IA ∪AR) + (BL ∪ IB ∪BR) = A + B = CL ∪ J ∪ CR,

where IA = [e + 1, c− 1 + M −N ] and IB = [e + 1, c− 1].

In general, there are many possibilities for how the holes can be distributed in AL

and BL. However, if one wishes to use holes efficiently, that is, use a large number
of holes relative to the maximal bound r, then (20) and (21) show that the number
of unstable holes must be small, which helps restrict the possibilities for AL and
BL.

For instance, in the extremal case when there are no unstable holes in either A or
B, then we must have AL = BL, and AL∪[e+1,∞) is the complement of the solution
set of the Frobenius problem (see [11]) for the set A, i.e., AL∪[e+1,∞) =

⋃∞
h=1 hA.

In particular, if d1, d2 ∈ AL, then the arithmetic progression {d1 + id2 | i =
0, 1, 2, . . . , } is contained in AL ∪ [e + 1,∞). In fact, AL is just the intersection
of the multi-dimensional progression {i1d1 + i2d2 + . . . + ildl | ij = 0, 1, 2, . . .} with
[0, e], where AL = {0, d1, d2, . . . , dl}.
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