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Abstract
Many problems in additive number theory, such as Fermat’s last theorem and the
twin prime conjecture, can be understood by examining sums or differences of a set
with itself. A finite set A ⊂ Z is considered sum-dominant if |A + A| > |A−A|. If
we consider all subsets of {0, 1, . . . , n − 1}, as n → ∞, it is natural to expect that
almost all subsets should be difference-dominant, as addition is commutative but
subtraction is not; however, Martin and O’Bryant in 2007 proved that a positive
percentage are sum-dominant as n →∞. This motivates the study of “coordinate
sum dominance.” Given V ⊂ (Z/nZ)2, we call S := {x+y : (x, y) ∈ V } a coordinate
sumset and D := {x − y : (x, y) ∈ V } a coordinate difference set, and we say V is
coordinate sum dominant if |S| > |D|. An arithmetically interesting choice of V is
H̄2(a;n), which is the reduction modulo n of the modular hyperbola H2(a;n) :=
{(x, y) : xy ≡ a mod n, 1 ≤ x, y < n}. In 2009, Eichhorn, Khan, Stein, and Yankov
determined the sizes of S and D for V = H̄2(1;n) and investigated conditions
for coordinate sum dominance. We extend their results to reduced d-dimensional
modular hyperbolas H̄d(a;n) with a coprime to n.

1Keywords: Modular hyperbolas, coordinate sumset, coordinate difference set. MSC 2010
Subject Classification: 11P99, 14H99 (primary), 11T23 (secondary).
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1. Introduction

Let A ⊂ N ∪ {0}. Two natural sets to study are

A + A = {x + y : x, y ∈ A}
A−A = {x− y : x, y ∈ A}. (1.1)

The former is called the sumset and the latter the difference set. Many problems in
additive number theory can be understood in terms of sum and difference sets. For
instance, the Goldbach conjecture says that the even numbers greater than 2 are a
subset of P + P , where P is the set of primes. The twin prime conjecture states
that there are infinitely many ways to write 2 as a difference of primes (and thus if
PN is the set of primes exceeding N , PN − PN always contains 2). If we let An be
the set of positive n

th powers, then Fermat’s Last Theorem says (An +An)∩An = ∅
for all n > 2.

Let |S| denote the cardinality of a set S. A set A is sum dominant if |A + A| >

|A−A|. We might expect that almost all sets are difference dominant since addition
is commutative while subtraction is not. However, in 2007 Martin and O’Bryant [7]
proved that a positive percentage of sets are sum dominant; i.e., if we look at all
subsets of {0, 1, . . . , n−1} then as n→∞ a positive percentage are sum dominant.
One explanation is that choosing A uniformly from {0, 1, . . . , n−1} is equivalent to
taking each element from 0 to n−1 to be in A with probability 1/2. By the Central
Limit Theorem this implies that there are approximately n/2 elements in a typical
A, yielding on the order of n

2
/4 pairs whose sum must be one of 2n − 1 possible

values. On average we thus have each possible value realized on the order of n/8
ways. It turns out most possible sums and differences are realized (the expected
number of missing sums and differences are 10 and 6, respectively). Thus most sets
are close to being balanced, and we just need a little assistance to push a set to
being sum-dominant. This can be done by carefully controlling the fringes of A (the
elements near 0 and n− 1). Such constructions are the basis of numerous results in
the field; see for example [6, 7, 8, 9, 15, 16].

This motivates the study of “coordinate sum dominance” on fringeless sets such
as (Z/nZ)2. Given V ⊂ (Z/nZ)2, we call S := {x + y : (x, y) ∈ V } a coordinate
sumset and D := {x − y : (x, y) ∈ V } a coordinate difference set, and we say V is
coordinate sum dominant if |S| > |D|. An arithmetically interesting choice of V is
H̄2(a;n), which is the reduction modulo n of the modular hyperbola

H2(a;n) := {(x, y) : xy ≡ a mod n, 1 ≤ x, y < n}, (1.2)

where (a, n) = 1. Eichhorn, Khan, Stein, and Yankov [2] determined the cardinal-
ities of S and D for V = H̄2(1;n) and investigated conditions for coordinate sum
dominance. See [10] for additional results on related problems in other modular
settings.
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The modular hyperbolas in (1.2) have very interesting structure, as is evidenced
in Figure 1. See Figures 1 through 4 of [2] for additional examples.

Figure 1: (a) Left: H2(51; 210). (b) Right: H2(1325; 482).

In the sequel, coordinate sumsets will be the only type of sumset discussed.
Hence we may drop the premodifier “coordinate” without fear of confusion. For a

relatively prime to n, we define the sumset S2(a;n), the difference set D2(a;n), and
their reduced counterparts as

S2(a;n) = {x1 + x2 : (x1, x2) ∈ H2(a;n)}
D2(a;n) = {x1 − x2 : (x1, x2) ∈ H2(a;n)}
S̄2(a;n) = {x1 + x2 mod n : (x1, x2) ∈ H2(a;n)}
D̄2(a;n) = {x1 − x2 mod n : (x1, x2) ∈ H2(a;n)}. (1.3)

From a geometric viewpoint, #S2(a;n) counts the number of lines of slope −1
that intersect H2(a;n), and #D2(a;n) counts the number of lines of slope 1 that
intersect H2(a;n). When the ratio

c2(a;n) := #S̄2(a;n)/#D̄2(a;n) (1.4)

exceeds 1, we have sum-dominance of H̄2(a;n).
A d-dimensional modular hyperbola is of the form

Hd(a;n) := {(x1, . . . , xd) : x1 · · ·xd ≡ a mod n, 1 ≤ x1, . . . , xd < n}, (1.5)

where (a, n) = 1. We define the generalized signed sumset as

S̄d(m; a;n) = {x1 + · · · + xm − · · ·− xd mod n : (x1, . . . , xd) ∈ Hd(a;n)}, (1.6)

where m is the number of plus signs in ±x1 ± · · · ± xd. In particular, S̄2(1; a;n) =
D̄2(a;n) and S̄2(2; a;n) = S̄2(a;n).
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Modular hyperbolas have been extensively studied; see for example the recent
survey by Shparlinski [11]. In particular, when a is not divisible by the prime p,
Shparlinski and Winterhof [12] determined that the number of distances |x− y| as
(x, y) ranges over all points on the modular hyperbola H2(a; p) is

1
4

�
p + 1 +

�
a

p

��
1 + (−1)(p−1)/2

��
. (1.7)

In [13], they also found asymptotic formulas for the number of relatively prime
points in Hd(a;n).

The goal of this paper is to extend results of [2] to the general two-dimensional
modular hyperbolas in (1.2), and to investigate the higher dimensional modular hy-
perbolas defined in (1.5) (this is a generalization of Question 24 of [11] to arbitrary
dimensions and combinations). We prove explicit formulas for the cardinalities of
the sumsets S̄2(a;n) and difference sets D̄2(a;n) (Theorems 3.3 and 3.6). This
allows us to analyze the ratios c2(a;n) (Theorems 3.8 – 3.12), thus providing condi-
tions on a and n for sum dominance and difference dominance of reduced modular
hyperbolas H̄2(a;n). For example, a special case of Theorem 3.9 shows that if
a = 11 and n = 3t7s with t ≥ 2, then c2(a;n) > 1, i.e., we have sum dominance.
A special case of Theorem 3.12 shows that when a is a fixed power of 4, we have
sum dominance for more than 85% of those n relatively prime to a. For d > 2 and
positive integers n whose prime factors all exceed 7, we prove in Theorem 4.1 that
#S̄d(m; a;n) = n. This means that each such generalized sumset consists of all
possible values mod n, i.e., all possible sums and differences occur.

2. Counting Preliminaries

In this section we present some counting results that are central to proving our
main theorems. Many of these are natural generalizations of results from [2], so we
refer the reader to the appendix for detailed proofs.

Throughout this paper, p always denotes a prime. The following proposition
reduces the analysis of the cardinalities of S̄d(m; a;n) to those of S̄d(m; a; pt), where
p

t is a factor in the canonical factorization of n.

Proposition 2.1. Let n =
�k

i=1 p
ei
i be the factorization of n into distinct prime

powers. Then

#S̄d(m; a;n) =
k�

i=1

#S̄d(m; a; pei
i ). (2.1)

The proof is given in Appendix A.1.
Lemma 2.2 cuts our work in half, as once we understand the sumset we immedi-

ately have results for the corresponding difference set.
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Lemma 2.2. We have S̄2(a;n) = D̄2(−a;n).

Proof. We show S̄2(a;n) ⊆ D̄2(−a;n); the reverse containment is handled similarly.
Let τ ∈ S̄2(a;n). Then there exists (x0, y0) ∈ H2(a;n) such that x0y0 ≡ a mod n

and x0 +y0 ≡ τ mod n. Since (x0, n−y0) ∈ H2(−a;n) and τ ≡ x0−(n−y0) mod n,
we see that τ ∈ D̄2(−a;n).

Lemma 2.3. We have (2k mod p
t) ∈ D̄2(a; pt) ⇔ (k2 + a) is a square modulo p

t.
The map f(k) = 2k mod p

t defines a bijection

f : {k : k
2 + a is a square mod p

t
, 0 ≤ k < p

t}→ D̄2(a; pt) (2.2)

when p > 2. If p = 2, then f defines a bijection

f : {k : k
2 + a is a square mod 2t

, 0 ≤ k < 2t−1}→ D̄2(a; 2t). (2.3)

See Appendix A.2 for the proof. By Lemma 2.2, a similar result for S in place
of D follows by replacing a by −a.

3. Cardinalities of S̄2(a; pt) and D̄2(a; pt)

In this section we compute the cardinalities of S̄2(a; pt) and D̄2(a; pt). We then give
conditions on a and n for sum dominance and difference dominance of H̄2(a;n).

3.1. Case 1: p = 2

We isolate a useful result that we need for the proof of the next lemma. For a proof,
see Proposition A.2 in the Appendix.

Proposition 3.1 (Gauss [4]). For t ≥ 1, any integer of the form 4k(8n + 1) is a
square modulo 2t.

The next result is used in investigating some of the cases of Theorem 3.3.

Lemma 3.2. Write m = 4b + r with 0 ≤ r ≤ 3. For t ≥ 5, k
2 + 3 + 8m is a

square mod 2t if and only if k ≡ ±(4r + 1) mod 16.

Proof. We only prove the case r = 0, as the other proofs are similar. First assume
that k

2 + 3 + 8m is a square mod 2t. Reducing mod 32, we have that k
2 + 3 +

8m ≡ k
2 + 3 mod 32, which implies that k ≡ ±1 mod 16. Conversely, assume

that k = 16l ± 1 for some l ∈ Z. Then k
2 + 3 + 8m = (16l ± 1)2 + 3 + 8(4b) =

256l2 ± 32l +4+32b = 4(8(8l2 ± l + b)+1). Hence, by Proposition 3.1, k
2 +3+8m

is a square mod 2t.
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Theorem 3.3. For t ≥ 5,

#D̄2(a; 2t) =






2t−4

3 + (−1)t−1

3 + 3 a ≡ 7 mod 8
2t−3

a ≡ 1, 5 mod 8
2t−4

a ≡ 3 mod 8

#S̄2(a; 2t) =






2t−4

3 + (−1)t−1

3 + 3 a ≡ 1 mod 8
2t−3

a ≡ 3, 7 mod 8
2t−4

a ≡ 5 mod 8.
(3.1)

Moreover, #S̄2(a; 16) = 2 for all a, and when t ≤ 3, we have #S̄2(a; 2t) = 1 with
the exception that #S̄2(a; 8) = 2 when a ≡ 1 mod 4.

Proof. The claim for t ≤ 4 can be checked by direct calculation, so assume t ≥
5. By Lemma 2.2, it is enough to prove the claims about #D̄2(a; 2t) when a ≡
1, 3, 5 mod 8, and about #S̄2(a; 2t) when a ≡ 1 mod 8.

We refer to the Appendix A.3 for the proofs of the results for D̄2(a; 2t) when
a ≡ 1, 5 mod 8 and for S̄2(a; 2t) when a ≡ 1 mod 8. It remains to prove the result
for the difference set when a ≡ 3 mod 8. Write a = 3 + 8m. We consider only the
case where m ≡ 0 mod 4, since the cases m ≡ 1, 2, 3 mod 4 are proved similarly and
lead to the same result. By Lemma 3.2, we see that if m ≡ 0 mod 4, then

#{k : k
2 + 3 + 8m is a square mod 2t

, 0 ≤ k < 2t−1}
= #{1 + 16l : 0 ≤ l < 2t−5} + #{15 + 16l : 0 ≤ l < 2t−5} = 2t−4

. (3.2)

By Lemma 2.3, we know

#D̄(a; 2t) = #{k : k
2 + 3 + 8m is a square mod 2t

, 0 ≤ k < 2t−1}. (3.3)

Hence #D̄2(a; 2t) = 2t−4.

3.2. Case 2: p > 2

For this subsection, we adopt the following notation from [2]:

S
�
2(a; pt) = {k mod p

t : k
2 − a is a square mod p

t
, p � (k2 − a)}

S
��
2 (a; pt) = {k mod p

t : k
2 − a is a square mod p

t
, p|(k2 − a)}. (3.4)

By Lemma 2.3,

#S̄2(a; pt) = #S
�
2(a; pt) + #S

��
2 (a; pt). (3.5)

Lemma 3.4. Let p be an odd prime. Then

#S̄
�
2(a; pt) =






(p−1)pt−1

2

�
a
p

�
= −1

(p−3)pt−1

2

�
a
p

�
= 1.

(3.6)
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See Appendix A.4 for the proof.

Lemma 3.5. Let p be an odd prime. If
�

a
p

�
= −1, then #S

��
2 (a; pt) = 0 and thus

#S2(a; pt) = φ(pt)
2 . If

�
a
p

�
= 1,

#S
��
2 (a; pt) =

p
t−1

p + 1
+

3
2

+
(−1)t−1(p− 1)

2(p + 1)
. (3.7)

See Appendix A.5 for the proof.

Theorem 3.6. For t ≥ 1 and p > 2,

#S̄2(a, p
t) =






(p−3)pt−1

2 + pt−1

p+1 + 3
2 + (−1)t−1(p−1)

2(p+1)

�
a
p

�
= 1

φ(pt)
2

�
a
p

�
= −1

#D̄2(a, p
t) =






(p−3)pt−1

2 + pt−1

p+1 + 3
2 + (−1)t−1(p−1)

2(p+1) p ≡ 1 mod 4,
�

a
p

�
= 1

φ(pt)
2 p ≡ 1 mod 4,

�
a
p

�
= −1

(p−3)pt−1

2 + pt−1

p+1 + 3
2 + (−1)t−1(p−1)

2(p+1) p ≡ 3 mod 4,
�

a
p

�
= −1

φ(pt)
2 p ≡ 3 mod 4,

�
a
p

�
= 1.

(3.8)

Proof. The result follows from Lemmas 3.4, 3.5, and 2.2.

Corollary 3.7. For p ≡ 1 mod 4, c2(a; pk) = 1.

3.3. Ratios for d = 2

Now that we have explicit formulas for the cardinalities of the sum and difference
sets, the next natural object to study is the ratio c2(a;n) of the size of the sumset to
the size of the difference set. By Corollary 3.7, we only need to consider the prime
factors of n which are congruent to 3 mod 4, since the primes which are congruent
to 1 mod 4 do not change c2(a;n). When p ≡ 3 mod 4, it is sufficient to evaluate
c2(a; pt) in the case when

�
a
p

�
= 1, since c2(−a; pt) is the reciprocal of c2(a; pt).

Theorem 3.8. For p ≡ 3 mod 4 and
�

a
p

�
= 1,

c2(a; pt) = 1− 2
[t/2]−1�

i=0

1
p2i+1

+
2

φ(pt)
. (3.9)

Proof. By Theorem 3.6,

c2(a; pt) =
�

(p− 3)pt−1

2
+

p
t−1

p + 1
+

3
2

+
(−1)t−1(p− 1)

2(p + 1)

�
1

φ(pt)/2

=
p
2 − 2p− 1
p2 − 1

+
(−1)t−1(p− 1) + 3p + 3

(p + 1)φ(pt)
. (3.10)
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Therefore

c2(a; pt)− 1− 2
φ(pt)

=
−2p

p2 − 1
+

(−1)t−1(p− 1) + p + 1
(p + 1)φ(pt)

=
−2p

p2 − 1
+ 2

∞�

[t/2]

1
p2i+1

= −2
[t/2]−1�

i=0

1
p2i+1

. (3.11)

Theorem 3.9. Let p < q be primes, both congruent to 3 mod 4, and let s, t ≥ 2. If
a is a square mod p, then c2(a; pt

q
s) < 1, so we have difference dominance. If a is

not a square mod p, then c2(a; pt
q

s) > 1, so we have sum dominance.

Proof. It suffices to prove the first assertion, for then the second will follow by taking
the reciprocal. By Theorem 3.8, c2(a; pt) < 1. If a is a square mod q, then also
c2(a; qs) < 1, so that c2(a; pt

q
s) = c2(a; pt)c2(a; qs) < 1, as desired. Finally, assume

that a is not a square mod q. Then it remains to show that c2(−a; qs) > c2(a; pt).
By Theorem 3.8, c2(a; pt) is monotone decreasing in t. Therefore it suffices to show
that lims→∞ c2(−a; qs) > c2(a; p2). This inequality is equivalent to 1−2q/(q2−1) >

1− (2p− 4)/(p2− p), so we must show that (p− 2)/(p2− p) > q/(q2− 1). Since the
right member is a decreasing function of q, it suffices to prove this inequality when
q = p + 4, and this is easily accomplished.

It is not hard to show that the conclusion of Theorem 3.9 still holds in the case
s = 1, t ≥ 2. However, the inequalities are reversed in the case t = 1, s ≥ 1.

As the next three theorems are straightforward generalizations of results from
[2], we omit the proofs.

Theorem 3.10. Let Nk =
�k

i=1 pi, where pi is the i
th prime that is congruent to

3 modulo 4. Fix a perfect square a relatively prime to all of the pi. Then

c2(a;Nk) � log log Nk, (3.12)

and for any t ≥ 2,
c2(a;N t

k) � (log log Nk)−1
. (3.13)

Theorem 3.11. Fix an integer a. Let n run through the positive integers relatively
prime to a. Then

(1)
1

log log n
� c2(a;n) � log log n, (3.14)

(2) lim
n→∞

sup c2(a;n) =∞ and lim
n→∞

inf c2(a;n) = 0, (3.15)

(3) lim
n→∞

sup
#S(a;n)
#D(a;n)

=∞ and lim
n→∞

inf
#S(a;n)
#D(a;n)

= 0. (3.16)
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Theorem 3.12. For a fixed nonzero integer a, let Ea denote the set of positive
integers n relatively prime to a such that

�
a
p

�
= 1 for every prime p ≡ 3 mod 4

dividing n. Let Ca(L) = {n ∈ Ea : c2(a;n) > L}. Define Ea(x) = {n ∈ Ea : n ≤ x}
and Ca(L, x) = {n ∈ Ca(L) : n ≤ x}. Then the lower density of Ca(L) in Ea,
defined by lim inf #Ca(L, x)/#Ea(x), satisfies the inequality

lim
x→∞

inf
#Ca(1, x)
#Ea(x)

≥ Ka

��
1− 1

p2

�
, (3.17)

where the product is over all primes p ≡ 3 mod 4 for which
�

a
p

�
= 1, and where

Ka =






1 a ≡ 0 mod 2
63/64 a ≡ 1 mod 8
31/32 a ≡ 5 mod 8
15/16 a ≡ 3 mod 4.

(3.18)

Furthermore, for any constant L > 0, the lower density of Ca(L) in Ea is positive.

For example, if a is an odd power of 2, then the lower density in (3.17) exceeds
97%. Note that if the condition

�
a
p

�
= 1 is replaced by

�
a
p

�
= −1 throughout the

statement of Theorem 3.12, then by Lemma 2.2, (3.17) holds with the inequality
c2(a;n) > 1 replaced by c2(a;n) < 1.

4. Cardinality of S̄d(m; a; n) for d > 2

We now turn our attention to modular hyperbolas with higher dimension (d >

2). Suppose that p > 7 for every prime p dividing n. Then Theorem 4.1 shows
that the higher dimensional generalized sumsets S̄d(m; a;n) all have cardinality n.
In particular, this cardinality is the same for every value of m, i.e., there is no
dependence on the number of plus and minus signs.

Theorem 4.1. If the prime factors of n all exceed 7, then #S̄d(m; a;n) = n.

Proof. Let q = p
t for a prime p > 7. By Proposition 2.1, it suffices to prove that

#S̄d(m; a; q) = q. We will show that for every a coprime to q and every b mod q,
the system of congruences

x1 + · · · + xd ≡ b mod q

x1 · · ·xd ≡ a mod q (4.1)

has a solution. This suffices, because xi could be replaced by q−xi for any collection
of subscripts i. If (4.1) can always be solved for d = 3, then it can always be solved
for any d > 3, by setting xi = 1 for i > 3. Thus assume that d = 3.
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Solving (4.1) is equivalent to solving the congruence xy(b−x− y) ≡ a mod q for
x, y ∈ (Z/qZ)∗. Replacing y by y

−1 and then multiplying by y, we see that this is
equivalent to solving

x
2 + x(y−1 − b) + ay ≡ 0 mod q. (4.2)

The quadratic polynomial in x in (4.2) has discriminant

(−4ay
3 + b

2
y
2 − 2by + 1)/y

2
. (4.3)

Let R(y) ∈ (Z/pZ)[y] denote the cubic polynomial in y obtained by reducing the
numerator in (4.3) modp. To solve (4.2), it remains to show that there exists
y ∈ (Z/pZ)∗ for which R(y) is a non-zero square mod p; this is because a non-zero
square mod p is also a square mod q (see Proposition A.2 in the Appendix).

Suppose for the purpose of contradiction that no term in the sum
p−1�

y=1

�
R(y)

p

�
(4.4)

is equal to 1. Then since R(y) has at most 3 zeros in (Z/pZ)∗, we have

S :=
p−1�

y=0

�
R(y)

p

�
= w − p, (4.5)

for some w ∈ {1, 2, 3, 4}.
Let D denote the discriminant of R(y). Then D ≡ 16a(b3 − 27a) mod p, and

so D vanishes if and only if a ≡ (b/3)3 mod p. When D vanishes, it follows that
b ∈ (Z/pZ)∗ and y = 3/(4b) is a simple zero of R(y). We conclude that R(y)
cannot equal a constant times the square of a polynomial in (Z/pZ)[y]. Therefore
(see equation (6.0.2) in [1]) we can apply Weil’s bound to conclude that |S| < 2√p.
Together with (4.5), this yields

p− 2
√

p < w ≤ 4, (4.6)

which contradicts the fact that p > 7.

We remark that the conditions p > 7 cannot be weakened in Theorem 4.1. For
example, (4.2) has no solution when p = q = 2, b = 0 and a = 1; when p = q = 3
and b = a = 1; when p = q = 5, b = 1 and a = 2; and when p = q = 7, b = 0 and
a = 3.

5. Conclusion and Future Research

We generalized work of [2] on the modular hyperbola H2(1, n) by examining more
general modular hyperbolas Hd(a;n). The two-dimensional case (d = 2) provided
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interesting conditions on a and n for sum dominance and difference dominance. On
the other hand, for higher dimensions (d > 2), all possible sums and differences are
realized when the prime factors of n all exceed 7.

The following are some topics for future and ongoing research:

1. We can study the cardinality of sumsets and difference sets of the intersection
of modular hyperbolas with other modular objects such as lower dimensional
modular hyperbolas and modular ellipses. See [3] for work on the cardinality
of the intersection of modular circles and H2(1;n).

2. Extend Theorem 3.9 by estimating c2(a;n) in cases where n has more than
two prime factors of the form 4k + 3.

3. Extend Theorem 4.1 by finding the cardinality of the generalized higher di-
mensional sumsets in cases where (n, 210) > 1.

4. In higher dimensions (d > 2), nearly every sum and difference is realized for
H̄d(a;n). The situation becomes more interesting if we replace H̄d(a;n) by a
random subset chosen according to some probability distribution depending
on d. If S and D denote the corresponding sumset and difference set, we can
then compare the random variables #S and #D.

A. Additional Proofs

The following proofs are a natural extension of the proofs given by [2], and are
included for completeness.

A.1. Proof of Proposition 2.1

Proof of Proposition 2.1. Consider

g : S̄d(m; a;n) −→
k�

i=1

S̄d(m; a mod p
ei
i ; pei

i ) (A.1)

defined by

g(x) = (x mod p
e1
1 , . . . , x mod p

ek
k ). (A.2)

We claim g is a bijection.
To show g is injective, suppose g(x) = g(y). Then we have x ≡ y mod p

ei
i for

i = 1, . . . , k. Thus, by the Chinese Remainder Theorem, x ≡ y mod n, so g is
injective.
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To show g is surjective, let (α1, . . . ,αk) ∈
�k

i=1 S̄d(m; a mod p
ei
i ; pei

i ). Then, for
each i ∈ {1, . . . , k}, there exists (x1(i), . . . , xd(i)) ∈ Hd(a; pei

i ) such that

x1(i) + · · · + xm(i)− · · ·− xd(i) ≡ αi mod p
ei
i .

By the Chinese Remainder Theorem, for each fixed r with 1 ≤ r ≤ d, the system
of congruences

x ≡ xr(i) mod p
ei
i , (1 ≤ i ≤ k) (A.3)

has a unique solution xr mod n. Since x1(i) · · ·xd(i) ≡ a mod p
ei
i for all i ∈

{1, . . . , k}, we have x1 · · ·xd ≡ a mod n. Thus g(x1 + · · ·+ xm − · · ·− xd mod n) =
(α1, . . . ,αk), so g is a bijection, which completes the proof.

A.2. Proof of Lemma 2.3

Before proving Lemma 2.3, we state a useful lemma that is a simple observation
and immediate generalization of a result from [2].

Lemma A.1. Let (x0, y0) ∈ H2(a; pt). Then x0 − y0 ≡ 2k mod p
t for some k ∈ Z.

Proof. If p = 2, then x0 and y0 are both odd since they are coprime to p
t, so their

difference is even. If p �= 2, then 2−1 exists mod p
t, so x0 − y0 ≡ 2k mod p

t has a
solution k.

Proof of Lemma 2.3. Let (x0, y0) ∈ H̄2(a; pt) so that x0 − y0 ∈ D̄2(a; p). When
x0 − y0 ≡ 2k mod p

t, we have k
2 + a ≡ (x0 − k)2 mod p

t, so that k
2 + a is a square

mod p
t.

Conversely, suppose k
2 +a is a square mod p

t. Then there exists c ∈ Z such that
c
2 − k

2 ≡ a mod p
t. It follows that

(x0, y0) := ((c + k) mod p
t
, (c− k) mod p

t) ∈ H̄2(a; pt)

and x0 − y0 ≡ 2k mod p
t.

Next we show that f is a bijection. If p > 2, then the inverse of the function f

is f
−1(x) = 2−1

x mod p
t. Now suppose p = 2. Clearly f is injective, since 2k ≡ 2j

mod 2t implies k ≡ j mod 2t−1. To show f is surjective, let τ ∈ D̄2(a; 2t), so that
there exists (x0, y0) ∈ H̄2(a; 2t) such that x0 − y0 ≡ τ mod 2t. Then by Lemma
A.1, τ ≡ 2k mod 2t for some k ∈ Z with 0 ≤ k < 2t−1, so f(k) = τ .

A.3. Proof of Theorem 3.3

To prove the required cases of Theorem 3.3, we will need the following two propo-
sitions. The first proposition is from [5] (see page 46). It gives us a quick way to
count squares modulo prime powers.
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Proposition A.2. Let a be an integer not divisible by the prime p. Then we have

1. If p �= 2 and the congruence x
2 ≡ a mod p is solvable, then for every t ≥ 1 the

congruence x
2 ≡ a mod p

t is solvable with precisely two distinct solutions.

2. If p = 2 and the congruence x
2 ≡ a mod 23 is solvable, then for every t ≥ 3

the congruence x
2 ≡ a mod 2t is solvable with precisely four distinct solutions.

Proposition A.3 (Stangl [14]). Let p be an odd prime. Then

#{k2 mod p
t} = pt+1

2(p+1) + (−1)t−1 p−1
4(p+1) + 3

4 .

For the prime 2, we have

#{k2 mod 2t} = 2t−1

3 + (−1)t−1

6 + 3
2 .

Proof of Theorem 3.3 cases. We now prove the remaining cases of the theorem.
Case 1: Difference set for a ≡ 1 mod 8. By Proposition 2.3 with a = 8m+1,

#D̄(a; 2t) = #{k : k
2 + 1 + 8m is a square mod 2t

, 0 ≤ k < 2t−1}. (A.4)

We claim that

k
2 + 1 + 8m is a square mod 2t ⇔ k = 4l for some l ∈ Z. (A.5)

First assume that k
2 +1+8m is a square mod 2t. Then k

2 +1 is a square mod 8,
which yields k ≡ 0, 4 mod 8. Hence k = 4l for some l ∈ Z.

Conversely, assume that k = 4l for some l ∈ Z. We want to show that (4l)2 +1+
8m is a square mod 2t. Reducing modulo 8 gives us (4l)2+1+8m ≡ 1 mod 8, which
is a square modulo 8. Hence, by the second part of Proposition A.2, (4l)2 + 1 + 8m
is a square mod 2t. Thus

{k : k
2 + 1 + 8m is a square mod 2t

, 0 ≤ k < 2t−1} = {4l : 0 ≤ l < 2t−3}. (A.6)

Case 2: Difference set for a ≡ 5 mod 8. We show that

k
2 + 5 + 8m is a square mod 2t ⇔ k = 2 + 4l for some l ∈ Z. (A.7)

First assume that k
2 +5+8m is a square mod 2t. Then k

2 +5+8m is a square
mod 8, which implies k ≡ 2, 6 mod 8 or k = 2 + 4l for some l ∈ Z.

Conversely, assume that k = 2 + 4l for some l ∈ Z. Reducing modulo 8 gives us
k

2 + 5 + 8m ≡ 1 mod 8, which is a square modulo 8. Hence, by the second part of
Proposition A.2, k

2 + 5 + 8m is a square mod 2t. We conclude that

{k : k
2+5+8m is a square mod 2t

, 0 ≤ k < 2t−1} = {2+4l : 0 ≤ l < 2t−3}. (A.8)
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Case 3: Sum set for a ≡ 1 mod 8. In view of Proposition A.3, it suffices to show
that

#{k : k
2 − a is a square mod 2t

, 0 ≤ k < 2t−1} = 2#{k2 mod 2t−4}. (A.9)

If k
2 − a is a square mod 2t then k must be odd, since −a is not a square mod 4.

The equality (A.9) is equivalent to

#{k : k
2 − a is a square mod 2t

, 0 < k < 2t−2
, 2 � k} = #{k2 mod 2t−4}, (A.10)

since k
2 − a mod 2t has the same value when k is replaced by 2t−1 − k. The

left member of (A.10) equals the number of (distinct) squares modulo 2t of the
form k

2 − a mod 2t. Any square divisible by 8 is also divisible by 16, so the left
member of (A.10) also equals the number of squares modulo 2t−4 of the form (k2−
a)/16 mod 2t−4. It remains to show that every square modulo 2t−4 has the form
(k2 − a)/16 mod 2t−4, i.e., that 16u2 + a is a square modulo 2t for every integer u.
This follows from the second part of Proposition A.2.

A.4. Proof of Lemma 3.4

Proof of Lemma 3.4. If l ∈ S
�
2(a; pt), then

�
l2−a

p

�
= 1. Thus

#S
�
2(a; pt) =

1
2

pt−1�

l=0
(l2−a,p)=1

��
l
2 − a

p

�
+ 1

�

=
1
2

pt−1−1�

k=0

p−1�

l=0
l2 �=a mod p

��
(l + kp)2 − a

p

�
+ 1

�

=




p−1�

l=0
l2 �=a mod p

��
l
2 − a

p

�
+ 1

�



p

t−1

2

=



−1 +
p−1�

l=0
l2 �=a mod p

1




p

t−1

2
, (A.11)

as (see for example page 63 of [5])
p−1�

i=0

�
i
2 − a

p

�
= −1. (A.12)

Substituting

p−1�

l=0
l2 �=a mod p

1 =





p− 2

�
a
p

�
= 1

p

�
a
p

�
= −1

(A.13)
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into (A.11) gives us the desired result.

A.5. Proof of Lemma 3.5

Proof. If
�

a
p

�
= −1, then the congruence x

2 − a ≡ 0 mod p has no solutions, so

#S
��
2 (a; pt) = 0. Now assume that

�
a
p

�
= 1. It is easily seen that #S

��
2 (a; pt) = 2

when t = 1 or t = 2, so let t ≥ 3.
By Proposition A.3, it suffices to prove that

#S
��
2 (a; pt) = 2#{m2 mod p

t−2}. (A.14)

Note that (A.14) is equivalent to

#{k : k
2 − a is a square mod p

t
, 0 < k < p

t
/2, p | (k2 − a)} = #{m2 mod p

t−2}.
(A.15)

The left member of (A.15) also equals the number of squares modulo p
t−2 of the

form (k2 − a)/p
2 mod p

t−2. It remains to show that every square modulo p
t−2 has

the form (k2 − a)/p
2 mod p

t−2, i.e., that p
2
u

2 + a is a square modulo p
t for every

integer u. This follows from the first part of Proposition A.2.
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