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Abstract
The famous Prouhet-Tarry-Escott problem seeks collections of mutually disjoint
sets of non-negative integers that have equal sums of like powers. In this paper
we present a new proof of the solution to this problem by deriving a generalization
of the product generating function formula for the classical Prouhet-Thue-Morse
sequence.

1. Introduction

The well-known Prouhet-Tarry-Escott (PTE) problem [3, 9] seeks p > 2 sets of
non-negative integers Sy, S1, ..., Sp—1 that have equal sums of like powers (ESP)
up to degree M > 1, i.e.,

an:an:-~-: Z n™

nesSy nesS, TLESp_l

forallm =0,1,..., M. In 1851, E. Prouhet [6] announced a solution; however, a full
proof of the solution was never published. Prouhet’s solution involved partitioning
the first pM*1 non-negative integers into the sets Sp, S1, ..., Sp—1 according to the
rule

nec Sup(n)-

Here, up(n) is the generalized Prouhet-Thue-Morse sequence defined by computing
the residue of the sum of digits of n (base p):

d
up(n) = an mod p,
3=0

where n = ngp?+- - -+ngp® is the base-p expansion of n. When p = 2, u(n) := ua(n)
generates the classical Prouhet-Thue-Morse sequence: 0,1,1,0,1,0,0,1,.... For
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example, the two sets

So = {0,3,5,6,9,10,12, 15}
Sy ={1,2,4,7,8,11,13,14},

defined by the assignment n € S,(,), solve the PTE problem with p =2 and M =3
since

8 = 0°4+3%+5%+6°+9° +10° + 120 + 15
= 1942944° 4+ 79+ 8% 4117 + 13° 4 149

60 = 0+3+5+6+9+10+12+15
= 14+2+44+7+8+11+13+14

620 = 02+32+524+624+92+10%+ 122+ 152
= 124224424724+ 82 41124+ 13%+ 142

7200 = 0°+43%+5%4+6°+ 9% +10% +12° + 15°
= 13422 4+43 4+ 7348341134133 +143,
where we define 0° = 1.

The first published proof of Prouhet’s solution was given by D. H. Lehmer [4],
who presented a more general construction of ESPs beyond those described by
Prouhet’s solution. This is achieved by considering products of polynomials whose
coefficients are roots of unity. In particular, Lehmer defined

M
F(0) = H (1+ weltmt 4 ,2e2mmb 4L wpfle(pfl)unﬁ)’ (1)
m=0
where w is a p-th root of unity and py, ..., pup are arbitrary positive integers. It is

clear that F'(z) has a zero at © = 0 of order M + 1 so that its derivative vanishes
up to order M, i.e., F(™(0) =0 for m = 0,1,..., M. On the other hand, Lehmer
expanded F(z) to obtain

F(Q) _ Z wao+"'+aMe(alqur“'JraMuM)e, (2)
ag,..., &M
where the indices ag, . ..,ays take on all integers from 0 to p — 1. Since
F(m)(o) _ Z wa0+...+aM (aO,LLO N aM/LM)m,
Qag,..., &M

Lehmer proved using linear algebra that

an:an=-~-: Z nm

neSy nesy neSp_1
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by assigning n = aguo + -+ + appyr € Sx whenever ag + - + apr = k mod p.
This solves the PTE problem by setting p.,,, = p™ for all m = 0,1,..., M. Other
proofs of Prouhet’s solution have been given by E. M. Wright [8] using multinomial
expansion and J. B. Roberts [7] using difference operators (see also [9]).

Observe that in the aforementioned case where u,, = p™ for all m =0,..., M,
equating (1) with (2), together with the substitution z = €, yields the product
generating function formula

M pMH1_1
[T +wa?™ w22 4Pty = N gulige . (3)
m=0 n=0

For p = 2, equation (3) reduces to the classical product generating function formula
for the PTM sequence u(n) (see [1, 2]):

N N N+l
[Ta-=*")= > (-1)mam (4)
m=0 n=0

In this paper, we present a new proof of Prouhet’s solution by generalizing (3) to
polynomials whose coefficients sum to zero while preserving the form of (4). This
is achieved by observing that the key ingredient in the proof of (3) relies on the
property that all p-th roots of unity sum to zero, namely,

WOt w4 WPt =0,

where w is a primitive p-th root of unity. To this end, let A = (ao,a1,...,ap—1) be
a vector consisting of p arbitrary complex values that sum to zero, i.e.,

ap+ar+---+ap—1 =0.

For any positive integer N, we define Fy(z; A) to be the polynomial of degree p™v —1
whose coefficients belong to A, and repeat according to u,(n), i.e.,

pN -1

Fy(x;A) = Z Ay ()" (5)
n=0

In Theorem 1 we prove that there exists a polynomial Py (x) such that

N—-1

Fy(a; A) = Pu(a) [ (1 —2""). (6)

m=0

For example, if p = 3 so that ag + a1 + az = 0, then (6) becomes

ap + a1z + asx® = (ag + (ap + a1)x)(1 — )
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and

2 3 4 5 6 7 8
ag + a1x + axx” + a1x° + a2x” + agx” + axx” + agxr’ + a1x

= (ap + (aop + ay)x + (ap + a1)2® + ayz)(1 — 2)(1 — 23)

for N =1 and N = 2, respectively. In the case where p =2, a9 = 1, and a; = —1,
then Py(z) =1 for all N and therefore (6) reduces to (4).

Equation (6) is useful in that it allows us to establish that the polynomial
Fyn(xz,A) has a zero of order N at x = 1. Prouhet’s solution now follows easily
by setting N = M + 1 and differentiating Fy(z; A) up to order m as demonstrated
in Theorem 2.

2. Proof of the Prouhet-Tarry-Escott Problem

Let p > 2 be a fixed integer. We begin with a lemma that describes a recurrence
for Fn(z; A) and whose proof follows from the fact that

up(n+kp™) = (up(n) +k)p  (0<n <p™ 0<k<p), (7)
where we define (n), = n mod p. Moreover, let Aj denote the k-th left cyclic shift
of the elements of A, i.e.,

A = (a(),» Ok41),s - Gp—1+k), )-
Lemma 1. For any integer N > 1, we have
Fn(;A) = Fy_1(2; Ag)+a” Fy_1(w; Ay)+--+a® P Fy_ (25 4,1). (8)
Proof. We first decompose F(z; A) as follows:

pN -1

FN(va) = Z CLup(n)xn
n=0

prl_l 21)1\771_1
— n n
= E: Quyy (n) T+ E: Quyy ()T F -
n=0 n:prl
pN—1

Y ayma”

n=(p—1)pN -1

pN-1 1 pN-1_1

_ n + pN71 n +

= Aoy (n)L X Ay, (n+pN-1)T ce
n=0 n=0

N-1_4

1\, N-1 n
+l‘(p Dp Z Ay (n+(p—1)pN-1)T -

n=0
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It follows from (7) that

PN N1
N-1
FN(x; A) = Z aup(n)x” + 2P Z a(up(n)+1)px" + ...
n=0 n=0

pN-1_1

1\, N—1
+ 2P > Gy m)tp-1), 7"

n=0

Hence,

Fy(w; ) = Fy-1(a; Ao) +27 Fyoa(as A+ 42707 By (a3.4,1)
as desired. O
For example, let p = 3 and A = (ag, a1,a2). Then

Fi(x;A) = ag + a1z + aza?

Fy(x;A) = ag + a1z + asa? + a12° + agx® + apx® + asa® + apzx” + ay2®

= Fi(x; Ag) + 2> Fy (z; Ay) + 28 Fy (25 Ay).

Next, define a recursive sequence of vectors Cy consisting of unknown constants
as follows:

Cl = (Co, ey Cp,Q),
and for N > 1,
COn =Cn_1(0)#CN-1(1)# ... #CNn-1(p — 2) (9)
where # denotes concatenation of vectors and
CN,1<]€) = (Cj+kpN—1 NS CNfl)

for k=0,1,...,p— 2. For example, if p = 3, then

C1 = (¢co,1)

Co = C1(0)#C1(1) = (co, €1,¢3,¢4)

Cs = C3(0)#C>(1) = (co, €1, €3, €4, €9, €10, C12, C13)-

Note that if p = 2, then Cy = (¢o) for all N > 1.
Moreover, define a sequence of polynomials Py (x; Cv) recursively as follows:

P (z;Cy)=co+crz+---+ cp_gxp_z,
and for N > 1,
Py(2;CN) = Py_1(z;Cn-1(0) +2*"  Py_1(z;Cn_1 (1)) +...  (10)
+ 222" Py (2 O (p — 2)).

We are now ready to prove that Fiy(x; A) has the following factorization.
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Theorem 1. Let N be a positive integer. There exists a polynomial Py(x;Chy)

such that
N-1

Fx(a; A) = Py(w;Cy) [J(1—2""). (11)

m=0

Proof. We prove (11) by induction. First, define Qun(z) = HTNn;(l)(l _ xp’"’) by
Q1(x) = (1 —=z) and for N > 1,

1

Qu(@) = Q@)1 =), (12)
To establish the base case N = 1, we expand F(z; A) = Pi(x; C1)Q1(x) to obtain
ap+arx+ - +ap_ 127 =co+ (e1 —co)r + -+ (cpoz — cp1)aP T — cpoxP

Then equating coefficients yields the system of equations

Co = Qo

Cl1 —Cy = aq

Cp—2 —Cp—1 = Aap—2

—Cp—2 = Qp—1-

Since ag + a; + -+ + ap—1 = 0, this system is consistent with the solution ¢,, =

S ar for m = 0,1,...,p — 2 where ¢y_o = a9+ -+ + ap_2 = —ap_1. Thus,
Py (x;Cy) is given by
p—2 m
Py(z;Ch) = Z (Z ak> ™.
m=0 \k=0

Note that if p = 2, then P;(x;C1) = ag.
Next, assume there exists a polynomial Py_1(z;Cn_1) that solves

Fy_i1(z;A) = Pvo1(z;COn-1)@N-1(2).
To prove that there exists a solution Py (z; Cx) for
Fy(z;A) = Pn(2;Cn)@nN (2), (13)

we expand (13) using recurrences (8), (10), and (12):

i”fkpN?lFN—l(x;Ak) = <Z_:xkpN1PN—1($§ CN—l(k))> Qn-1(@)(1—a"" ).

k=0 k=0
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We then equate coefficients corresponding to the terms 2" " This yields the
system of equations

Fn_1(z;Ao) = Pn-1(2;Cn-1(0))@n-1(2)
Fy_1(z; A1) = (Pv—1(2;Cn-1(1)) = Pv—1(2; On-1(0)))@n-1(2)

Fy_1(xz;Ap—2) = (PN—1(%;Cn=1(p — 2)) — Pn—1(2;Cn—1(p — 3)))Qn—-1(x)
Fn_1(z;Ap—1) = —Pn-1(2;Cn-1(p — 2))@n-1(2).

Now, each equation above corresponding to Fy_1(x; Ag) for kK =1,...,p — 2 can
be replaced by one obtained by summing all equations up to k, namely

Fn_1(2; Bg) = Py-1(2;Cn—1(F))Qn-1(2)

where By, = Ag+- - -+ Ay is defined by vector summation. This yields the equivalent
system of equations

Fn-1(z; Bo) = Pn-1(7;Cn-1(0))Qn-1()
Fn-1(z;B1) = Py-1(7;Cn-1(1))QNn-1()

Fn_1(2; Bp—2) = Pn—1(2;Cn-1(p — 2))@n-1(2)

Fn_1(z;Ap—1) = —Pn-1(2;Cn-1(p — 2))@n-1(2).
From our inductive assumption, each of the equations above corresponding to
Fyn_1(z; By) has a solution in Cy_1 (k). Moreover, the last equation corresponding
to Fy_1(z; Ap—1) is equivalent to the equation corresponding to Fy_1(z; Bp_2),
since Bp_g = Ao+ -+ Ap_o = —A,_1. This proves that (13) has a solution in
Cn because of (9). O

We now present our proof of the solution to the Prouhet-Tarry-Escott problem.

Theorem 2 ([6, 4]). Let M be a positive integer, L = pM*1 and {Sy, S1,...,5p—-1}
a partition of {0,1,..., L — 1} defined by the condition

€ Su,(n)

for0<n < L-—1. Then Sy, Si,...,5,-1 have equal sums of like powers of degree

M, i.e.,

neSy nesS, neSy_1

forallm=0,1,..., M.
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Proof. Define si(m) =>_, g n™ and A = (ag,a1,...,ap—1) to be a vector consist-
ing of p arbitrary complex values that sum to zero, i.e., ap+a1+---+ap—1 = 0. Set
N = M + 1 and define Fy(z; A) as in (5). Next, substitute x = ¢’ into Fy(x; A)
and compute the m-th derivative of G (6) := Fy(e?; A) at § = 0. Then, on the
one hand, we have from the standard rules of differentiation that

pY -1
Gg\yln)(o) = Z nmaup(n)
n=0
_ Z n?nao_"_.“_’_ Z ’Ilm(lp,1
neSy neSp_1

= aoso(m) + 4 ap_lsp_l(m).

On the other hand, we have from (11) that Gy () has a zero of order N at § = 0.
It follows that
GV (0)=0

form=20,1,..., N — 1. Thus,
agso(m) + -+ ap_15p—1(m) = 0. (14)

Now, recall that the values ag, a1, ..., ap—1 can be chosen arbitrarily as long as
they sum to zero. Therefore, we choose them as follows: for any two distinct non-
negative integers j and k satisfying 0 < 5,k < p—1, set a; = 1, ar, = —1, and
a; =0 for all [ # j, k. Then (14) reduces to

sj(m) — sg(m) =0,

or equivalently, s;(m) = sg(m). But since this holds for all distinct j and k, we
have that
so(m) = s1(m) = -+ = sp1(m)

for m =0,1,..., M as desired. O

We conclude by explaining our motivation for studying the polynomials Fy (x; A).
In [5], the author and G. E. Coxson showed that these polynomials arise in radar
as ambiguity functions of pulse trains generated by complementary codes that re-
peat according to the Prouhet-Thue-Morse sequence. Prouhet’s solution is used to
demonstrate that these pulse trains, called complementary PTM pulse trains, are
tolerant of Doppler shifts due to a moving target by establishing that their Taylor
series coefficients vanish up to order N — 1.
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this paper.



INTEGERS: 16 (2016) 9

References

(1]

2]

(3]

(4]

(5]

(6]

(7]
(8]

(9]

J.-P. Allouche and J. Shallit, The ubiquitous Prouhet-Thue-Morse sequence, in Sequences
and Their Applications, Proc. SETA’98 (Eds. C. Ding, T. Helleseth, and H. Niederreiter),
Springer-Verlag, 1999, 1-16.

P. Borwein and C. Ingalls, The Prouhet-Tarry-Escott problem revisited, Enseign. Math. 40
(1994), 3-27.

H. L. Dorwart and O. E. Brown, The Tarry-Escott problem, Amer. Math. Monthly 44 (1937),
613-626.

D. H. Lehmer, The Tarry-Escott problem, Scripta Math. 13 (1947), 37-41.

H. D. Nguyen and G. E. Coxson, Doppler tolerance, complementary code sets, and the gener-
alized Thue-Morse sequence, arXiv:1406.2076 [cs.IT] (2014).

E. Prouhet, Mémoire sur quelques relations entre les puissances des nombres, C. R. Math.
Acad. Sci. Paris 33 (1851), 225.

J. B. Roberts, A new proof of a theorem of Lehmer, Canad. J. Math. 10 (1958), 191-194.
E. M. Wright, Equal sums of like powers, Proc. Edinb. Math. Soc. (2) 8 (1949), 138-142.

E. M. Wright, Prouhet’s 1851 solution of the Tarry-Escott problem of 1910, Amer. Math.
Monthly 102 (1959), 199-210.



