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Abstract
We answer a question due to Bernardo Recamán about the lower bound behavior
of the maximum possible length among arithmetic progressions in the least reduced
residue system modulo n, as n!1. We also provide an upper bound.

1. Introduction

For any positive integer n > 1, let

A(n) = {a 2 Z : 0 < a < n, gcd(a, n) = 1}

be the (nonempty) set of all smaller positive integers relatively prime to n, or in
other words the least reduced residue system modulo n, and let us define f(n) as
the maximum possible length among all arithmetic progressions in A(n).

In a letter from 1995 (see Chapter B40 of [1]) Bernardo Recamán asked if f(n)
tends to infinity with n, i.e., if for each k 2 Z+ there exists a constant nk such that
A(n) contains an arithmetic progression of length k for all n > nk.

One very nice but deep result coming to mind here is that of Green and Tao [2]
telling us about arbitrarily long arithmetic progressions in the primes, and in fact it
is a promising indicator for a positive answer to our question, since A(n) contains
all primes less than n except its prime factors. However, it turns out that we can
prove the truth of our conjecture by using only elementary methods, and in what
follows we present one such solution.

2. Ideas and Proof

Before we start collecting some lower bounds for f(n), let us quickly consider a few
examples of A(n) and f(n) as illustrated in the following figures:
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Lemma 1. For n > 1, we have f(n) > max{(p� 1)/2, n/P}, where p is the largest
prime factor of n and P is the squarefree product of all prime factors of n.

Proof. According to the prime factorization of n, we build up our proof by working
through all of the following possible cases.

First, let us suppose n is prime itself; then exactly all smaller positive integers
from 1 up to n� 1 are relatively prime to n and form an arithmetic progression of
length n� 1 with common di↵erence 1, which means f(n) = n� 1.

In the more general case n = pr, where p is prime and r 2 Z+, we similarly still
have {1, . . . , p � 1} ⇢ A(n) and so f(n) > p � 1. But if r > 2 we can also look
at the numbers 1 + m · p for 0 6 m < pr�1. All of them lie in A(n) since none of
them is divisible by p, and they form an arithmetic progression of length pr�1 with
common di↵erence p, giving us even f(n) > pr�1 = n/p here.

Next, let us consider squarefree numbers n = p1p2 . . . pd, where d > 2 and 2 6
p1 < p2 < . . . < pd (odd) are prime. Like before, a good idea seems to be looking
at numbers of the form 1 + m · q, now choosing q = p1p2 . . . pd�1 and 0 6 m < pd,
which ensures us that

am = 1 + m · q 6 1 + (pd � 1) · q = 1 + n� q 6 1 + n� 2 < n

is already not divisible by any of the primes p1, p2, . . . , pd�1, although we are not
sure about non-divisibility by pd yet. However, together a0, a1, . . . , apd�1 represent
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a complete residue system modulo pd, because if ax ⌘ ay (mod pd) for some 0 6
x < y < pd, then 0 ⌘ ay � ax = (y � x) · q (mod pd) together with gcd(q, pd) = 1
would imply y � x ⌘ 0 (mod pd), or equivalently, x ⌘ y (mod pd), in contradiction
to our range for x and y. In particular, exactly one member of a0, a1, . . . , apd�1 is
divisible by pd, say am, and so by the box principle we know that

a0, . . . , am�1 or am+1, . . . , apd�1

is an arithmetic progression of length at least (pd � 1)/2 with common di↵erence q
completely contained inside A(n), which delivers f(n) > (pd � 1)/2.

Finally, let us introduce exponents r1, r2, . . . , rd 2 Z+ such that we can cover all
remaining numbers n = pr1

1 pr2
2 . . . prd

d , where r1 + r2 + . . . + rd > d. Because n has
the same prime factors as p1p2 . . . pd, we find A(p1p2 . . . pd) builds a subset of

{a + m · p1p2 . . . pd : a 2 A(p1p2 . . . pd), 0 6 m < pr1�1
1 pr2�1

2 . . . prd�1
d } = A(n).

In fact, we have gcd(a, n) = 1 if and only if gcd(a, p1p2 . . . pd) = 1, for all integers a,
and hence f(n) > f(p1p2 . . . pd) > (pd � 1)/2. On the other hand, we might again
do a bit better by looking at the numbers 1 + m · p1p2 . . . pd forming an arithmetic
progression of length pr1�1

1 pr2�1
2 . . . prd�1

d with common di↵erence p1p2 . . . pd, and
combining both ideas leads us to f(n) > max{(pd � 1)/2, n/(p1p2 . . . pd)}.

Theorem 1. For each k 2 Z+, there exists a constant nk such that A(n) contains
an arithmetic progression of length k for all n > nk.

Proof. Let P2k be the product of all primes not exceeding 2k and put nk = k · P2k

> 1 · 2. Moreover, let us fix some n > nk, and (as in Lemma 1) denote its largest
prime factor by p. If p > 2k + 1, we immediately arrive at

(p� 1)/2 > ((2k + 1)� 1)/2 = k.

In the other case p < 2k + 1, we note that all prime factors of n do not exceed 2k,
implying their product P divides P2k, and so in particular

n/P > nk/P = k · P2k/P > k · 1.

Combining everything we reach f(n) > max{(p � 1)/2, n/P} > k, and our claim
follows.

So far we mainly worked on lower bounds for f(n). As a last step, let us change
our point of view and conclude by showing:

Theorem 2. For n > 1, we also have f(n) 6 max{(p� 1)/1, n/P}.
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Proof. Suppose a1, a2, . . . , as is an arithmetic progression of length s with common
di↵erence q contained in A(n). Now let us focus a bit more on q.

If q > P , we can only come up to s 6 n/P , since otherwise s > n/P implies

as = a1 + (s� 1) · q > 1 + ((n/P + 1)� 1) · P = n + 1,

and our last member would not be in A(n) anymore. In the other case q < P , we
know q is missing at least one prime factor p0 of the squarefree number P dividing
n. But then gcd(q, p0) = 1 once again, like in the proof of Lemma 1, can tell us
that, whenever s > p0, the first p0 members a1, a2, . . . , ap0 do represent a complete
residue system modulo p0. Therefore one of them, being a multiple of p0, could not
lie in A(n) anymore, leaving us only s 6 p0�1 6 p�1 left here. Uniting both cases
we reach f(n) 6 max{n/P, p� 1}, as desired.

3. Future Work

After having established lower and upper bounds for f(n), especially in the case
of squarefree numbers n, an interesting question seems to be whether, on average,
f(n) is closer to (p � 1)/2 or p � 1. Our examples indicate that it can be very
near to both thresholds. Another task is to improve on the given border nk in our
main theorem. For both aims one could hope to get better estimates by using more
advanced methods.
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