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Abstract
Let Tn = Tn(k) be the generalized Fibonacci sequence of order k defined by the
recurrence Tn = Tn�1 + Tn�2 + · · ·+ Tn�k, n � k, with T0 = 0 and T1 = T2 = · · · =
Tk�1 = 1. In this paper, we fully and partially characterize the 2-adic valuations
of Tn(4) and Tn(5), respectively. Moreover, we provide new addition formulas and
congruences for the sequences {Tn(k)}n�0.

1. Introduction

Let {Fn}n�0 be the Fibonacci sequence given by Fn+2 = Fn+1 + Fn, for n � 0,
where F0 = 0 and F1 = 1. The p-adic order, ⌫p(r), of r is the exponent of the
highest power of a prime p which divides r. The p-adic order of a Fibonacci number
was completely characterized, see [4]. Much less is known about the generalized
Fibonacci sequences. Let Tn = Tn(k), n � 0, denote the generalized Fibonacci
sequence of order k defined by the recurrence relation

Tn = Tn�1 + Tn�2 + · · · + Tn�k, n � k, (1)

and the initial conditions T0 = 0, T1 = T2 = · · · = Tk�1 = 1. Note that sometimes
the initial conditions are given by

B0 = B1 = · · · = Bk�2 = 0, Bk�1 = 1 (2)

with Bn = Bn(k) while the recurrence Bn = Bn�1 + Bn�2 + · · · + Bn�k, n � k, is
preserved. By convention, we also set B�1(k) = 0. Clearly, Fn = Tn(2) = Bn(2).
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Our goal is to present a systematic approach that helps establish the 2-adic order
of Tn(k), at least for some specialized sequences of the index n (we point out that
the 2-adic valuation of Tn(3) was fully determined in [6]). Here, we focus on Tn(k)
for k = 4 and 5. The first few terms of the sequence {Tn(4)}n�0 are

0, 1, 1, 1, 3, 6, 11, 21, 41, 79, 152, 293, 565, 1089, 2099, 4046, 7799, . . .

while those of {Tn(5)}n�0 are

0, 1, 1, 1, 1, 4, 8, 15, 29, 57, 113, 222, 436, 857, 1685, 3313, 6513, . . . .

Our main results are Theorems 1, 2, and Lemmas 2, 5, and 6. We also suggest
several conjectures, cf. Conjectures 1 and 2.

Throughout the paper, we emphasize the experimental aspects of finding and
discovering relations, e.g., recurrence relations and congruences.

Theorem 1. For n � 1, we have

⌫2(Tn(4)) =

8><
>:

0, if n 6⌘ 0 (mod 5),
1, if n ⌘ 5 (mod 10),
⌫2(n) + 2, if n ⌘ 0 (mod 10).

(3)

With n � 1 and s � 1 odd, this yields that

⌫2(T5·s·2n(4)) = n + 2. (4)

We refer the reader to [2] for the 2-adic valuation of Bn(4).
We make the following conjecture for the case of k = 5.

Conjecture 1. For n � 1, we have

⌫2(Tn(5)) =

8>>>>>>>><
>>>>>>>>:

0, if n 6⌘ 0 or 5 (mod 6),
2, if n ⌘ 5 (mod 12),
1, if n ⌘ 11 (mod 12),
⌫2(n + 2), if n ⌘ 6 (mod 12) and ⌫2(n + 2) < 8,
⌫2(n + 43266), if n ⌘ 6 (mod 12) and ⌫2(n + 2) � 8,
⌫2(n), if n ⌘ 0 (mod 12).

(5)

Here, we prove it in the following weaker form.

Theorem 2. For n � 1, we have

⌫2(Tn(5)) =

8>>>>>><
>>>>>>:

0, if n 6⌘ 0 or 5 (mod 6),
2, if n ⌘ 5 (mod 12),
1, if n ⌘ 11 (mod 12),
⌫2(n + 2), if n ⌘ 6 (mod 12) and ⌫2(n� 6) 6= 3,
⌫2(n), if n ⌘ 0 (mod 12).

(6)
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With n � 1 and s � 1 odd, this yields that

⌫2(T6·s·2n(5)) = n + 1. (7)

We also propose the following conjecture.

Conjecture 2. For n � 1 and k � 2 integers and s � 1 odd integer, we have

⌫2(Ts·(k+1)·2n(k)) = n + c(k)

where c(2) = 2 and otherwise,

c(k) =

8>>>>>>>><
>>>>>>>>:

2, if k ⌘ 0 (mod 4);
1, if k ⌘ 1 (mod 4);
⌫2(k � 2) + 1, if k ⌘ 2 (mod 8);
1, if k ⌘ 3 (mod 8);
3, if k ⌘ 6 (mod 8);
1, if k ⌘ 7 (mod 8).

Remark 1. Conjecture 2 can be easily verified for k = 2 and 3. In fact, we
proved for n � 1 that ⌫2(Tn(2)) = ⌫2(n) + 2 if n ⌘ 0, 6 (mod 12) in [4] and
⌫2(Tn(3)) = ⌫2(n) � 1 if n ⌘ 0, 8 (mod 16) in [6]. In this paper, we prove the
conjecture for k = 4 and 5.

We outline a plan that can be followed in order to prove Conjecture 2. In fact,
we will apply the plan in the cases of k = 4 and 5 in Sections 4 and 5, respectively.

Step 1. First we establish an addition formula for Tq+r(k) in terms of Tq0(k) and
Tr0(k) with q0 and r0 close to q and r, respectively; more precisely, with
q � k + 2  q0  q + k and r  r0  r + k � 1.

Step 2. The second step is to come up with a set of induction hypotheses for
Ts·(k+1)·2n+i(k) (mod 2n+c(k)+1) for all i : 0  i  k � 1 and n �
n0(k) with some functions c(k) and n0(k), e.g., Ts·(k+1)·2n ⌘ s · 2n+c(k)

(mod 2n+c(k)+1), n � 1, in Lemmas 5 and 6 and prove it simultaneously
by using the recurrence relation for Tq+r(k) from the first step. Note that
the congruence Ts·(k+1)·2n+i(k) (mod 2n+c(k)+1) will follow for any i  �1
and i � k by the recurrence (1).

Step 3. In the induction proof, first we deal with the case s = 1 and we prove this
case by induction on n. The same procedure will work for other values of
s.

In conclusion, this process yields that if m = s · (k + 1) · 2n and s � 1 is odd then
⌫2(Tm(k)) = n + c(k) for n � n0(k).



INTEGERS: 17 (2017) 4

We illustrate the actual steps in Sections 2 and 3. Section 2 is devoted to the
process of obtaining recurrence relations while Section 3 contains the congruences
that are the essential tools in proving Theorems 1 and 2.

The actual calculations and proofs in the cases of k = 4 and 5 are presented in
Sections 4 and 5. They lead to identities (11) and (12) that are crucial in proving
the congruences (14), (15), and (16).

2. Obtaining a Recurrence by an Addition Formula

As a reminder, we note the addition formula, given in Lemma 4 of [6], which yields
a recurrence for Tq+r(3). For all integers q and r with q � 3 and r � 0, we have
that

Tq+r = Tq�2Tr + (Tq�3 + Tq�2)Tr+1 + Tq�1Tr+2.

Note that Tq�1 = Tq�4 + Tq�3 + Tq�2. It is determined in Theorem 2.1 of [7] that
with Tn = Tn(4) and Bn = Bn(4), we have

Tq = Bq�2T1 + (Bq�2 + Bq�3)T2 + (Bq�2 + Bq�3 + Bq�4)T3 + Bq�1T4, (8)

for q � 5 where Bq�1 = Bq�2 +Bq�3 +Bq�4 +Bq�5. The formula (8) can be easily
generalized to

Lemma 1. For q � 5 and r � 0 with Tn = Tn(4) and Bn = Bn(4), we have that

Tq+r = Bq�2Tr+1 + (Bq�2 + Bq�3)Tr+2 + (Bq�2 + Bq�3 + Bq�4)Tr+3 + Bq�1Tr+4.

To obtain similar identities for a general k, we use the fact that one can relate
the sequences {Tn(k)}n�0 and {Bn(k)}n�0. In fact, we have the following general
result

Lemma 2. Let k � 2 be an integer and set Tn = Tn(k) and Bn = Bn(k). For
integers q > k and r � 0, we have that

Tq =
kX

i=1

0
@i+1X

j=2

Bq�j

1
ATi and Tq+r =

kX
i=1

0
@i+1X

j=2

Bq�j

1
ATr+i. (9)

Remark 2. We also use identity (9) in its equivalent form

Tq+r =
k�1X
i=0

0
@i+1X

j=1

Bq�j

1
ATr+i. (10)

with q � k � 2 and r � 0, cf. (11) and (12).
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We omit the proof which can be easily done by mathematical induction on q > k
for every fixed r � 0.

Remark 3. Identity (9) also works for sequences Tn(k) of real numbers satisfying
(1) with arbitrary initial conditions.

Our next step is to determine Bq0(k) in (9) in terms of the sequence {Tn(k)}n�0.
We note that although Bn+1(3) = Tn(3), usually there is a non-trivial linear re-
lationship between the two sequences. We use the approach outlined in [1]. The
result is derived in (18) and (19) as well in (22) and (23), and used by (11) and (12)
in Lemmas 3 and 4, respectively.

Lemma 3. For Tq+r(4) with q � 2 and r � 0, we have the recurrence

Tq+r =
✓

5
3
Tq +

1
3
Tq+1 + 2Tq+2 �

4
3
Tq+3

◆
Tr

+
✓

5
3
Tq�1 + 2Tq +

7
3
Tq+1 +

2
3
Tq+2 �

4
3
Tq+3

◆
Tr+1

+
✓

5
3
Tq�2 + 2Tq�1 + 4Tq + Tq+1 +

2
3
Tq+2 �

4
3
Tq+3

◆
Tr+2

+
✓

5
3
Tq+1 +

1
3
Tq+2 + 2Tq+3 �

4
3
Tq+4

◆
Tr+3.

(11)

Lemma 4. For Tq+r(5) with q � 3 and r � 0, we have the recurrence

Tq+r =
✓

35Tq

46
+

11Tq+1

23
+

15Tq+2

46
+

18Tq+3

23
� 27Tq+4

46

◆
Tr

+
✓

35Tq�1

46
+

57Tq

46
+

37Tq+1

46
+

51Tq+2

46
+

9Tq+3

46
� 27Tq+4

46

◆
Tr+1

+
✓

35Tq�2

46
+

57Tq�1

46
+

36Tq

23
+

73Tq+1

46
+

12Tq+2

23

+
9Tq+3

46
� 27Tq+4

46

◆
Tr+2

+
✓

35Tq�3

46
+

57Tq�2

46
+

36Tq�1

23
+

54Tq

23
+ Tq+1

+
12Tq+2

23
+

9Tq+3

46
� 27Tq+4

46

◆
Tr+3

+
✓

35Tq+1

46
+

11Tq+2

23
+

15Tq+3

46
+

18Tq+4

23
� 27Tq+5

46

◆
Tr+4.

(12)
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3. Congruences

We note that for k = 3 the congruences in (4) of Lemma 6 in [6] are equivalent to the
following statement. For s � 1, n � 3, and Tm = Tm(3), we have the congruences

Ts·2n ⌘s · 2n�1 (mod 2n),
Ts·2n+1 ⌘1 (mod 2n),
Ts·2n+2 ⌘1 + s · 2n�1 (mod 2n).

(13)

Now we establish similar congruences for k = 4.

Lemma 5. For s � 1, n � 2, and Tm = Tm(4), we have that

T5·s·2n ⌘s · 2n+2 (mod 2n+3),
T5·s·2n+1 ⌘1 + s · 2n+1 (mod 2n+3),
T5·s·2n+2 ⌘1 + s · 2n+1 + s · 2n+2 (mod 2n+3),
T5·s·2n+3 ⌘1 (mod 2n+3),

(14)

while for n = 1, we have that

T10·s ⌘8s (mod 16),
T10·s+1 ⌘1 + 4s (mod 16),
T10·s+2 ⌘1 + 4s (mod 16),
T10·s+3 ⌘1 (mod 16),

(15)

which yields that ⌫2(T5·s·2n(4)) = n + 2 if n � 1 and s � 1 odd.

Proof of Lemma 5. We closely follow the steps of the proof of Lemma 6 of [6]. First,
we deal with the basis case s = 1. We have to prove (14) for n � 2. We use induction
on n. Clearly, the congruences hold for n = 2. We suppose that they are true for
n � 2, and then we use (11) for T5·2n+1+i = T(5·2n)+(5·2n+i), 0  i  3, to obtain the
required congruences for T5·2n+1+i. Next, by the induction hypothesis, we suppose
that the congruences (14) hold for s � 1. Then, we use exactly the same procedure
and (11) as before for T5·(s+1)·2n+i = T(5·s·2n)+(5·2n+i). In a similar fashion, we use
induction on s � 1 to prove the congruences (15), corresponding to the case with
n = 1. We omit the details.

Example 1. We illustrate the above proof in the case of k = 4, n � 2, s � 1, and
i = 0. With the setting r = 5·s·2n and q = 5·2n, we obtain by (11) that T5·2n(s+1) =✓

5
3T5·2n + 1

3T5·2n+1 +2T5·2n+2� 4
3T5·2n+3

◆
T5·2ns +

✓
2T5·2n + 5

3T5·2n�1 + 7
3T5·2n+1 +

2
3T5·2n+2� 4

3T5·2n+3

◆
T5·2ns+1+

✓
4T5·2n + 5

3T5·2n�2+2T5·2n�1+T5·2n+1+ 2
3T5·2n+2�
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4
3T5·2n+3

◆
T5·2ns+2 +

✓
5
3T5·2n+1 + 1

3T5·2n+2 + 2T5·2n+3 � 4
3T5·2n+4

◆
T5·2ns+3, which

results in 1
32n+2s � 1

32n+3s + 1
32n+4s + 5

322n+3s + 22n+4s + 1
322n+6s + 1

322n+7s �
1
322n+8s + 1

322n+9s + 2n+2

3 + 2n+3

3 (mod 2n+3) by the induction hypothesis. We get
1
3 · 2n+2 · (s + 1) ⌘ 2n+2 · (s + 1) (mod 2n+3) by replacing any term including a
factor with a “high” power of 2 with 0. More precisely, any term including 2c·n+d

with d � 3 or c > 1 combined with d � 1 is dropped. It implies that the statement
T5·(s+1)·2n ⌘ (s + 1) · 2n+2 (mod 2n+3) in (14) is also true.

Note that the substitutions and simplifications above can be easily preformed by
using Mathematica.

In the case of k = 5 we proceed similarly.

Lemma 6. For s � 1, n � 1, and Tm = Tm(5), we have that

T6·s·2n ⌘s · 2n+1 (mod 2n+2),
T6·s·2n+1 ⌘1 (mod 2n+2),
T6·s·2n+2 ⌘1 + s · 2n+1 (mod 2n+2),
T6·s·2n+3 ⌘1 (mod 2n+2),
T6·s·2n+4 ⌘1 (mod 2n+2),

(16)

which yields that ⌫2(T6·s·2n(5)) = n + 1 if n � 1 and s � 1 odd.

The proof essentially duplicates the steps of the proof of Lemma 5 and we leave
the details to the reader.

4. The Case of k = 4

Before we present the proof of Lemma 3, we explore an approach given in [1]. In
fact, we use it with some modifications and with n � 0 and m � 4. We start with
the matrix 0

BB@
Tn Tn+1 Tn+2 Tn+3 Tm+n

Tn+1 Tn+2 Tn+3 Tn+4 Tm+n+1

Tn+2 Tn+3 Tn+4 Tn+5 Tm+n+2

Tn+3 Tn+4 Tn+5 Tn+6 Tm+n+3

1
CCA . (17)

After experimenting with di↵erent values of m and row reducing the matrix
in (17), we successfully obtain the recurrence relation Tm+n = Bm�1Tn +
(Bm�2 + Bm�1)Tn+1 + (Bm�3 + Bm�2 + Bm�1)Tn+2 + BmTn+3 suggesting (9) of
Lemma 2 in its equivalent form (10) for k = 4 with m � 4 and n � 0.

In a similar fashion, we establish the
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Proof of Lemma 3. We consider the matrix0
BB@

Tn Tn+1 Tn+2 Tn+3 Bm+n

Tn+1 Tn+2 Tn+3 Tn+4 Bm+n+1

Tn+2 Tn+3 Tn+4 Tn+5 Bm+n+2

Tn+3 Tn+4 Tn+5 Tn+6 Bm+n+3

1
CCA . (18)

After setting m = �1 and using di↵erent values of n � 1, we observe that the row
reduction always results in 0

BB@
1 0 0 0 5

3
0 1 0 0 1

3
0 0 1 0 2
0 0 0 1 �4

3

1
CCA , (19)

which yields that

Bn�1 =
✓

5Tn

3
+

Tn+1

3
+ 2Tn+2 �

4Tn+3

3

◆
(20)

for n � 1, which confirms (11).

Note that once (20) is established, an easy induction proof justifies this identity.
Indeed, with n = 1, 2, 3, 4 we get that 0 = 5

3 ·1+ 1
3 ·1+2·1� 4

3 ·3 = 5
3 ·1+ 1

3 ·1+2·3� 4
3 ·6 =

5
3 · 1 + 1

3 · 3 + 2 · 6� 4
3 · 11 and 1 = 5

3 · 3 + 1
3 · 6 + 2 · 11� 4

3 · 21. The induction step
is trivial by (1) and (2).

A natural approach to obtain the proof of Theorem 1 is to utilize the periodicity
of the underlying sequences. In some cases we can apply multisection techniques,
cf. [5], to find the complete or some partial characterization of the p-adic order
of the sequences. Here we combine these methods with the applications of sets of
congruences for {Ts·(k+1)·2n+i}k�1

i=0 with s � 1 and n � n0(k) integers.

Now we can complete the proof of Theorem 1.

Proof of Theorem 1. The proof for the case n 6⌘ 0 (mod 5) is trivial by taking
Tn(4) (mod 2) and induction on n. In fact, the sequence {Tn(4)}n�0 is periodic
with period {0, 1, 1, 1, 1} modulo 2.

If n ⌘ 5 (mod 10) then by 5-section of the generating function
P1

m=0 Tm(4)xm

(cf. [5]) we get that
1X

m=0

T5m(4)x5m =
2x5(3� 2x5 � x10)

1� 26x5 � 16x10 � 6x15 � x20
,

which easily yields that ⌫2(Tn(4)) = 1. Indeed, the denominator of the 5-sected
generating function suggests the recurrence

T5m+10 = 26T5m+5 + 16T5m + 6T5m�5 + T5m�10,m � 2, (21)
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for Tr = Tr(4) with r divisible by 5. We observe that ⌫2(T5) = 1, ⌫2(T10) = 3,
⌫2(T15) = 1, and ⌫2(T20) = 4, which yield that ⌫2(T5m) � 1 for m � 0 by the initial
values and (21). Now ⌫2(T5m+10) = ⌫2(T5m�10) = 1 with m � 3 odd also follows
by recurrence (21).

We note that we can extend (15) by recurrence (1) to obtain T10·s+4 ⌘ 3
(mod 16) and T10·s+5 ⌘ 6 + 8s (mod 16), and the latter congruence also results
in ⌫2(Tn) = 1 with n ⌘ 5 (mod 10).

In the remaining case 10 divides n, and Lemma 5 concludes the proof.

5. The Case of k = 5

Now we turn to the

Proof of Lemma 4. Similarly to (18) in the case of k = 4, we now consider
0
BBBB@

Tn Tn+1 Tn+2 Tn+3 Tn+4 Bm+n

Tn+1 Tn+2 Tn+3 Tn+4 Tn+5 Bm+n+1

Tn+2 Tn+3 Tn+4 Tn+5 Tn+6 Bm+n+2

Tn+3 Tn+4 Tn+5 Tn+6 Tn+7 Bm+n+3

Tn+4 Tn+5 Tn+6 Tn+7 Tn+8 Bm+n+4

1
CCCCA . (22)

After setting m = �1 and using di↵erent values of n � 1, row reduction leads us
to 0

BBBB@

1 0 0 0 0 35
46

0 1 0 0 0 11
23

0 0 1 0 0 15
46

0 0 0 1 0 18
23

0 0 0 0 1 �27
46

1
CCCCA (23)

which results in Bn�1 = 35Tn
46 + 11Tn+1

23 + 15Tn+2
46 + 18Tn+3

23 � 27Tn+4
46 for n � 1, which

is in agreement with (12). Its proof follows easily by induction as it was explained
in the proof of Lemma 3 for k = 4.

We are now ready to present the proof of Theorem 2.

Proof of Theorem 2. As above, the proof for the case n 6⌘ 0 and 5 (mod 6) is triv-
ial by taking Tn(5) (mod 2) and induction on n since the sequence {Tn(5)}n�0 is
periodic with period {0, 1, 1, 1, 1, 0} modulo 2.

If n ⌘ 6 (mod 12) then with n = 6 · s · 2m +6, s � 1 odd and m � 1, we get that
T6·s·2m+5 ⌘ 4 (mod 2m+2) and T6·s·2m+6 ⌘ 8 + s · 2m+1 (mod 2m+2) by extending
(16) via (1). It implies that ⌫2(T6·s·2m+6) = ⌫2(n + 2) as long as either m � 3 or
m = 1, in which cases the 2-adic order is either 3 or 2, respectively. In a similar
fashion, it follows that T6·s·2m+11 ⌘ 222 (mod 2m+2). Thus, with t � 1 integer, we
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also have that T12t+5 ⌘ 4 (mod 8) and T12t+11 ⌘ 222 (mod 8), which yield that
⌫2(T12t+5) = 2 and ⌫2(T12t+11) = 1.

Otherwise 12 divides n, and Lemma 6 concludes the proof.
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[2] V. Facó and D. Marques. The 2-adic order of the Tetranacci numbers and the equation
Qn = m!, preprint.

[3] J. Feng. More identities on the Tribonacci numbers, Ars Comb. 100 (2011), 73–78.

[4] T. Lengyel. The order of the Fibonacci and Lucas numbers, Fibonacci Quart. 33 (1995),
234–239.

[5] T. Lengyel. Divisibility properties by multisection, Fibonacci Quart. 41 (2003), 72–79.

[6] D. Marques and T. Lengyel. The 2-adic order of the Tribonacci numbers and the equation
Tn = m!, Journal of Integer Sequences 17 (2014), Article 14.10.1, 1–8.

[7] L. R. Natividad. On solving Fibonacci-like sequences of fourth, fifth and six order, Interna-
tional Journal of Mathematics and Scientific Computing 3 (2013), 38–40.

[8] E. M. Waddill. Some properties of a generalized Fibonacci sequence modulo m, Fibonacci
Quart. 16 (1978), 344–353.


