THE 2-ADIC ORDER OF SOME GENERALIZED FIBONACCI NUMBERS

Tamás Lengyel ${ }^{1}$
Mathematics Department, Occidental College, Los Angeles, California
lengyel@oxy.edu
Diego Marques
Departamento de Matemática, Universidade de Brasîlia, Brasília, Brazil
diego@mat.unb.br

Received: 12/21/15, Accepted: 2/4/17, Published: 2/13/17

Abstract

Let $T_{n}=T_{n}(k)$ be the generalized Fibonacci sequence of order k defined by the recurrence $T_{n}=T_{n-1}+T_{n-2}+\cdots+T_{n-k}, n \geq k$, with $T_{0}=0$ and $T_{1}=T_{2}=\cdots=$ $T_{k-1}=1$. In this paper, we fully and partially characterize the 2 -adic valuations of $T_{n}(4)$ and $T_{n}(5)$, respectively. Moreover, we provide new addition formulas and congruences for the sequences $\left\{T_{n}(k)\right\}_{n \geq 0}$.

1. Introduction

Let $\left\{F_{n}\right\}_{n \geq 0}$ be the Fibonacci sequence given by $F_{n+2}=F_{n+1}+F_{n}$, for $n \geq 0$, where $F_{0}=0$ and $F_{1}=1$. The p-adic order, $\nu_{p}(r)$, of r is the exponent of the highest power of a prime p which divides r. The p-adic order of a Fibonacci number was completely characterized, see [4]. Much less is known about the generalized Fibonacci sequences. Let $T_{n}=T_{n}(k), n \geq 0$, denote the generalized Fibonacci sequence of order k defined by the recurrence relation

$$
\begin{equation*}
T_{n}=T_{n-1}+T_{n-2}+\cdots+T_{n-k}, n \geq k \tag{1}
\end{equation*}
$$

and the initial conditions $T_{0}=0, T_{1}=T_{2}=\cdots=T_{k-1}=1$. Note that sometimes the initial conditions are given by

$$
\begin{equation*}
B_{0}=B_{1}=\cdots=B_{k-2}=0, B_{k-1}=1 \tag{2}
\end{equation*}
$$

with $B_{n}=B_{n}(k)$ while the recurrence $B_{n}=B_{n-1}+B_{n-2}+\cdots+B_{n-k}, n \geq k$, is preserved. By convention, we also set $B_{-1}(k)=0$. Clearly, $F_{n}=T_{n}(2)=B_{n}(2)$.

[^0]Our goal is to present a systematic approach that helps establish the 2-adic order of $T_{n}(k)$, at least for some specialized sequences of the index n (we point out that the 2 -adic valuation of $T_{n}(3)$ was fully determined in [6]). Here, we focus on $T_{n}(k)$ for $k=4$ and 5 . The first few terms of the sequence $\left\{T_{n}(4)\right\}_{n \geq 0}$ are

$$
0,1,1,1,3,6,11,21,41,79,152,293,565,1089,2099,4046,7799, \ldots
$$

while those of $\left\{T_{n}(5)\right\}_{n \geq 0}$ are

$$
0,1,1,1,1,4,8,15,29,57,113,222,436,857,1685,3313,6513, \ldots
$$

Our main results are Theorems 1, 2, and Lemmas 2, 5, and 6. We also suggest several conjectures, cf. Conjectures 1 and 2.

Throughout the paper, we emphasize the experimental aspects of finding and discovering relations, e.g., recurrence relations and congruences.

Theorem 1. For $n \geq 1$, we have

$$
\nu_{2}\left(T_{n}(4)\right)=\left\{\begin{array}{ll}
0, & \text { if } n \neq 0 \quad(\bmod 5) \tag{3}\\
1, & \text { if } n \equiv 5 \quad(\bmod 10) \\
\nu_{2}(n)+2, & \text { if } n \equiv 0
\end{array}(\bmod 10) .\right.
$$

With $n \geq 1$ and $s \geq 1$ odd, this yields that

$$
\begin{equation*}
\nu_{2}\left(T_{5 \cdot s \cdot 2^{n}}(4)\right)=n+2 \tag{4}
\end{equation*}
$$

We refer the reader to [2] for the 2-adic valuation of $B_{n}(4)$.
We make the following conjecture for the case of $k=5$.
Conjecture 1. For $n \geq 1$, we have

$$
\nu_{2}\left(T_{n}(5)\right)= \begin{cases}0, & \text { if } n \not \equiv 0 \text { or } 5 \quad(\bmod 6), \tag{5}\\ 2, & \text { if } n \equiv 5 \quad(\bmod 12), \\ 1, & \text { if } n \equiv 11 \quad(\bmod 12), \\ \nu_{2}(n+2), & \text { if } n \equiv 6 \quad(\bmod 12) \text { and } \nu_{2}(n+2)<8 \\ \nu_{2}(n+43266), & \text { if } n \equiv 6 \quad(\bmod 12) \text { and } \nu_{2}(n+2) \geq 8 \\ \nu_{2}(n), & \text { if } n \equiv 0 \quad(\bmod 12) .\end{cases}
$$

Here, we prove it in the following weaker form.
Theorem 2. For $n \geq 1$, we have

$$
\nu_{2}\left(T_{n}(5)\right)= \begin{cases}0, & \text { if } n \not \equiv 0 \text { or } 5(\bmod 6), \tag{6}\\ 2, & \text { if } n \equiv 5(\bmod 12), \\ 1, & \text { if } n \equiv 11 \quad(\bmod 12), \\ \nu_{2}(n+2), & \text { if } n \equiv 6 \quad(\bmod 12) \text { and } \nu_{2}(n-6) \neq 3, \\ \nu_{2}(n), & \text { if } n \equiv 0(\bmod 12) .\end{cases}
$$

With $n \geq 1$ and $s \geq 1$ odd, this yields that

$$
\begin{equation*}
\nu_{2}\left(T_{6 \cdot s \cdot 2^{n}}(5)\right)=n+1 . \tag{7}
\end{equation*}
$$

We also propose the following conjecture.
Conjecture 2. For $n \geq 1$ and $k \geq 2$ integers and $s \geq 1$ odd integer, we have

$$
\nu_{2}\left(T_{s \cdot(k+1) \cdot 2^{n}}(k)\right)=n+c(k)
$$

where $c(2)=2$ and otherwise,

$$
c(k)= \begin{cases}2, & \text { if } k \equiv 0(\bmod 4) \\ 1, & \text { if } k \equiv 1(\bmod 4) \\ \nu_{2}(k-2)+1, & \text { if } k \equiv 2(\bmod 8) \\ 1, & \text { if } k \equiv 3(\bmod 8) \\ 3, & \text { if } k \equiv 6(\bmod 8) \\ 1, & \text { if } k \equiv 7(\bmod 8)\end{cases}
$$

Remark 1. Conjecture 2 can be easily verified for $k=2$ and 3 . In fact, we proved for $n \geq 1$ that $\nu_{2}\left(T_{n}(2)\right)=\nu_{2}(n)+2$ if $n \equiv 0,6(\bmod 12)$ in [4] and $\nu_{2}\left(T_{n}(3)\right)=\nu_{2}(n)-1$ if $n \equiv 0,8(\bmod 16)$ in $[6]$. In this paper, we prove the conjecture for $k=4$ and 5 .

We outline a plan that can be followed in order to prove Conjecture 2. In fact, we will apply the plan in the cases of $k=4$ and 5 in Sections 4 and 5 , respectively.

Step 1. First we establish an addition formula for $T_{q+r}(k)$ in terms of $T_{q^{\prime}}(k)$ and $T_{r^{\prime}}(k)$ with q^{\prime} and r^{\prime} close to q and r, respectively; more precisely, with $q-k+2 \leq q^{\prime} \leq q+k$ and $r \leq r^{\prime} \leq r+k-1$.

Step 2. The second step is to come up with a set of induction hypotheses for $T_{s \cdot(k+1) \cdot 2^{n}+i}(k)\left(\bmod 2^{n+c(k)+1}\right)$ for all $i: 0 \leq i \leq k-1$ and $n \geq$ $n_{0}(k)$ with some functions $c(k)$ and $n_{0}(k)$, e.g., $T_{s \cdot(k+1) \cdot 2^{n}} \equiv s \cdot 2^{n+c(k)}$ $\left(\bmod 2^{n+c(k)+1}\right), n \geq 1$, in Lemmas 5 and 6 and prove it simultaneously by using the recurrence relation for $T_{q+r}(k)$ from the first step. Note that the congruence $T_{s \cdot(k+1) \cdot 2^{n}+i}(k)\left(\bmod 2^{n+c(k)+1}\right)$ will follow for any $i \leq-1$ and $i \geq k$ by the recurrence (1).

Step 3. In the induction proof, first we deal with the case $s=1$ and we prove this case by induction on n. The same procedure will work for other values of s.

In conclusion, this process yields that if $m=s \cdot(k+1) \cdot 2^{n}$ and $s \geq 1$ is odd then $\nu_{2}\left(T_{m}(k)\right)=n+c(k)$ for $n \geq n_{0}(k)$.

We illustrate the actual steps in Sections 2 and 3. Section 2 is devoted to the process of obtaining recurrence relations while Section 3 contains the congruences that are the essential tools in proving Theorems 1 and 2.

The actual calculations and proofs in the cases of $k=4$ and 5 are presented in Sections 4 and 5. They lead to identities (11) and (12) that are crucial in proving the congruences (14), (15), and (16).

2. Obtaining a Recurrence by an Addition Formula

As a reminder, we note the addition formula, given in Lemma 4 of [6], which yields a recurrence for $T_{q+r}(3)$. For all integers q and r with $q \geq 3$ and $r \geq 0$, we have that

$$
T_{q+r}=T_{q-2} T_{r}+\left(T_{q-3}+T_{q-2}\right) T_{r+1}+T_{q-1} T_{r+2}
$$

Note that $T_{q-1}=T_{q-4}+T_{q-3}+T_{q-2}$. It is determined in Theorem 2.1 of [7] that with $T_{n}=T_{n}(4)$ and $B_{n}=B_{n}(4)$, we have

$$
\begin{equation*}
T_{q}=B_{q-2} T_{1}+\left(B_{q-2}+B_{q-3}\right) T_{2}+\left(B_{q-2}+B_{q-3}+B_{q-4}\right) T_{3}+B_{q-1} T_{4} \tag{8}
\end{equation*}
$$

for $q \geq 5$ where $B_{q-1}=B_{q-2}+B_{q-3}+B_{q-4}+B_{q-5}$. The formula (8) can be easily generalized to

Lemma 1. For $q \geq 5$ and $r \geq 0$ with $T_{n}=T_{n}(4)$ and $B_{n}=B_{n}(4)$, we have that
$T_{q+r}=B_{q-2} T_{r+1}+\left(B_{q-2}+B_{q-3}\right) T_{r+2}+\left(B_{q-2}+B_{q-3}+B_{q-4}\right) T_{r+3}+B_{q-1} T_{r+4}$.
To obtain similar identities for a general k, we use the fact that one can relate the sequences $\left\{T_{n}(k)\right\}_{n \geq 0}$ and $\left\{B_{n}(k)\right\}_{n \geq 0}$. In fact, we have the following general result

Lemma 2. Let $k \geq 2$ be an integer and set $T_{n}=T_{n}(k)$ and $B_{n}=B_{n}(k)$. For integers $q>k$ and $r \geq 0$, we have that

$$
\begin{equation*}
T_{q}=\sum_{i=1}^{k}\left(\sum_{j=2}^{i+1} B_{q-j}\right) T_{i} \quad \text { and } \quad T_{q+r}=\sum_{i=1}^{k}\left(\sum_{j=2}^{i+1} B_{q-j}\right) T_{r+i} \tag{9}
\end{equation*}
$$

Remark 2. We also use identity (9) in its equivalent form

$$
\begin{equation*}
T_{q+r}=\sum_{i=0}^{k-1}\left(\sum_{j=1}^{i+1} B_{q-j}\right) T_{r+i} \tag{10}
\end{equation*}
$$

with $q \geq k \geq 2$ and $r \geq 0$, cf. (11) and (12).

We omit the proof which can be easily done by mathematical induction on $q>k$ for every fixed $r \geq 0$.

Remark 3. Identity (9) also works for sequences $T_{n}(k)$ of real numbers satisfying (1) with arbitrary initial conditions.

Our next step is to determine $B_{q^{\prime}}(k)$ in (9) in terms of the sequence $\left\{T_{n}(k)\right\}_{n \geq 0}$. We note that although $B_{n+1}(3)=T_{n}(3)$, usually there is a non-trivial linear relationship between the two sequences. We use the approach outlined in [1]. The result is derived in (18) and (19) as well in (22) and (23), and used by (11) and (12) in Lemmas 3 and 4, respectively.

Lemma 3. For $T_{q+r}(4)$ with $q \geq 2$ and $r \geq 0$, we have the recurrence

$$
\begin{align*}
T_{q+r} & =\left(\frac{5}{3} T_{q}+\frac{1}{3} T_{q+1}+2 T_{q+2}-\frac{4}{3} T_{q+3}\right) T_{r} \\
& +\left(\frac{5}{3} T_{q-1}+2 T_{q}+\frac{7}{3} T_{q+1}+\frac{2}{3} T_{q+2}-\frac{4}{3} T_{q+3}\right) T_{r+1} \tag{11}\\
& +\left(\frac{5}{3} T_{q-2}+2 T_{q-1}+4 T_{q}+T_{q+1}+\frac{2}{3} T_{q+2}-\frac{4}{3} T_{q+3}\right) T_{r+2} \\
& +\left(\frac{5}{3} T_{q+1}+\frac{1}{3} T_{q+2}+2 T_{q+3}-\frac{4}{3} T_{q+4}\right) T_{r+3}
\end{align*}
$$

Lemma 4. For T_{q+r} (5) with $q \geq 3$ and $r \geq 0$, we have the recurrence

$$
\begin{align*}
T_{q+r} & =\left(\frac{35 T_{q}}{46}+\frac{11 T_{q+1}}{23}+\frac{15 T_{q+2}}{46}+\frac{18 T_{q+3}}{23}-\frac{27 T_{q+4}}{46}\right) T_{r} \\
& +\left(\frac{35 T_{q-1}}{46}+\frac{57 T_{q}}{46}+\frac{37 T_{q+1}}{46}+\frac{51 T_{q+2}}{46}+\frac{9 T_{q+3}}{46}-\frac{27 T_{q+4}}{46}\right) T_{r+1} \\
& +\left(\frac{35 T_{q-2}}{46}+\frac{57 T_{q-1}}{46}+\frac{36 T_{q}}{23}+\frac{73 T_{q+1}}{46}+\frac{12 T_{q+2}}{23}\right. \\
& \left.+\frac{9 T_{q+3}}{46}-\frac{27 T_{q+4}}{46}\right) T_{r+2} \tag{12}\\
& +\left(\frac{35 T_{q-3}}{46}+\frac{57 T_{q-2}}{46}+\frac{36 T_{q-1}}{23}+\frac{54 T_{q}}{23}+T_{q+1}\right. \\
& \left.+\frac{12 T_{q+2}}{23}+\frac{9 T_{q+3}}{46}-\frac{27 T_{q+4}}{46}\right) T_{r+3} \\
& +\left(\frac{35 T_{q+1}}{46}+\frac{11 T_{q+2}}{23}+\frac{15 T_{q+3}}{46}+\frac{18 T_{q+4}}{23}-\frac{27 T_{q+5}}{46}\right) T_{r+4}
\end{align*}
$$

3. Congruences

We note that for $k=3$ the congruences in (4) of Lemma 6 in [6] are equivalent to the following statement. For $s \geq 1, n \geq 3$, and $T_{m}=T_{m}(3)$, we have the congruences

$$
\begin{array}{lll}
T_{s \cdot 2^{n}} & \equiv s \cdot 2^{n-1} & \left(\bmod 2^{n}\right), \\
T_{s \cdot 2^{n}+1} \equiv 1 & \left(\bmod 2^{n}\right), \tag{13}\\
T_{s \cdot 2^{n}+2} \equiv 1+s \cdot 2^{n-1} & \left(\bmod 2^{n}\right) .
\end{array}
$$

Now we establish similar congruences for $k=4$.
Lemma 5. For $s \geq 1, n \geq 2$, and $T_{m}=T_{m}(4)$, we have that

$$
\begin{array}{lll}
T_{5 \cdot s \cdot 2^{n}} & \equiv s \cdot 2^{n+2} & \left(\bmod 2^{n+3}\right), \\
T_{5 \cdot s \cdot 2^{n}+1} \equiv 1+s \cdot 2^{n+1} & \left(\bmod 2^{n+3}\right), \\
T_{5 \cdot s \cdot 2^{n}+2} \equiv 1+s \cdot 2^{n+1}+s \cdot 2^{n+2} & \left(\bmod 2^{n+3}\right), \tag{14}\\
T_{5 \cdot s \cdot 2^{n}+3} \equiv 1 & \left(\bmod 2^{n+3}\right),
\end{array}
$$

while for $n=1$, we have that

$$
\begin{array}{lll}
T_{10 \cdot s} & \equiv 8 s & (\bmod 16), \\
T_{10 \cdot s+1} \equiv 1+4 s & (\bmod 16), \\
T_{10 \cdot s+2} & \equiv 1+4 s & (\bmod 16), \tag{15}\\
T_{10 \cdot s+3} \equiv 1 & (\bmod 16),
\end{array}
$$

which yields that $\nu_{2}\left(T_{5 \cdot s \cdot 2^{n}}(4)\right)=n+2$ if $n \geq 1$ and $s \geq 1$ odd.
Proof of Lemma 5. We closely follow the steps of the proof of Lemma 6 of [6]. First, we deal with the basis case $s=1$. We have to prove (14) for $n \geq 2$. We use induction on n. Clearly, the congruences hold for $n=2$. We suppose that they are true for $n \geq 2$, and then we use (11) for $T_{5 \cdot 2^{n+1}+i}=T_{\left(5 \cdot 2^{n}\right)+\left(5 \cdot 2^{n}+i\right)}, 0 \leq i \leq 3$, to obtain the required congruences for $T_{5 \cdot 2^{n+1}+i}$. Next, by the induction hypothesis, we suppose that the congruences (14) hold for $s \geq 1$. Then, we use exactly the same procedure and (11) as before for $T_{5 \cdot(s+1) \cdot 2^{n}+i}=T_{\left(5 \cdot s \cdot 2^{n}\right)+\left(5 \cdot 2^{n}+i\right)}$. In a similar fashion, we use induction on $s \geq 1$ to prove the congruences (15), corresponding to the case with $n=1$. We omit the details.

Example 1. We illustrate the above proof in the case of $k=4, n \geq 2, s \geq 1$, and $i=0$. With the setting $r=5 \cdot s \cdot 2^{n}$ and $q=5 \cdot 2^{n}$, we obtain by (11) that $T_{5 \cdot 2^{n}(s+1)}=$ $\left(\frac{5}{3} T_{5 \cdot 2^{n}}+\frac{1}{3} T_{5 \cdot 2^{n}+1}+2 T_{5 \cdot 2^{n}+2}-\frac{4}{3} T_{5 \cdot 2^{n}+3}\right) T_{5 \cdot 2^{n} s}+\left(2 T_{5 \cdot 2^{n}}+\frac{5}{3} T_{5 \cdot 2^{n}-1}+\frac{7}{3} T_{5 \cdot 2^{n}+1}+\right.$ $\left.\frac{2}{3} T_{5 \cdot 2^{n}+2}-\frac{4}{3} T_{5 \cdot 2^{n}+3}\right) T_{5 \cdot 2^{n} s+1}+\left(4 T_{5 \cdot 2^{n}}+\frac{5}{3} T_{5 \cdot 2^{n}-2}+2 T_{5 \cdot 2^{n}-1}+T_{5 \cdot 2^{n}+1}+\frac{2}{3} T_{5 \cdot 2^{n}+2}-\right.$
$\left.\frac{4}{3} T_{5 \cdot 2^{n}+3}\right) T_{5 \cdot 2^{n} s+2}+\left(\frac{5}{3} T_{5 \cdot 2^{n}+1}+\frac{1}{3} T_{5 \cdot 2^{n}+2}+2 T_{5 \cdot 2^{n}+3}-\frac{4}{3} T_{5 \cdot 2^{n}+4}\right) T_{5 \cdot 2^{n} s+3}$, which results in $\frac{1}{3} 2^{n+2} s-\frac{1}{3} 2^{n+3} s+\frac{1}{3} 2^{n+4} s+\frac{5}{3} 2^{2 n+3} s+2^{2 n+4} s+\frac{1}{3} 2^{2 n+6} s+\frac{1}{3} 2^{2 n+7} s-$ $\frac{1}{3} 2^{2 n+8} s+\frac{1}{3} 2^{2 n+9} s+\frac{2^{n+2}}{3}+\frac{2^{n+3}}{3}\left(\bmod 2^{n+3}\right)$ by the induction hypothesis. We get $\frac{1}{3} \cdot 2^{n+2} \cdot(s+1) \equiv 2^{n+2} \cdot(s+1)\left(\bmod 2^{n+3}\right)$ by replacing any term including a factor with a "high" power of 2 with 0 . More precisely, any term including $2^{c \cdot n+d}$ with $d \geq 3$ or $c>1$ combined with $d \geq 1$ is dropped. It implies that the statement $T_{5 \cdot(s+1) \cdot 2^{n}} \equiv(s+1) \cdot 2^{n+2}\left(\bmod 2^{n+3}\right)$ in (14) is also true.

Note that the substitutions and simplifications above can be easily preformed by using Mathematica.

In the case of $k=5$ we proceed similarly.
Lemma 6. For $s \geq 1, n \geq 1$, and $T_{m}=T_{m}$ (5), we have that

$$
\begin{array}{lll}
T_{6 \cdot s \cdot 2^{n}} & \equiv s \cdot 2^{n+1} & \left(\bmod 2^{n+2}\right), \\
T_{6 \cdot s \cdot 2^{n}+1} \equiv 1 & \left(\bmod 2^{n+2}\right), \\
T_{6 \cdot s \cdot 2^{n}+2} \equiv 1+s \cdot 2^{n+1} & \left(\bmod 2^{n+2}\right), \tag{16}\\
T_{6 \cdot s \cdot 2^{n}+3} \equiv 1 & \left(\bmod 2^{n+2}\right), \\
T_{6 \cdot s \cdot 2^{n}+4} \equiv 1 & \left(\bmod 2^{n+2}\right),
\end{array}
$$

which yields that $\nu_{2}\left(T_{6 \cdot s \cdot 2^{n}}(5)\right)=n+1$ if $n \geq 1$ and $s \geq 1$ odd.
The proof essentially duplicates the steps of the proof of Lemma 5 and we leave the details to the reader.

4. The Case of $k=4$

Before we present the proof of Lemma 3, we explore an approach given in [1]. In fact, we use it with some modifications and with $n \geq 0$ and $m \geq 4$. We start with the matrix

$$
\left(\begin{array}{ccccc}
T_{n} & T_{n+1} & T_{n+2} & T_{n+3} & T_{m+n} \tag{17}\\
T_{n+1} & T_{n+2} & T_{n+3} & T_{n+4} & T_{m+n+1} \\
T_{n+2} & T_{n+3} & T_{n+4} & T_{n+5} & T_{m+n+2} \\
T_{n+3} & T_{n+4} & T_{n+5} & T_{n+6} & T_{m+n+3}
\end{array}\right)
$$

After experimenting with different values of m and row reducing the matrix in (17), we successfully obtain the recurrence relation $T_{m+n}=B_{m-1} T_{n}+$ $\left(B_{m-2}+B_{m-1}\right) T_{n+1}+\left(B_{m-3}+B_{m-2}+B_{m-1}\right) T_{n+2}+B_{m} T_{n+3}$ suggesting (9) of Lemma 2 in its equivalent form (10) for $k=4$ with $m \geq 4$ and $n \geq 0$.

In a similar fashion, we establish the

Proof of Lemma 3. We consider the matrix

$$
\left(\begin{array}{ccccc}
T_{n} & T_{n+1} & T_{n+2} & T_{n+3} & B_{m+n} \tag{18}\\
T_{n+1} & T_{n+2} & T_{n+3} & T_{n+4} & B_{m+n+1} \\
T_{n+2} & T_{n+3} & T_{n+4} & T_{n+5} & B_{m+n+2} \\
T_{n+3} & T_{n+4} & T_{n+5} & T_{n+6} & B_{m+n+3}
\end{array}\right)
$$

After setting $m=-1$ and using different values of $n \geq 1$, we observe that the row reduction always results in

$$
\left(\begin{array}{ccccc}
1 & 0 & 0 & 0 & \frac{5}{3} \tag{19}\\
0 & 1 & 0 & 0 & \frac{1}{3} \\
0 & 0 & 1 & 0 & 2 \\
0 & 0 & 0 & 1 & -\frac{4}{3}
\end{array}\right),
$$

which yields that

$$
\begin{equation*}
B_{n-1}=\left(\frac{5 T_{n}}{3}+\frac{T_{n+1}}{3}+2 T_{n+2}-\frac{4 T_{n+3}}{3}\right) \tag{20}
\end{equation*}
$$

for $n \geq 1$, which confirms (11).
Note that once (20) is established, an easy induction proof justifies this identity. Indeed, with $n=1,2,3,4$ we get that $0=\frac{5}{3} \cdot 1+\frac{1}{3} \cdot 1+2 \cdot 1-\frac{4}{3} \cdot 3=\frac{5}{3} \cdot 1+\frac{1}{3} \cdot 1+2 \cdot 3-\frac{4}{3} \cdot 6=$ $\frac{5}{3} \cdot 1+\frac{1}{3} \cdot 3+2 \cdot 6-\frac{4}{3} \cdot 11$ and $1=\frac{5}{3} \cdot 3+\frac{1}{3} \cdot 6+2 \cdot 11-\frac{4}{3} \cdot 21$. The induction step is trivial by (1) and (2).

A natural approach to obtain the proof of Theorem 1 is to utilize the periodicity of the underlying sequences. In some cases we can apply multisection techniques, cf. [5], to find the complete or some partial characterization of the p-adic order of the sequences. Here we combine these methods with the applications of sets of congruences for $\left\{T_{s \cdot(k+1) \cdot 2^{n}+i}\right\}_{i=0}^{k-1}$ with $s \geq 1$ and $n \geq n_{0}(k)$ integers.

Now we can complete the proof of Theorem 1.
Proof of Theorem 1. The proof for the case $n \not \equiv 0(\bmod 5)$ is trivial by taking $T_{n}(4)(\bmod 2)$ and induction on n. In fact, the sequence $\left\{T_{n}(4)\right\}_{n \geq 0}$ is periodic with period $\{0,1,1,1,1\}$ modulo 2 .

If $n \equiv 5(\bmod 10)$ then by 5 -section of the generating function $\sum_{m=0}^{\infty} T_{m}(4) x^{m}$ (cf. [5]) we get that

$$
\sum_{m=0}^{\infty} T_{5 m}(4) x^{5 m}=\frac{2 x^{5}\left(3-2 x^{5}-x^{10}\right)}{1-26 x^{5}-16 x^{10}-6 x^{15}-x^{20}}
$$

which easily yields that $\nu_{2}\left(T_{n}(4)\right)=1$. Indeed, the denominator of the 5 -sected generating function suggests the recurrence

$$
\begin{equation*}
T_{5 m+10}=26 T_{5 m+5}+16 T_{5 m}+6 T_{5 m-5}+T_{5 m-10}, m \geq 2 \tag{21}
\end{equation*}
$$

for $T_{r}=T_{r}(4)$ with r divisible by 5 . We observe that $\nu_{2}\left(T_{5}\right)=1, \nu_{2}\left(T_{10}\right)=3$, $\nu_{2}\left(T_{15}\right)=1$, and $\nu_{2}\left(T_{20}\right)=4$, which yield that $\nu_{2}\left(T_{5 m}\right) \geq 1$ for $m \geq 0$ by the initial values and (21). Now $\nu_{2}\left(T_{5 m+10}\right)=\nu_{2}\left(T_{5 m-10}\right)=1$ with $m \geq 3$ odd also follows by recurrence (21).

We note that we can extend (15) by recurrence (1) to obtain $T_{10 \cdot s+4} \equiv 3$ $(\bmod 16)$ and $T_{10 \cdot s+5} \equiv 6+8 s(\bmod 16)$, and the latter congruence also results in $\nu_{2}\left(T_{n}\right)=1$ with $n \equiv 5(\bmod 10)$.

In the remaining case 10 divides n, and Lemma 5 concludes the proof.

5. The Case of $k=5$

Now we turn to the
Proof of Lemma 4. Similarly to (18) in the case of $k=4$, we now consider

$$
\left(\begin{array}{cccccc}
T_{n} & T_{n+1} & T_{n+2} & T_{n+3} & T_{n+4} & B_{m+n} \tag{22}\\
T_{n+1} & T_{n+2} & T_{n+3} & T_{n+4} & T_{n+5} & B_{m+n+1} \\
T_{n+2} & T_{n+3} & T_{n+4} & T_{n+5} & T_{n+6} & B_{m+n+2} \\
T_{n+3} & T_{n+4} & T_{n+5} & T_{n+6} & T_{n+7} & B_{m+n+3} \\
T_{n+4} & T_{n+5} & T_{n+6} & T_{n+7} & T_{n+8} & B_{m+n+4}
\end{array}\right)
$$

After setting $m=-1$ and using different values of $n \geq 1$, row reduction leads us to

$$
\left(\begin{array}{cccccc}
1 & 0 & 0 & 0 & 0 & \frac{35}{46} \tag{23}\\
0 & 1 & 0 & 0 & 0 & \frac{11}{23} \\
0 & 0 & 1 & 0 & 0 & \frac{15}{46} \\
0 & 0 & 0 & 1 & 0 & \frac{18}{23} \\
0 & 0 & 0 & 0 & 1 & -\frac{27}{46}
\end{array}\right)
$$

which results in $B_{n-1}=\frac{35 T_{n}}{46}+\frac{11 T_{n+1}}{23}+\frac{15 T_{n+2}}{46}+\frac{18 T_{n+3}}{23}-\frac{27 T_{n+4}}{46}$ for $n \geq 1$, which is in agreement with (12). Its proof follows easily by induction as it was explained in the proof of Lemma 3 for $k=4$.

We are now ready to present the proof of Theorem 2.
Proof of Theorem 2. As above, the proof for the case $n \not \equiv 0$ and $5(\bmod 6)$ is trivial by taking $T_{n}(5)(\bmod 2)$ and induction on n since the sequence $\left\{T_{n}(5)\right\}_{n \geq 0}$ is periodic with period $\{0,1,1,1,1,0\}$ modulo 2 .

If $n \equiv 6(\bmod 12)$ then with $n=6 \cdot s \cdot 2^{m}+6, s \geq 1$ odd and $m \geq 1$, we get that $T_{6 \cdot s \cdot 2^{m}+5} \equiv 4\left(\bmod 2^{m+2}\right)$ and $T_{6 \cdot s \cdot 2^{m}+6} \equiv 8+s \cdot 2^{m+1}\left(\bmod 2^{m+2}\right)$ by extending (16) via (1). It implies that $\nu_{2}\left(T_{6 \cdot s \cdot 2^{m}+6}\right)=\nu_{2}(n+2)$ as long as either $m \geq 3$ or $m=1$, in which cases the 2 -adic order is either 3 or 2 , respectively. In a similar fashion, it follows that $T_{6 \cdot s \cdot 2^{m}+11} \equiv 222\left(\bmod 2^{m+2}\right)$. Thus, with $t \geq 1$ integer, we
also have that $T_{12 t+5} \equiv 4(\bmod 8)$ and $T_{12 t+11} \equiv 222(\bmod 8)$, which yield that $\nu_{2}\left(T_{12 t+5}\right)=2$ and $\nu_{2}\left(T_{12 t+11}\right)=1$.

Otherwise 12 divides n, and Lemma 6 concludes the proof.

Acknowledgment We thank the referee for the careful reading of the manuscript. The second author thanks CNPq for the financial support.

References

[1] M. Bicknell and C. P. Spears. Classes of identities for the generalized Fibonacci numbers, Fibonacci Quart. 34 (1996), 121-128.
[2] V. Facó and D. Marques. The 2-adic order of the Tetranacci numbers and the equation $Q_{n}=m!$, preprint.
[3] J. Feng. More identities on the Tribonacci numbers, Ars Comb. 100 (2011), 73-78.
[4] T. Lengyel. The order of the Fibonacci and Lucas numbers, Fibonacci Quart. 33 (1995), 234-239.
[5] T. Lengyel. Divisibility properties by multisection, Fibonacci Quart. 41 (2003), 72-79.
[6] D. Marques and T. Lengyel. The 2-adic order of the Tribonacci numbers and the equation $T_{n}=m!$, Journal of Integer Sequences 17 (2014), Article 14.10.1, 1-8.
[7] L. R. Natividad. On solving Fibonacci-like sequences of fourth, fifth and six order, International Journal of Mathematics and Scientific Computing 3 (2013), 38-40.
[8] E. M. Waddill. Some properties of a generalized Fibonacci sequence modulo m, Fibonacci Quart. 16 (1978), 344-353.

[^0]: ${ }^{1}$ corresponding author

