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NONLINEAR CONTRACTIONS ON
SEMIMETRIC SPACES

J. JACHYMSKI, J. MATKOWSKI, AND T. S’WIATKOWSKI*

Abstract. Let (X,d) be a Hausdorff semimetric (d need not satisfy the
triangle inequality) and d Cauchy complete space. Let f be a selfmap on
X, for which d(fz, fy) < ¢(d(z,y)), (z,y € X), where ¢ is a non— decreas-
ing function from R, the nonnegative reals, into Ry such that ¢™(¢) — 0,
for all t € Ry. We prove that f has a unique fixed point if there exists
an r > 0, for which the diameters of all balls in X with radius r are equi-
bounded. Such a class of semimetric spaces includes the Frechet spaces with
a regular ecart, for which the Contraction Principle was established earlier
by M. Cicchese [5], however, with some further restrictions on a space and
a map involved. We also demonstrate that for maps f satisfying the con-
dition d(fz, fy) < ¢(max{d(z, fx),d(y, fy)}), (z,y € X) (the Bianchini
[2] type condition), a fixed point theorem holds under substantially weaker
assumptions on a distance function d.
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1. Introduction. A distance function for a set X is a function d from
X x X into R4, the nonnegative reals, such that d(z,y) = 0 iff x = v,
and d(z,y) = d(y,z) for all z,y € X. A distance function is also called
a symmetric. The space (X,d) in which limitting points are defined in
the usual way is called an E-space. The idea of E—spaces goes back to
Frechet and Menger. The pioneer works in this setting were the papers of
E. W. Chittenden [4] and W. A. Wilson [17].

In every symmetric space (X,d) one may introduce a topology 74 by
defining the family of closed sets as follows: a set A C X is closed iff for
any € X, d(z,A) = 0 implies x € A, where

d(z, A) .= inf{d(z,a) : a € A}.

A topological space (X, 7) is symmetrizable iff there exists a symmetric d
for which 7,4 coincides with 7. A space (X, 7) is semimetrizable iff there is
a distance function d such that for any A C X, A= {x € X :d(z, A) = 0}.
In this case d is said to be a semimetric. In other words, without involving
a topology, d is a semimetric if the operator

c(A) :={zx € X :d(z,A) =0}, for AC X,

is the closure operator (it suffices here that cl is idempotent, i.e., cl(cl(A)) =
cl(A) for all A C X). For a discussion of the differences between a semi-
metric space and a symmetric space, see [1] and the references in [3].

Further, a symmetric or semimetric space (X, d) is d-Cauchy complete if
every d—Cauchy sequence is 7—convergent (a sequence {x, }5° ; is d-Cauchy
if given € > 0, there is a k € N such that d(z,,z,,) < € for all n,m >
k). We emphasize here that there are several concepts of completeness
in semimetric spaces (see [15], [8]), but for our purposes we shall employ
only the above concept. Similarly, an F-space (X,d) is complete if every
d—-Cauchy sequence {z,,}2° ; is d—convergent, i.e., d(x,,z9) — 0, for some
xg € X. Since in semimetrizable spaces d—convergence coincides with 7—
convergence (see, e.g., [8]), we may conclude that a semimetric space (X, d)
is d—Cauchy complete iff the F-space (X,d) is complete.

Our main purpose is to extend some fundamental metric fixed point the-
orems to a non—metric setting. Namely, we generalize Theorem 1.2 [13] of
the second named author (see also [6], Theorem 3.2, or [14], Theorem 2) by
considering selfmaps on some d-Cauchy complete semimetric spaces. This
class of spaces is large enough to include the spaces (X,d) studied in [4]
(called by Frechet spaces with a regular ecart), for which d is assumed to
satisfy the following condition, a relaxation of the triangle inequality.

d(z,y) < e(max{d(z, z),d(z,y)}), for z,y,z€ X, (1)
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where a function € : Ry — R is such that lim;_g+ €(¢t) = 0. (Recently, a
comprehensive study of such spaces with € being linear has been made by
the third named author [16] in connexion with studying the so—called small
system convergence [12].). Our Theorem 1 generalizes an earlier result of
M. Cicchese [5], who has considered the Banach contractions on a semimetric
space with d satisfying a strengthened form of (1). Moreover, a restriction
on a contractive constant was made in [5].

We also give an example of a fixed point free Banach contraction on
a d-Cauchy complete semimetric space in order to demonstrate that an
additional condition imposed on d in Theorem 1 cannot be omitted (see
Example 2). On the other hand, our Theorem 2 shows that this condition
is unnecessary if one considers a map f satisfying the inequality introduced
by R. M. Bianchini [2].

d(fz, fy) < hmax{d(z, fx),d(y, [y)},
foran h € (0,1) andall z,y € X. (2)

Then, however, a continuity argument must be used to ensure the existence
of a fixed point (see Example 3 and Remark 3).

Finally, we would like to call the reader’s attention to the recent papers
[9], [10] and [11] of T. Hicks and B. E. Rhoades, in which the authors have
obtained several fixed point theorems for maps on so—called d—complete
topological spaces. Here a distance function d need not be even symmetric.
However, they use a different concept of completeness: a space (X, d) is said
to be (X) d—complete iff for any sequence {,}0, Yopei d(zp, Tpt1) < 00
implies that {x,}°2; is 7-convergent. This notion let to obtain almost
immediately an extension of the Contraction Principle and many other the-
orems to such spaces. However, in a semimetric setting, this concept of
completeness is rather strong (see Proposition 2).

2. Preliminary results. We begin with the following simple extension
of the Contraction Principle. The letter f™ denotes the nth iterate of a

map f.

Proposition 1. Let (X,d) be a Hausdorff semimetric and d-Cauchy com-
plete space and let f be a selfmap on X satisfying the Banach contractive
condition:

d(fz, fy) < hd(z,y), for an h e (0,1) and z,y € X. (3)

If (X,d) is bounded, i.e., M = sup{d(z,y) : x,y € X} < o0, then f has a
unique fized point p, and for any x € X, {f"x}°2 | converges to p.
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Proof. Fix an = € X. That {f"z}22, is d-Cauchy follows easily from the
inequality

d(f"z, f""x) < Bd(x, f™z) < h"M, for all n,m € N

because of the convergence h"M — (0. By the completeness, there is a
p € X such that {f"z}>°, 7-converges to p. Since d is a semimetric, (3)
implies that f is 7-continuous. Therefore, {f"*12}°°, 7-converges to fp.
Since (X, d) is Hausdorff, we may infer that p = fp. Clearly, (3) guarantees
the uniqueness of a fixed point. O

The following example shows that under assumptions of Proposition 1 a
space (X, d) need not be () d-complete.

Example 1. Let X := N. Define the function d by putting

1
din,n+1) := o = d(n+1,n), d(n,n):=0, for ne€N,

and d(n,m) := 1, for all n,m € N with |[n — m| > 1. Then d is the
semimetric. Clearly, > >°; d(n,n + 1) < oo and the sequence {n}>2, is not
convergent. Thus, (X, d) is not (X) d— complete. On the other hand, every
d-Cauchy sequence is constant for sufficiently large n, hence convergent, so
(X,d) is d-Cauchy complete.

Moreover, for a large class of semimetric spaces, (X) d-completeness im-
plies d-Cauchy completeness.

Proposition 2. Let (X,d) be a semimetric space satisfying Wilson’s Az-
iom IV [17], i.e., given {x,}52 1, {yn}o2y and an x in X,

d(zp,x) — 0 and d(zn,y,) — 0 imply that d(y,,z) — 0.
If (X,d) is (X) d-complete, then (X,d) is d-Cauchy complete.

Proof. Let {x,}52; be a d-Cauchy sequence. Then there exists a subse-
quence {zy, }5°, such that d(zy,,zy,,,) < s=. By hypothesis, {zy, }°2, is
T-convergent to an x € X. Since d is a semimetric, we get d(xy, ,z) — 0.
Simultaneously, d(x,,zk,) — 0 because of the Cauchy condition. So, by
Axiom 1V, we may infer that d(z,,z) — 0, which implies that {z,}22 is
7- convergent to z (this implication also holds if d is a symmetric). O

The following example shows that Proposition 1 cannot be extended to
unbounded semimetric spaces.

Example 2. Let X :=N, fn:=n+1forn € N, and

d(n,m) := In —m| for n,m € N.

~ 9min{n,m}’
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Then d is the semimetric. Let {x,}52; be a d-Cauchy sequence. Then
{z,}22 is bounded; for otherwise, there is a subsequence {zy, }°°;, xp, —
oo, and then, for any n € N,

violating the Cauchy condition. Therefore, we may infer that {z, }°2, is
constant for sufficiently large n, since it is d-Cauchy. Thus (X,d) is d-
Cauchy complete, but f has no a fixed point though it satisfies (3) with
h=1.

2

Now, we give some equivalent formulations of a condition imposed on a
function d in our Theorem 1 (see Section 3).

Proposition 3. Let (X,d) be an E-space. The following conditions are
equivalent.

(i): There exists an r > 0 such that
R := sup{diam K(z,r):z € X} < o0,

i.e., the diameters of open balls with radius v are equibounded.
(ii): There exist §,n > 0 such that, given x,y,z € X,

d(z,z) +d(z,y) <0 implies that d(z,y) <n.
(iii): There do not exist sequences {x,}52 1, {yn}ozy, {zn}5L such that
d(xp,zn) — 0, d(zn,yn) — 0 and d(x,,yn) — 0.

Proof. To prove (i) implies (ii) it suffices to put § := § and  := R. To prove
(i) implies (iii) suppose, on the contrary, there exist sequences as in (iii).
Then d(xy, 2,) + d(2n,yn) < d for n large enough so, by (i), d(zy,yn) <7,
which contradicts the convergence d(z,,y,) — oo. Further, it is easy to
verify the implication —(i) = —(ii7). O

3. Nonlinear contractions on a semimetric space. Obviously,
condition (iii) of Proposition 3 is satisfied if there do not exist sequences

{xn}'zozla {yn}%ozla {zn}zo:1 such that
d(.ﬁl,‘n, Zn) — 0, d(znayn) — 0 and d(l‘n,yn) 7/—>0

By Theorem 1 of Wilson [17], the last condition holds iff (X, d) has a regular
ecart. So, in particular, the following fixed point theorem may be applied
to selfmaps on such a space.
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Theorem 1. Let (X,d) be a Hausdorff semimetric and d-Cauchy complete
space satisfying one (hence all) of conditions (i)-(iii) of Proposition 3. Let
f be a selfmap on X, for which

d(fz, fy) < ¢(d(z,y)), for all z,y€ X, (4)

where ¢ : Ry — Ry is a non-decreasing function such that lim,—, ¢™(t) =
0, (t e Ry). Then f has a unique fized point p and f"x — p, for allx € X.

Proof. Assume that condition (ii) of Proposition 3 holds. Fix an z € X. By
(4) and the monotonicity of ¢, we get that

d(f"z, f"T"x) < ¢"™(d(z, f"x)), for all n,m € N. (5)

In particular, d(f"z, f"t'z) < ¢"(d(z, fr)), which implies, by hypoth-
esis, that d(f"x, f**lz) — 0. Therefore, there is a k¥ € N such that
d(fFz, fiiz) < min{g,n}. Assume that ¢(n) < g. We shall apply in-
duction with respect to n to show that, for all n € N,

d(fre, f*4rz) <. (6)

By the definition of k, (6) holds for n = 1. Assume that (6) is satisfied for
some n € N. Since d(f*z, fF1z) < § and

| &

d(f*a, ) < (e, ) < o) <

we get that d(fFx, fFH1z) +d(fF+1a, fFH7Hle) < 6, which, by (ii), implies
that d(f*z, fF*"*12) <1, completing the induction. Hence and by (5), we
may infer that

d(f* i, ) < ¢t (), for all n,m €N,

which easily yields the Cauchy condition for {f™z}>2,. Further, use the
same argument as in the proof of Proposition 1 to obtain that f"x — p = fp.
Thus the proof is completed if ¢(n) < g. If not, then, however, there exists
a j € N such that ¢/(n) < % Since the iterate f7 satisfies (4) with ¢
replaced by ¢/, we may conclude by the preceding part of the proof, that
f7 has a unique fixed point p and for all x € X, fi"z — p as n — oo.
It is well-known that this implies that p is a unique fixed point of f and
f"x — p, for all z € X (clearly, the proof of this fact in a metric setting
remains valid for semimetrics). O

Remark 1. Theorem 1 generalizes Theorem 2 of Cicchese [5], who has
imposed on d the condition

d(z,y) < e(d(z,z)) + kd(y,z), for all z,y,z € Ry,
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where k > 1, € : [0,a) — R4, (a > 0) and lim;_,g+ €(t) = 0. By Theo-
rem 1 [17], this condition is stronger than (1). Furthermore, Cicchese has
assumed that f satisfies (3) with h < 1.

Remark 2. Theorem 1 can be carried over to a complete E-space (X,d)
satisfying (i) of Proposition 3 and Wilson’s Axiom III [17] given in our
Theorem 2.

4. Bianchini’s maps on an E—space. The following example shows
that Proposition 1 cannot be extended to maps satisfying condition (2).

Example 3. Let X := {0} U{1:n e N} and fz:=2 for z #0, f0:= 1.
Further, let

1
d(0,1) :=1=:4d(1,0), d(1,—):= - =:d(—,1) for n > 2,

(7)
d(1,1):=0 and d(z,y) = |z —yl, for z,y € X — {1}.

Then d is the semimetric. Let {z,}°2; be a d—Cauchy sequence. Since
(X — {1},d) is the complete metric space, it suffices to consider the case,
in which there is a subsequence {zy, }°°; such that z;, = 1, for all n € N.
Then x,, = 1 for sufficiently large n; for otherwise, there is a subsequence
{Zm, 15, such that z,, # 1 for all n € N so, by (7), d(zy,,zk,) > 2,
(n € N), violating the Cauchy condition. Thus (X, d) is d-Cauchy complete.

Now, we verify condition (2). Let X := X — {0,1}. Then (Xy,d) is the
metric space and f|x, is the Banach contraction with the constant h = i.
Hence, by the triangle inequality, f|x, satisfies (2) with the constant %
(= 2). Further, for all z € X, d(f0, fz) < 2 = 2d(0, f0), and d(f1, fz) =
% —dr< % = %d(l, f1), for z # 0. So f satisfies (2) with h = %, but there
is no fixed point for f.

Unexpectedly, Proposition 1 does extend to continuous maps satisfying
(2) even if (X, d) is unbounded and d is not symmetric. Such a space (X, d)
endowed with the right convergence operator we also call an F-space.

Theorem 2. Let X be a nonempty set and d : X x X — Ry be a function
such that, given x,y € X,

dz,y) =0 iff z=y.
Let f be a selfmap on X such that condition (2) holds and f is d-continuous,
i.e., given {x,}>° and z in X, d(x,,z) — 0 implies d(fz,, fx) — 0. If
the E-space (X, d) is complete and d satisfies Wilson’s Aziom III [17], i.e.,
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given {x,}5% 1, x and yin X,

d(xp,x) = 0 and d(zn,y) — 0 imply that x =1y,
then f has a unique fized point p, and d(f"x,p) — 0, for all x € X.

Proof. Define a(x) := d(x, fx), for x € X. Then (2) easily implies that
a 1(0) is at most a singleton and a(fz) < ha(z), for € X. Hence if

d(z,y) == max{a(z),a(y)} for x#vy, and d(z,z):=0 for € X,

then one can verify that d is the metric; in particular, d(z,y) < max{d(z, z),
d(z,y)}, for z,y,z € X, so d is the ultrametric (see, e.g., [7], p-504). More-
over, f is the Banach contraction with respect to d with the same constant
h as in (2). By the proof of the Contraction Principle, for any = € X the
sequence {f"x}°° ; is d-Cauchy. By (2), for n,m € N, if f"z # f™z then

d(f" e, ") < hmax{a(f"z), a(f"z)} = hd(f"z, f"z).

Hence, d(f"*z, fm*lz) < hd(f"z, f™x), which holds also in case, in which
[tz = fM™z. Therefore, we may conclude that {f"z}>°, is d-Cauchy.
By the completeness, there is a p € X such that d(f"z,p) — 0. Then
d(f"*a, fp) — 0 because of the continuity of f. Hence, p = fp since d
satisfies Axiom III. Moreover, p does not depend on x, since the fixed point
is unique. ]

Remark 3. If d is continuous with respect to the first variable, i.e., given
{zn}22, =,y in X, d(zp,z) — 0 implies d(z,,y) — d(z,y) (this forces
Axiom III for such a d), then the assumption in Theorem 2 that f be
continuous can be dropped. To see that, observe that, by the proof of
Theorem 2, given = € X, there is a p € X such that d(f"z,p) — 0. By the
continuity of d and the inequality

d(f"*x, fp) < hmax{d(f"z, [ ), d(p, fp)}. for x € X,
we get letting n — oo that d(p, fp) < hd(p, fp), and hence p = fp.

Remark 4. Theorem 2 can be extended to maps satisfying more general
contractive condition:

d(fz, fy) < p(max{d(z, fz),d(y, fy)}), for z,y € X,

where ¢ is a function as in Theorem 1. Then the above given proof needs a
slight modification only; that {f"x}°2; is d-Cauchy follows this time from
the proof of Theorem 1.2 [13] and the fact that f satisfies (4) in a metric

space (X, d).
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