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GLOBAL EXISTENCE OF SOLUTIONS FOR
DIRICHLET PROBLEM TO NONLINEAR
DIAGONAL PARABOLIC SYSTEM WITH

MAXIMAL GROWTH CONDITIONS

W.M. ZAJACZKOWSKI

Abstract. The Dirichlet problem to nonlinear diagonal parabolic system
with some special right—hand sides but still satisfying the maximum growth
conditions is considered. First applying the idea of Stampacchia a Ly, — es-
timate in terms of data for a priori bounded weak solutions is found. Next
following the methods of Ladyzhenskaya and Uraltseva the Holder conti-
nuity with some exponent is proved. Next applying the results of Amann
global existence of solutions is shown.
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1. Introduction. In this paper we consider the Dirichlet problem for
the following diagonal parabolic system

ujr — V- (ai(x, t,u, Vu) - Vu,) = b;(x, t,u, Vu) (1.1)

in Q7 =Qx(0,7),

ui|t:0 = Up; in Q,

U; = Up; on ST =8x(0,7T),
wherei =1,... ,m, Q C IR"is a bounded domain with a sufficiently smooth
boundary S, Vu; = (0z, tiy... ,0p, ui)y u = (U1,... ,Up) € R™, © =
(x1,... ,25) € IR", and dot denotes the scalar product in R".

The aim of this paper is to prove some estimates for solutions of (1.1)
and next to show existence. Therefore, we assume some growth conditions.
First we impose that

a;: Q' x R" x R™ — R™, i=1,....,m,
satisfy the Caratheodory condition where

a0|Vui|2 — d)h'(l‘, t) S a; - V’U,Z . VUZ = (12)

n
= > al? . 0, u; Ozpui < Yo| Vi |?

a,f=1
and ag, 7 are positive constants and ¢1;, ¢ = 1,... ,m, are some positive
functions.
Moreover,

bi : Q' xR x R™ - R, i=1,...,m,
satisfy the Caratheodory condition and are such that
bi(z,t,u, Vu) < Bo|Vus|? + ¢oi(z,t), i=1,....m, (1.3)

where [y is a positive constant and ¢o; are some positive functions.

Definition 1.1. We call u = (uj,... ,un) to be a weak bounded solution
to problem (1.1) if

u € C([0,T]; Lo(Q; R™)) N Ly(0, T; WH(Q; R™))

u is bounded and satisfy the following integral identity

Z/ (uine@i + (aiVui)p - Vi — bindi) dedt =0,  (1.4)
i1 OT—h
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where up, = % tHh u(z, 7) dr is the Steklov average, which holds for any

6 € Lo(0.T; W3 (9 R™)) N Lo (7).

Our aim is to prove global existence of solutions to problem (1.1). First
we find L, estimate. To show the estimate the idea of Stampacchia
has been used (see [8]). It can be formulated as follows. Assuming that
solutions of (1.1) are qualitatively bounded we find a quantitative L., (Q7)
estimate depending only upon the data. The method of Stampacchia is
used by DiBenedetto to obtain L., — estimate for solutions of parabolic
equations (see [2, Ch.5, Sect.17]). Next dropping the dependence on Vu
in a;, 1 = 1,... ,m, and assuming some special dependence on ui,... , Uy
in a;, i = 1,...,m we apply the result of Amann, Theorem 3 from [1] to
prove global existence. On the other hand using the L., — estimate and
applying the results of Giaquinta — Struwe [4], [5] and Struwe [9] the Holder
continuity of solutions of (1.1) can be proved in the case where the matrices
a;, 1 =1,...,m, do not depend on Vu and the following restriction holds

00> 2 _max | ui o) - (1.5)

Then using another result of Amann, Theorem 2 from [1], we prove global
existence of solutions of (1.1), where a;, i = 1,... ,m, do not depend on Vu,
but there is no restrictions on dependence on u.

Moreover, to find L., — estimate we generalize on the one hand the re-
sults of Ladyzhenskaya and Uraltseva (see [6, Ch.7, Th.7.1]) because the
coefficient (y in (1.3) need not to be small but on the other hand we have
more restrictive form of the r.h.s. (see also (1.3)).

By Wpl(Q;Rm), L,(; R™), C*(€; R™) we denote commonly used the
Sobolev and Hélder spaces for functions with values in R™. By C**/2(QT)
we mean the anisotropic Holder space (see [6, Ch.1]) and

Lp,q(QT) = Lqg(0, 75 Ly (),

MZ} (% R™) = {u e Wy R™) :ulgn =0} .
Finally we introduce that
| ullz, @)= Iulpg, where@ isa domain in R*, s>1.
We denote by [a] the integer part of a.

2. L., — estimate. To obtain the estimate we follow with some modi-
fications the proof of DiBenedetto from [2, Ch. 5, Sect. 17].
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Lemma 2.1. Let u = (uy,... ,uy) be a qualitatively bounded weak solu-
tion of (1.1) in Q. Let ug € Loo(Q;R™), up € Loo(ST;R™) and u €
LP(QT;Rm)7 p > 1. Let d)l € Lpz(QT,Rm)7 i = 1327 b1 = QT_LZ,%O) b2 =
i(f:,fo), ko > 0, where kg is such that p; > "T"'Q, i1=1,2.

Then there exists a constant c; that can be determined quantitatively only
in terms of the data, such that

il e, < cimax { [uoi|oc. s [upiloo. 0 il 07 } (2.1)

n+2 2(n+2)

. nKyp nKgp

where 1 = ]-7 e, My, G = f(na Qap, ’i(]ap) |¢1i|p17%2T + |¢2’L pg,SgT 3

Proof. In view of the structure conditions the proof can be done for each
component u;, i = 1,...,m, separately. Assume that u;, 1 = 1,...,m, is
non—negative. Assume that M is the essential supremum of u;, i = 1,... ,m,
in QT which is such that |ug|ee,0 < 3M, |[Upi| oo, 57 < IM,i=1,...,m.

Let k € R4 be such a number that
[Upi| oo, 57 <k <M, |upiloo <k < M.

Inserting ¢; = (up; — k)4 = max{up;, — k,0}, ¢; = 0 for j # i into (1.4),
performing the calculations in the first integral, passing with A to zero and
using the structure conditions (1.2) and (1.3) we obtain

1
—/ (u; — k) da +a0/ IV (u; — k)4 |? de dt < (2.2)
2 9] Qt
< ﬁo/ IV (u; — k)4 |*(ui — k)4 dadt +

Ot

+ [ Brix(us > K) + dai(es = k)4 dedt, i= 1. m,
where x(u; > k) is the characteristic function of the set
{(a:,t) e Q7 u(x,t) > k} .

In view of the Hélder inequality we get

1
5/ (u; — k)% d:c+a0/ IV (i — k)4 |2 da dt < (2.3)
Q Ot

< Bo /Qt IV (u; — k)4 |*(wi — k)4 dodt +

+ 1/9, A L/py
+P1ilp, 0r [Af ;177 + [B2il py 0r (/Qt (ui — k) dx dt) ,
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where 2711, + pi; =1,i=1,2, and |Ak+l\ = meas {(x,t) e O s uy(x,t) > k}
Now, we examine the last term on the r.h.s. of (2.3). In view of the
Holder inequality it is bounded by

/ 1/A2ph
/ A
\¢2¢|p2,QT|A;i|1/’\1p2 (/Qt (u; — k)+2p2 dx dt) =1,

where /\% + %2 = 1. Assuming now A\ = 2(2;2) and using the imbedding
2
theorem for the parabolic norm with a constant ~ (see [3, Ch.1, Sect.3]) we

have

, 1/2
I < 3|¢aily, ar | A/ 172 [(GSS SUPye|o, 7] /Q(Uz' - k)% dﬂﬁ) +

+ (/Q |V (u; — k)+|2dxdt)} <

2
€1 2 Y 2 + 12/p,— B
< 2 ess SuptE[OvT] ‘/Q(ul o k)+ dx + £|¢2Z |p2,QT‘Ak,i /p2 nt+2 4

2
€2 i 2/pl,— 1
T3 /Qt |V (u; — k)4 * de dt + 2—€2|¢2i 12)2,QT|Az,i fPamwis

where the Young inequality and the relation /\% =1- % were used.

Taking &1 = %, g9 = o and using (2.3) yields

1
S e Subelo) / (ui — k)2 dz + ag / IV (i — k)4 |2 de dt < (2.4)
Q Ot
< 260 [ |9 = )4 [us = k). dode +
Q

/ 1 r__n_
+2|¢1i|p17QT|A2—’i|1/p1 + 2 (1 —+ a_o) ")/2|¢2i ;z,QT|A;’i 2/?2 ntz |

Since we assumed that there exists a number M such that u; < M,
i=1,...,m, we can choose k = M — 2¢, where ¢ € (0,1) is so small that
M — 2 > max{|uoi|oc,0 [Ubiloo,s7} and 2e < 7. Then the first term on
the r.h.s. of (2.4) can be estimated by the second term on the Lh.s. of (2.4).
Therefore, for such a k the inequality (2.4) takes the form

ess SUPye[o,7] /Q(ul — k)3 dz + ag /Qt \V(u; — k)4 |*drdt < (2.5)

< Cl‘Azi‘l/p’l + cQ|A;’Z.|2/p'2*"L+2 ,
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where 1 = 4|¢15],, qr, 2 = 4 (1 + a%) V| bail2, qr-
Consider now the sequence of increasing levels
€
hs=M—c—o, s=01..., (2.6)

and the corresponding family of sets

A;S,i = {(:c,t) e O uy(x,t) > k:s} . (2.7)
Using (2.6) and (2.7) in (2.5) yields

ess SUDse[o, 7] /Q(uZ — k)2 dz + ag /Q'5 |V (u; — k)4 |? dzdt < (2.8)

< 01|A;€:,i|1/pll + C2‘A;€|'s’i|2/p/2_nL+2

By the multiplicative inequality (3.1) from [2, Ch.1, Sect.3] and (2.8) we
obtain
2(n+2)

I n
(1)~ LS (29

2(n+2) 2(n+2)
</ wrwm7_Mﬁ§A¥(—k)" drdt <

n+2
Sy | ess sUpgefo,r) /

2/n
(W_@ﬁm) /|V@—@MFW&§
Q Qr

2 nt2 [ 142 S(+2) 142 Ant2) g
S —n (cl n|A}—;,i‘p1 +e " |A;S,i| P2 5
where 7 is from the inequality.

To prove the required result we have to find such restrictions on p; and
po that the exponents on the r.h.s. of (2.9) are larger than 1. Assume that

they are equal to 1+ kg, where kg > 0. Then p; = "Zio Dy = i(n:? Since
Ko =5 — 2;12 >0, ko= 5 — 2(n+2) > 0 we have that p; > 2,4 = 1,2. Let
n+2 n+2 n+2
Cq = %O’Y w (eg" ey ). Then (2.9) takes the form
2(n+2)

g n 1

<25+1> vy il S cal A [T (2.10)
Therefore, we get
2(n+2) 1 .

‘Ak i € = ks,i| tro i =1,...,m, (2.11)
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2(n+2) 2(n+2)
where c5 =27 n ¢4, b= n

From (2.11) it follows that |A£+1 ;] —0ass—ooif

2(nt2) \ 1/ko
|Az_0 z| <7 = (5 - ) b_l/ﬁga (2'12)

Cs

see either Lemma 4.1 [2], Ch.1, or Lemma 5.6 [6], Ch.2, or Lemma 4.7 [7],
Ch.2.

In this case we have that
u <M—¢ ae in QF,

which contradicts the definition of M.

Since ks = M —e — 55, s > 0, we have kg = M — 2¢ and we can take € so

small that kg > % Then we have

M M\
<7> Af | < (7) |A+Mi|§/QT fuglP de dt

2

Hence,

2\P
Al < (M) /QT lu; [P dz dt . (2.13)

If the r.h.s. is less than v, we have a contradiction. Thus,
“1p 1/p
ess supqru; < 29 (/ |ui|P dx dt) , (2.14)
QT

i=1,... . m, p>1.
If u; < 0 we have to introduce the cut—off function
(u; — k)- = max{—(u; — k),0}, k<O.

Then we obtain a similar estimate from below. This concludes the proof. [J

Finally we have to obtain an estimate for |u;|, or, i =1,... ,m, p > 1.
Therefore, we have

Lemma 2.2. Let ug € Loo (S IR™), up, € Loo(ST;IR™), ¢; € Ly(QT; R™),
A> 42 =12
Then the following estimate holds

[uilssz or < g (61l g, |62l ar) - (2.15)

: [1 +191il101 + |#2il1 o7 + [U0iloo,0 + |Ubi|oo,sT} ;
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where g is an increasing positive function.

Proof. Let k. = max{ess supgq|uo;|,ess supgr|up|},i=1,...,m. Let us
assume that u; is positive. Let ¢p; = 0 for j # 4, ¢; = (usp — ks ) (i =R+
a > 0. Inserting ¢; into (1.4) yields

/ Uing (i, — k)4 Win =R+ do dt +

Qt

_'_/ (a’i (Iv t,u, vu)vul)h \Y% ((uzh - k*)+€a(uih_k*)+> dr dt =
Qt

= [ (bi(z.t,u, V) (wg — k) pe®n =R+ dg dt.
Ot
Performing calculations in the first integral, passing with A to zero and using

the structure conditions we get

éékwmpé%W”hﬂm+ (2.16)

+%/|Wm—mﬁﬁu+mm—mprWMHMﬁg
Qt
< / d1; (1 + au; — k)4 ) W)+ do di +
Qt
+@%/\V@@—kQ+F@%—kQ+eMW_“”dxﬁ4—
Qt

+/ Gai (u; — k), e F)% da dt,
(91

where we used that
1

1
: k'* o(us—ks )+ _ ]
{(u )+—}e Lo_——<0

Assuming that a > % we get from (2.16)

é/@ [(uZ —ko)y — é} ek + gy (2.17)

+%/|Wm—mpﬁ@+%@—mn)ﬂwhHMﬁ<
Qt

< [ 06151+ @l — k) )+ failus — k)] e da e,
Ot
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To simplify notation we introduce the functions v; = (u; — k)4 > 0 and
¢0; = max{¢1;, p2;}. Then we write (2.17) in the following form

1 1
—/ <vi - —) e dr + ao/ |V, 2 <1 + gm) e drdt <(2.18)
a Jo « Qt 2

§(1+a)/ (14 ¢o))(1 +v)e™ dadt, i=1,...,m.
Qt
Let
wi = (0; — 1)Y2e2@Ds =1 m, (2.19)

Let > 1 and v; > 1. For v; < 1 we have the sup estimate for v; so there
is nothing to prove. Then we have

1 1
/ (vi — —) eidy = / (v; — 1) e™idx + (1 — —> / e dx(2:20)
Q (67 Q o Q

/ (v; — 1) e™idz > / (vi — 1) eV dp = / widz.
Q Q )

Since v; > 1 we have that w; = (v; — 1)1/26%(“71), SO

Vw; = 5 [(Uz - 1)_1/2 + o(v; — 1)1/2} Voez =1

and
IVewi|? < er(1+ v;)|Voy|2e | (2.21)

where in reality we used that v; > ¢ > 1.

Finally w? = (v; — 1)e®¥ 1) > ¢0e2¥ | and also w? > e~ [v;e® — e™], s0
v;e™i < ew? + e™i < cyw?.
Therefore, we have proved

(1 +v;)e™ < cqw?. (2.22)
Using (2.19)—(2.22) in (2.18) implies

ess SUPye(o,1] /wa dx + /QT |Vw;|? da dt < (2.23)

< 05/T(1 + ¢oi) (1 + w}) dzdt .
Q

Using the imbedding (3.1) from [2], Ch.1, Sect.3 for the space VZ(Q!) =
Loo(0,T; La(82)) N La(0,T; W4 (£2)) and the Hélder inequality on the r.h.s.
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of (2.23) we get

1/22
|wi| 2(n+2) QT < cg+ Cé/2 (/QT(I + qb(]i))\l dzx dt) (2.24)

A
|2A2 Y2 T ﬁ_ﬂnﬁz) )
g [l ddt < g + o7[Q27 |22 |wil242) o7

1/2A
where ¢g = 'ycé/2 (Jor (1 + ¢oi) dx dt)?, e = 'ycé/2 (fQT(l + ¢oi)M da dt) '

% + /\% =1, A< ”T”, AL > ”T“, and -y is the constant from the imbedding.
If T is so small that

n

m)gl
2

1 (L
C7‘QT|2 Ao

we obtain the estimate
|wi| 2(n+2) Qr < 206 . (225)

For arbitrary T the argument can be repeated up to covering the whole
[0,77] in a finite number of steps.
From (2.19) and the definition of v; we have that

(i = ko) g = DY? = wie 80D,
Hence, either
u; < ke +1 (2.26)
or u; > ky + 1. In the second case we have the estimate

ui/Q < cg {(k* +1)/2 +wz} .

Therefore
slasz gr < o | (5 + 1) + il B | < (2.27)
<cg(ks +1+4c).

From (2.26) and (2.27) we obtain (2.15). This concludes the proof. O

From Lemmas 2.1, 2.2 we have

Theorem 2.3. Let the assumptions of Lemmas 2.1, 2.2 be satisfied. Then
a qualitatively bounded weak solution of (1.1) is bounded in terms of data

(see the inequalities (2.1) and (2.15)).
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3. Holder continuity. Using the methods of Ladyzhenskaya and Uralt-
sewa (see [6, Ch.5, Sect.1]) we obtain

Lemma 3.1. Let the structure conditions (1.2), (1.3) hold.

Let u = (u1,... ,Upy), be bounded, so |u;| < M, i=1,...,m, where M is
a positive constant. Let ¢1 = (P11, , P1m), $2 = (P21,... , Pam) be such
that Xi = |¢1’L‘ + |¢2i|2 € Lq,T(QT)7 %—i_ 2_1"; =1- %7 n_; € (03 1); n =2,

i=1,...,m. Moreover, let uy € C*(Q2, R™), up € C*(ST,IR™), a € (0,1).
Then u; € C4*/2(QTUSTUQx{0}), where o = min {— log, <1 - 2%) , %},
5= [%} + 4+ sg, sg> 0,0 = %Ja,izl,... , M.

Proof. Putting ¢; = (u;, —k)+¢?(z,t) and ¢; = 0 for j # i into (1.4) we get

t
/ / [uiht(uih — /{7)+C2 + (aiVui)hV <(ulh — ]{7)+C2> + (3.1)
0 JQ
—bin(win — k)+C2} drdt =0,

where ((z,t) is an arbitrary, nonnegative, continuous piece wise smooth
function vanishing on the boundary. In the case when { does not vanish
near the boundary we assume that k > max; ess  supgr |up;(z,t)|.
Performing the calculations in the first term, passing with A to zero and
using that k£ > max; ess supgq |ug;| we get

1
. /Q(uih Ck)2Cde - /Q (i — K)2.CC dadt + (3.2)
+ <ai : V(Uz — k)+ : V(ui — k)+C2 dz dt+
Ot
+2a; - ui(u; — k)1 CVQ) dr dt +
—/ bin (win — k)+€2 dxdt=0.
Ot

Using the structure conditions (1.2), (1.3), we obtain the inequality

1
5 [ 02 de+ D [ V- kR dedi s (33)
2 Ja 2 Jot
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< B [ 190 = k)4 PG — k) dedt +

2
—I—/Qt(uz'h — k)i <C|Ct| + 2% §§> dx dt +

ag
+/ <¢1¢XA+, + o (win, — k)+) ¢Zdzdt,
(913 k,i,p

where x is the characteristic function of @, A:’i’p = AZZ. N By(xg), By(xo) =

{z: |z —x0| < p}, A'k"’i(t) = {z :ui(x,t) — k > 0}. Moreover, we introduce

cylinders Q(p, 7) = B,(x0) X (to,to + 7), and assume that supp ¢ C Q(p,7)

and ((x,t) =1 for (z,t) € Q(p — o1p, T — 027), for some o1, o3 less than 1.
Taking now k such that

ap
u —k)p <0=—
( 3 )+ — 4ﬁ0
and using the properties of {(x,t) we obtain from (3.3),
sSup ‘(ul - k)+|%,Bp7crlp + |V(ul - k)+|g,Q(pfo'1p,chrQT) < (34)
t€[0,77

1 1 t
< -+ i — k)42 / dt/ sdrdt|
=7 l((glp)g + 0_27_> |(U )+‘2,Q(p,7) + 0 A;ripx z ‘|

2
where 71 = ¢ (1 + %%)’ Xi = [d1il + |2l
The last term on the r.h.s. of (3.4) we estimate by (see [6, Ch.3, Sect.10])

2(1++) 7
” Xi ||Lq,,~(Qk,i(p,T)) M " (ka 5707 T> ’

where

1 n
-+ —=1—-k1, K1€(0,1) forn>2,
r  2q

Qk,i(va) = {(xvt) € Q(ﬁﬂ T) : ui(xat) > k} s

,,'2 to+7 7
i (k, a,p, 7') :/ measd Ay ; ,(t) dt,
to
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§g=q(14+r), 7F=7(l+k),

_ 2q _ 2r 2K1 1+n n K
= — r = K= —— — - =
=1 r—1’ n’ 72 42’
1 n n

-4 — = — f > 2.

Pt~ frn=2

Therefore, u; € Bo(Q, M, v1,7,6,k) (see [6, Ch.2, Sect.7]). Hence, in view
of Theorem 7.1 from [6], Ch.2, Sect.7, and Theorem 8.1 from [6], Ch.2,
Sect.8, we have that

u; € C2(QT U ST UQ x {0}),

where o = min{—logy(1— %), %'}, s = [%} +4+sp and s( is some positive
constant.

Since s > 4 we see that « is a very small positive number. This concludes
the proof. O

4. Global existence. To prove global existence of solution to problem
(1.1) we apply Theorems 2 and 3 from [1]. In the case of Theorem 2 we
need Holder continuity of solutions with a > 2. Therefore Theorem 3.1
can not be used because there a is too small. Then the result of Struwe
form [9] must be applied, where however very strong structure condition
(1.5) must be imposed. To apply Theorem 3 we need only boundedness of
solutions, so Theorem 2.3 is sufficient, but then time independent boundary
conditions and some additional strong structural restrictions must be added
on the form of system (1.1).

Summarizing we have

Theorem 4.1. Let the assumptions of Theorem 2.3 and Theorem & from
(1] be satisfied. Then there erists a global solution to problem (1.1) in
C([0,T];C5(2 x R™)), s < 1.

Theorem 4.2. Let the assumptions of Theorem 2.3, Theorem 2 from [1],
and Theorem 2 from (9] be satisfied. Then there exists a qualitatively bounded

solution to problem (1.1) in C=([0,T]; C?($; R™)), where ¢ > 0, 6 > T
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