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OPTIMALITY CONDITIONS FOR PROBLEMS
WITH SET-VALUED OBJECTIVES

B. EL ABDOUNI AND L. THIBAULT

Abstract. Optimality conditions are established for mathematical pro-
gramming problems where objectives and constraints are given by set—
valued mappings. These conditions are stated with Lagrange multipliers
associated with the coderivatives of the set-valued data.

Introduction. H.W. Corley [10, 11] and T. Tanino and Y. Sawaragi [34]
have developed an important duality theory for mathematical programming
problems with convex vector valued data. The dual problem appears in a
natural way as a problem whose objective is a set—valued mapping. These
authors have also given several applications of this duality in a series of
papers [10, 11, 33, 34].

In our knowledge, the first paper establishing necessary optimality condi-
tions for optimization problems where the objective is a set—valued mapping
seems to be the one of H.W. Corley [12]. These optimality conditions are
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formulated in terms of derivatives associated to Clarke tangent cones ac-
cording to the definition introduced by J.-P. Aubin [1]. More precisely,
suppose that 7 € F(T) is an optimal solution of the problem

Minimize F(x)

(P) subject to z € § and G(z) N D # 0,

where F' and G are set—valued mappings from a Banach space X into Banach
spaces Y and Z (Y being ordered in [12] by a convex cone K with nonempty
interior), S is a subset of X and D is a convex cone of Z with nonempty
interior. H.W. Corley proved, for Z € G(Z) N D, the existence of a nonzero
pair (y*,2*) € (—K)° x D° such that (z*,Z) = 0 and

(0.1) (Y y) +(z%2) >0

for all z € domD¢(Fs,Gs)(T,Y,Z) and (y,2) € Do(Fs, Gs)(7,7,Z)(2).
(Here K° denotes the negative polar cone of K and D¢(Fs,Gg) denotes
the derivative in the sense of J.-P. Aubin [1] relatively to the Clarke tangent
cone of the set-valued mapping from X into Y x Z defined by

(Fs,Gs)(z) = F(z) x G(z) if x € S and (Fs,Gg)(z) = ) otherwise.)

Note that D.T. Luc [26] and D.T. Luc and C. Malivert [27] have also proved
for the problem (P) necessary optimality conditions similar to (0.1) but in
terms of the contingent derivative of (Fs, Gg) (instead of the Clarke tangent
derivative) and with the assumption that the graph of the contingent deriva-
tive is convex. In our knowledge there is no other paper (up to now) devoted
to optimality conditions for problems with set-valued objective mappings).
The aim of this paper is to establish optimality conditions with Lagrange
Kuhn-Tucker and Lagrange-Fritz—John multipliers for the problem (P) in
terms of the coderivatives of the set—valued mappings F' and G separately
and the normal cone to S. Such conditions are more general then the ones
formulated in terms of the derivative of the set-valued mapping (Fs,Gg).
Our approach allows to suppose that D is any nonempty closed subset of
Z and to use any (sequentially) closed normal cone, for examples the ones
by F.H. Clarke [9], A.D. loffe [18], B.S. Mordukhovich [28]... . Although all
the results also hold for the coderivative with respect to the Mordukhovich
normal cone whenever the underlying Banach spaces are Asplund (see [29]
for subdifferential calculus of functions in these spaces), we will restrict our-
selves (to avoid complications of notations) to Clarke and loffe coderivatives.
Before concluding this introduction we must also say that a premilinary ver-
sion (see [15]) of this common work has constitued a chapter of the second
thesis of the first author.
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1. Preliminaries. In this section we recall some definitions and results
which will be needed later.

In all the paper X, Y and Z will be Banach spaces, X*, Y* and Z* their
topological duals and Bx the closed unit ball of X (centered at the origin).
Unless otherwise stated the norm on X x Y will be given by ||(z,y)|| =

]l + yll-
Let f: X — R be a locally Lipschitz function and = € X.
The Clarke subdifferential Oc f(Z) of f at T is defined by (see Clarke [9])

Ocf(T) :={z" € X : (z",v) < f°(T;v), Vv e X}

where f°(Z;v) 1= imsupg ) o+ 7) t A f(x +tv) — f(2)].

Let F be the collection of all finite dimensional subspaces of X. The
approximate subdifferential (see loffe [18]) is defined by

af (@) = () limsupd~ frpr(a) = () limsup O forrf(2)
LeF T—F LeF (,x)—(0+T)

where fryr(u) = f(u) if w € 2+ L and fyy1(u) = 400 otherwise, for e > 0

O fogr(z) ={z" € X : (z%,v) <

elloll +timinf ¢~ [ for (@ + tv) = fars(@)], Yo}

and with the convention that 0= = 07 for ¢ = 0. Here, for a set-valued
mapping M from (a metric space) U into X*, * € limsup,,__,z M (u) means
that there exists a net (u;,z}) € GrM = {(u,z) : u € U,z* € M(u)}
converging to (u, z*) with respect to the metric topology in U and the weak—
star topology in X*. Recall (see loffe [18]) that (f being locally Lipschitz)
one always has
0o f(T) = w* — clco 04 f(T)

(the weak—star closed convex hull of 04 f(T)).

When f is the distance function d(.;.S) to a subset S and T € S, one can
require x € S in the limit above (see [18]), that is

0ad(;8)(T) = ﬂ limsup 0, dytr(.;5)(2).
LeF (5’$)z_€>§0+’§)

So for 0 < a < 3 one has
adad(;; S)(T) C B 94d(.; S)(T).

In the sequel we will often write 94d(z; S) in place of dad(.; S)(T).
Consider now a set—valued mapping F' from X into Y and the function
AFp defined on X x Y by

Ap(z,y) =d(y,F(z)) if x € domF and Ap(z,y) = +oc otherwise,
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where dom F := {z € X : F(z) # 0} and note that one always has
d(z,y; GrF) < Ap(z,y). F.H. Clarke [9] has often used, in optimal control
theory, the function A g for locally Lipschitzian set valued mappings F' and
L. Thibault [37] has shown that this function can also be crucial in the study
of several optimization problems even if F' is not (pseudo)-Lipschitzian. Re-
call that I is v pseudo Lipschitzian around (Z,7) € Gr F' (see Aubin [2])
if there exists a real number r > 0 such that for all z,2" € T + r Bx

(1.1) ¥+ rBy) NF(~) CF(A) + 7] — || By.

For such set-valued mappings F' one has (see Thibault [37]) for (z,y) near
(z,7)

(1.2) Ap(z,y) < (1 +7)d(z,y; Gr F).

Note that this has been observed earlier by Clarke [9] for Lipschitzian set-
valued mappings.

R.T. Rockafellar [32] has proved that F'is y—pseudo—Lipschitzian around
(z,7) iff there exists » > 0 such that for all z, 2’ € T+rBx and y,y’ € y+r By

(1.3) ld(y; F(z)) — d(y; F(a))| < vlle = 2" + vy = o/]I

These set—valued mappings will play a crucial role in our approach by
using the metric regularity. An important tool, with which we will give
concrete verifiable conditions ensuring metric regularity, is the notion of
approximate coderivative. It will also be the key in our approach for opti-
mality conditions for the problem (P). So we end this section by recalling
that the approximate coderivative D% F(Z,7) (resp. the Clarke coderiva-
tive D&F(T,7)) of F at (Z,7) is the set—valued mapping from Y™ into X*
defined by

z* € DLF(Z,9)(y") < (2%, —y") € Ryop (7, 7~; GNTF)
(resp. ¥ € DLF(Z,9)(y*) <= (2%, —y*) € Ry Oc(A, ~; GNF)).

2. Metric regularity. It is well-known that optimality conditions with
Lagrange Kuhn Tucker multipliers for optimization problems with single
valued objectives require qualification assumptions. In our approach in
the next section the qualification conditions satisfied by the constraints are
related to the notion of metric regularity. Beginning with the papers by
Robinson [30] and Ursescu [39] on set—valued mappings with closed convex
graphs, several authors have studied the metric regularity of general set
valued mappings. Here we are going to consider the metric regularity of a
set—valued mapping with respect to another one.
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Definition 2.1. Let G; and G2 be two set-valued mappings from X into
Z and (z,Z) € GrG1 N GrGy. We will say that Gy is metrically regular
around (7, Z) relatively to Gs if there exists v > 0 and r > 0 such that
(2.1) d(z,z;GrG1 N GrGy) < vd(z; G1(z))

for all(z, z) € (T + rBx) x (F + \Bz) N G\Gg.

REMARKS. As (with the convention d(z;()) = 400)

d(z,z;GrG1 N GrGy) < d(z; G (2) N Gy (2))
(where GT'(z) == {z € X : z € G1(z)}) the inequality above is fulfilled
when several other concepts are satisfied.
1) For Go(x) = {0} if z € S and Ga(z) = () otherwise, (2.1) is implied by
the assumption
(2.2) A28 0 G (2)) < 7d(2: G (x)

for all (z,2) € (T+rBx) x (\Bz) NS x Z. (Note that Jourani and Thibault
[24] have proved that (2.2) ensures the existence of Lagrange-Kuhn-Tucker
multipliers for the problem

(P Minimize f(x) subject to 2 € S and 0 € G1(z)
where f is a single-valued mapping from X into Y).

2) Consider Gy given as above and Gi(z) = —g(z) + D if x € S and
G1(z) = 0 otherwise. Then (2.1) is equivalent to the relation
(2.3) d(z;S N g~ (D)) < vd(g(x); D)

for all x € (T + rBx) N'S. This relation has been used in Jourani and
Thibault [22] to establish optimality conditions with Lagrange-Kuhn-Tucker
multipliers for the problem

(P Minimize f(z) subject to x € S and g(x) € D.

3) Suppose now that g : X — Z is continuously differentiable at 7 € SN
g 1(D) and that S and D are closed convex subsets of X and Z respectively.
Under the condition

(2.4) 0 € core [Vg(z)(S — ) — (D — g(7))]

necessary optimiality conditions have been proved in Borwein [5] and Penot
[30] for the problem (P”) when f is continuously differentiable. It is known
that (2.4) ensures (2.3) which is equivalent in this case to (2.1).

We are going to consider some conditions in terms of coderivatives ensur-
ing (2.1). First we will need the following proposition using ideas, introduced
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in metric regularity theory by Ioffe [17] and applied later by Auslender [4]
and Borwein [5]. The method will be also inspired by techniques in Theorem
2.2. of Borwein and Zhuang [7], Lemma 1.2 of Jourani [20] and Theorem
3.1 of Kruger [25]. Here we will follow the approaches in [20] and [7].

Proposition 2.2. Let Gy and G2 be two set valued mappings with closed
graphs from X into Z and let (T,Z) € Gr G1NGr Ge. If Gy is not metrically
reqular at (Z,Zz) relatively to Ga, then there exist sequences (T, Yn, 2p) —
(7,%,%Z) and s, | O such that

i) yn € G1(xy), z2n € Go(xy,) and z, & G1(zy,)

it) lzn = ynll < 1z =yl + sn(llz — znll + [y = yall + Iz = zal)
for all (z,y,z) € A = {(z,y,2) € X x Z x Z : (x,y) € GrGy,(z,2) €
Gr Ga}.

Proof. By definition 2.1 there exists (an, bn,) — (T, Z) with (an, b,) € Gr G
such that

d(ap, by; Gr G1 N Gr Ga) > nd(by,; G1(ay)).
It follows that b, & G1(a,) and there exists ¢, € G1(a,) satisfying
(2.5) d(an,by; Gr G1 N Gr Gg) > n||b, — ¢,

Since (an, by )y converges, one has ¢, — Zz. If one puts f(z,y, 2) := ||z — v
and €2 := f(an,bn,cy) one has €2 > 0 and for all (x,y,2) € A

flan,bnyen) < fla,y, 2) + 2.

Applying the Ekeland variational principle (see [13]) on A with A, :=
min{ne2,e,} one obtains (x,,yn, z,) € A satisfying for all (z,y,z) € A

120 = anl| + lyn = cnll + [[2n = bul < An

2.6
@6) b (onymn) < Fal@9,2) + snll — zall + 1y — gl + 2 — 2all),

where s, := A, 12 — 0. Moreover (2.6) and (2.5) ensure that z, & G1(z,,)
and hence the proof is complete. O

Before proving our first theorem, let us introduce the following notion.

Definition 2.3. Let G be a set—valued mapping from X into Z and (%, %) €
Gr G. We will say that G is partially normally stable at (Z,%) (with respect
to the second variable) if for any sequence (z,,z,) — (T,%z) with z, €
G(z,) and any (z,2¢) € 0ad(xy, 2,;Gr G) with lim ||z} || # 0, one has

(z*,2*) # (0,0) for the limit (z*, 2*) of any w*—convergent subnet of (z7, z*).



Optimality conditions for problems with set-valued objectives 189

When z* # 0 for the limit (z*,2*) of any w*—convergent subnet, we will
say that G is partially uniformly normally stable at (T,Z).

Obviously any set—valued mapping is partially uniformly normally stable
(hence partially normally stable) whenever the range space Z is finite di-
mensional. More generally, a typical example of such mappings is that of
partially compactly epi Lipschitzian.

Recall (see Jourani and Thibault [24]) that G is partially compactly epi—
Lipschitzian at (Z,Zz) if there exist a real number r > 0 and two compact
subsets H and K in X and Z respectively such that

(T +7rBx) x (F +~\Bz) NG\ G + =({¥} x \Bz) C G\ G — =(H x K).

This is a slight adaptation of the definition of compactly epi-Lipchitzian
sets by Borwein and Strojwas [6] to set-valued mappings.

Jourani and Thibault [24] showed that, for such a set—valued mapping,
there exists v > 0 such that for any € €]0, 1] there are vectors hq,... , hy, €
H and ky,... ,k, € K satisfying

el + 121 < 3=y max (2" ha)| + mavx (2", )

for all (z,z) near (7,z) and (z*,2*) € dad(z,z;Gr G). According to this
inequality, G is partially normally stable at (Z,z) whenever it is partially
compactly epi-Lipschitzian at (T,%).

Theorem 2.4. Let G1 and Gy be two set—valued mappings with closed
graphs from X into Z with (T,Z) € Gr G1 N Gr G2 and let A be the subset
as given in the statement of Proposition 2.2. Assume that for some o > 0

(2.7) d(z,y,2 A) < a [d(z,y; Gr G1) + d(z, z; Gr Go)]

for all (z,y,2) near (Z,7,Z), that Gy or Gy is partially normally stable at
(Z,z) and

(2.9) D3G1(7,2)(0) N (=D3Ga(7,%)(0)) = {0}
If for all z* # 0 in Z*
(2.10) 0 ¢ D3G1(Z,2)(2") + D3Ga (T, Z)(—="),

then the set-valued mapping G1 is metrically reqular at (T,Z) relatively to
Gs.

Proof. Assume that the metric regularity is not satisfied. By (2.7), the
Clarke penalization (Proposition 2.4.3 in [9]) and Proposition 2.2, the point
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(TnsYn, zn) 18, for some B > 0, an unconstrained local minimizer of the
function

(x,y,2) — f(z,y,2) + Bd(z,y; Gr G1) + d(z, z; Gr G2).
An easy calculus of the subdifferential of the function (y,z) — |z — y||
ensures that there exist (z7,,2{,) € B0ad(zn,yn; Gr G1), (25,,23,) €
B 04 d(xy, 2n; Gr Go) and y;; € Z* with ||y || = 1 satisfying
1270 T 220l < sy Ny + 27,0 S snand || =y + 25, [ < sn.
Extracting subnets if necessary we may suppose

* * * * * w* * * % R
(‘Il,mx2,nvyle,mZ2,n) (l' L 2, TR, 2 )

and hence (z*, —2%) € f04d(Z,Z; Gr G1) and (—z*,2*) € fI4d(T,Z; Gr Ga).
The partial normal stability assumption ensures that (z*,z*) # (0,0). So
considering z* # 0 (resp. z* # 0) we arrive at a contradiction with (2.9)
(resp. 2.10) and the proof is complete. O

The proof of the following theorem is similar to the one of Theorem 2.4.

Theorem 2.5. Under the notations of Theorem 2.4, assume that (2.7)
holds, that Gy or Go is partially uniformly normally stable at (Z,Z) and
that (2.10) holds. Then G is metrically reqular at (T,Zz) relatively to Gs.

Before giving some corollaries, let us consider an important case where
condition (2.7) is automatically satisfied.

Proposition 2.6. Assume that Gy : X — Y is y—pseudo—Lipschitzian at
(Z,7) € Gr Gy. Then for any Go : X — 7 with Z € Go(T) and for

A:={(z,y,2) e X xY x Z:y € Gi(z),2z € Ga(x)},
one has for k=14~ and (x,y, z) near (Z,7,%)
d(xay,Z;A) < k[d(l’y,GT Gl) —I—d(x,z;Gr GQ)]

Proof. Fix 7 > 0 given by (1.1), (1.2) and (1.3) and (z,y,z) € V =
(z,y,7) + (r/3)B. Then for any (a,b) € ((Z,Z) + rB) N G\ Gg and any
¢ € G1(a), we have

d(z,y,2;A) < [lz —all + [ly — | + ||z — b
and hence

d(z,y;2;A) < ||z = af + [|z = b]| + d(y; G1(a)).
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So (1.3) ensures that
d(z,y, 2z A) < (1 +7)]|z —all + ][z = b]| + d(y; G1(2))
and hence by (1.2)
d(@,y,z;A) < (1+7) d(z,2;Gr G2 N ((T,Z) + rB)) + W +7)(», G\ Gg)
= (14+v)[d(z,y; Gr G1) + d(z, z; Gr G2)].
U

We can now state the following corollary. It is a direct consequence of
Theorems 2.4 and 2.5 and Proposition 2.6 since, as easily seen, ||z*| < 7| z*||
for any z* € D%G1(%T,Z)(z*) whenever G is pseudo-Lipschitzian around
(z,z) and Z is finite dimensional.

Corollary 2.7. Let G1 and Gy be two set-valued mappings with closed
graphs from X into Z and let Z € G1(T) N G2(T) such that

0¢ D3G1(Z,2)(2") + D3 Go(T,Z)(—=2%)  for all nonzero z* in Z*.
Consider

i) Gy or Gy is pseudo-Lipschitzian at (T,Z) and (2.9) holds ;
ii) G1 or Gy is pseudo-Lipschitzian at (T,Z) and Z is finite dimensional

)
iii) Z is finite dimensional and (2.7) is satisfied.
Then under one of the three assertions i), i) and iii), Gy is metrically
reqular at (T,Z) relatively to Gs.

3. Necessary optimality conditions. In all the sequel, K will be a
convex subset of Y with int(K) # () and 0 € K \ inty K, F and G will be
two set-valued mappings with closed graphs from X into Y and Z and §
and D will be two subsets of X and Z.

We recall that T € SN G~ (D) is a weak local Pareto solution for the
problem

(P) Minimize F(z) subject to z € S and G(z) N D # 0
if there exist a neighborhood V of T in X and a point § € F(T) such that
foral ze VNSNG—(D) and y € F(x) one has 7 — y ¢ inty K.

In this case we will say that T solves locally (P) in 7 with respect to K.
Note that the order above is not so general than the nontransitive relations

considered by L. Gajek and D. Zagrodny [16] for which they established
existence results for maximal points.
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We start by proving the following lemma whose proof is largely inspired
by a similar result in Jahn [19] (see also Thibault [38]) where the Pareto
notion is considered with respect to a convex cone.

Lemma 3.1. Let § be a weak local Pareto minimum of a subset L C Y.
For each point b € y — %intyK, there exist a continuous seminorm p on Y
and a neighborhood W of 5 such that

1=p@»—0b) <p(ly—>) forallyec LONW
and
p@—b—u) <p(—>) foralue KnN(2y—2b— inty(K)).

Proof. Put
ply) =inf{tcR:=>¥,xFnc(-A+K)n({=- —K)}.

Then p is a continuous seminorm (since @ := (b—7+ K)N(F—b—K) isa
convex neighborhood of zero) and p(y—b) = 1 (since F—b is a boundary point
of Q). If W denotes a neighborhood of 7 such that LNW N (g —inty K) = (),
then (LN W) —b) Ninty @ = () and hence

1<ply—0b)forallyec LNW.

To prove the second inequality of the lemma, it is enough to see that for
any u € KN (27 — 2b — inty K) one has § — b — u € @ and hence

p—b—y) <1=p(y-0>).

The following second lemma will also be needed.

Lemma 3.2. Let p be given by the lemma above. Then for any y* € Op(y—
b) (the convex subdifferential) one has y* # 0 and (y*,y) >0 for ally € K.

Proof. 1f we fix y* € Op(y — b), then we have for all y € Y

(3.1) Y,y —g+b) <ply) —p(T—b)
and hence it is easy to see (taking y = 0 in (3.1)) that y* # 0. Now fix
any y € K. Since 2y — 2b € inty K, there exists some ¢ > 0 such that
2y —2b—ty € inty K and hence ty € K N (27 —2b—inty K). Then it follows
from (3.1) and Lemma 3.1 that

(", —ty) <p—b—ty) —p(T—b) <0
and hence (y*,y) > 0, which completes the proof. O



Optimality conditions for problems with set-valued objectives 193

We can now prove necessary optimality conditions for unconstrained
problems.

Theorem 3.3. Let T be a local solution in 3y of the problem
Minimize F(x),z € X.

Then there exists a nonzero y* € Y* such that (y*,y) > 0 for ally € K and

0e DyF(.9)(y") (resp. 0 € DoF(Z,7)(y")).

Proof. Lemma 3.1 and the Clarke penalization (Proposition 2.4.3 in [11])
ensure that (for some k& > 0) (Z,7) is a local minimizer of (x,y) — p(y —
b) + kd(z,y; Gr F'). By subdifferential calculus rules (see [18]) one has

(0,0) € {0} x Op(y — b) + k dad(Z,y; Gr F)

and hence there exists y* € Ip(y — b) with (0, —y*) € k0ad(Z,7; Gr F).
This implies 0 € D% F(Z,7)(y*) and completes the proof since one always
has D% C Dg. O

REMARK. Note that the scalarization method by Ciligot-Travain [8] (via
the signed distance function) could be also used.

Before proving optimality conditions in terms of F' and G separately, we
are going to establish optimality conditions in terms of the coderivative of
(F,G). Recall that (F,G)(x) = F(z) x G(x).

Proposition 3.4. Assume that T is a local solution in G of the problem
Minimize F(x) subject to G(x) N D # ()

where D is a convex subset of Z with nonempty interior. Then for any
Z € G(T) N D there exists a nonzero pair (y*,z*) € Y* x Z* such that

(y',y) >0 forally e K and (z%,z) <(2*,Z) forallz€ D
and
0e Dy(F,G)(Z,5,2)(y",27) (resp. 0 € DG(F,G)(Z,3,Z)(y", 27)).

Proof. For Q := —(D —7%), the set K x @Q is a convex subset with nonempty
interior and (0,0) € (K x Q) \ int (K x Q). Denote by V a neighborhood
of T over which the problem is solved by . Then for any x € V satisfying
(G(z) —z) N (—intzQ) # 0, we have

F(z) —9) N (—inty K) # 0.
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Therefore for any x € V' we have
(F(z) x G(z) — (§,2)) 1 (—int (K x Q) # 0
and hence T solves in § (with respect to K x @) the unconstrained problem
Minimize (F,G)(z),z € X.
By Theorem 3.3 there exists a nonzero pair (y*, z*) € Y* x Z* such that
(3.2) (¥ ,y) +(z",z) 20 forall (y,2)e KxQ
and
0€ DL(FG)Z. Y)Y, 2").
Moreover it is obvious that (3.2) ensures that

(y*,y) >0 forally e K and (z",z) <(2",Z) forallze€ D

and hence the proof is complete. O
Recall that Fg(x) = F(z) if z € S and Fg(z) = ) otherwise.

Theorem 3.5. Assume that D is a convex subset with non empty interior
and that T solves locally (P) iny. Then for any Z € G(T) N D, there exists
a nonzero pair (y*,z*) € Y* x Z* such that

(y',y) >0 forallye K and (z%,z) > (2*,Z) forallz€ D
and

0€ DZ(F,SUGS)(E?@’?)(Z/*?Z*) (7’68]). 0¢€ Dé(FS,GS)(T,y,E)(y*,Z*))-

Proof. 1t is enough to see that T is a local solution of the problem
Minimize Fs(x) subject to Gg(z)N D # ()

and to apply Theorem 3.4. O

At this stage, we can already deduce the main result (Theorem 5.1) in
Corley [12]. It is a direct consequence of Theorem 3.5 and the definition of
the Clarke coderivative. Recall that for a set-valued mapping M from X
into Z with Z € M (), the Clarke tangent derivative Do M (Z,7) of M at
(Z,7) is the set-valued mapping from X into Z whose graph is the Clarke
tangent cone to Gr M at (7, Z).
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Corollary 3.6. Assume that D is a convex cone with nonemitpy interior

and that T is a local solution of (P) in7y. Then for any zZ € G(T) N D, there

exists a nonzero pair (y*,z*) € Y* x Z* such that (y*,y) > 0 for ally € K,
(2",2) >0 forall z € D with (z*,Z) =0

and for allx € dom D¢ (Fs,Gs)(Z,7,%Z) and (y,z) € Do(Fs,Gs)(Z,7,Z)(x).

Now we are going to establish necessary optimality conditions for the
problem (P) in terms of the coderivatives of F' and G separately.

Considering the particular case in definition 2.1 with G; = G and Gr G =
S x D, we will say that G is metrically regular around (Z,7) relatively to
S x D if there exist v > 0 and r > 0 such that

(3.3) d(z,z; (S x D)NGr Q) < vd(z;G(z))
for all (z,z) € [(T 4+ rBx) x (F + \Bz)] N (C x D).

In the remainder of this section we will suppose that S and D are closed
subsets of X and Z, that T solves locally (P) in 7 and that z € G(T) N D.

We will also suppose that F' and G are pseudo-Lipschitzian around (Z,7)
and (T, %) respectively.

Theorem 3.7. Under the assumptions above, if G is metrically reqular
around (T,Z) relatively to S x D, then for k > 0 large enough, there ex-
ists a pair (y*,z*) € Y* x Z* such that
Yy #0, (y'y) 20 forally e K, 2" € kdad(Z; D)
(resp. 2" € kdc d(zZ; D))
and
0€ DLF(z,9)(y") + D4G(T,Z)(2") + k0ad(T; S)
(resp. 0 € D& F(Z,7)(y*) + D& G(T,2)(2%) + k 0cd(T; S)).

Proof. If we put q(z,y,z) := p(y — b) (where p is given by Lemma 3.1), it

is not difficult to see that (Z,7,Z) is a local minimizer of the problem
Minimize g(z,y, z) subject to (z,y) € Gr F and (z,2) € (S x D) NGrG.
Then by the Clarke penalization (see Proposition 2.4.3 in [9]), the metric

regularity assumption and Proposition 2.6, for & > 0 large enough, (7,7, %)
is an unconstrained local minimizer of the function

(x,y,2) V— q(z,y,2) + kd(z,y; Gr F) + kd(z, z; Gr G) + kd(x, z; S x D).
Therefore 0 is in the sum of the subdifferentials, that is there exist
y1 € Op(g — ), (23,93) € kOad(T,7; Gr F)
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(23, 23) € k0ad(T,Z;Gr G) and (z},21) € k0ad(T,Z; S x D)
such that
O0=a5+x3+2), 0=y +y; and 0 = 23 + 2.
Putting y* := y] = —y5 and z* := 2] = —23, we obtain
0€ DAF(E,Y)(y") + D4G(T,2)(2") + kOad(T; 5).

To conclude, it remains to apply Lemma 3.2 to get y* # 0 and (y*,y) > 0
for all y € K. O

The corollaries below are direct consequences of Theorem 3.7, 2.4, 2.5
and Proposition 2.6.

Corollary 3.8. Suppose that, in place of the metric reqularity of G in The-
orem 3.7, both assumptions below are fulfilled

i) for each nonzero z* € Ry Oo(F ;D) one has (see 2.10)
0 ¢ DYG(E,2)(2") + R4 04(7;S);
ii) G is partially normally stable at (T,Z) and (see 2.9)
D}G(z,%)(0) N (=04d(T; 5)) = {0}.
Then the conclusion of Theorem 3.7 holds.

Corollary 3.9. Suppose that in corollary 3.8 the assumption ii) is replaced
by one of the following assumptions

111) G is partially uniformly normally stable at (Z,7) ;

i) D is normally stable at (T,7).
Then the conclusion of Theorem 3.7 holds.

According to Corolary 2.7 we also have the following corollary.

Corollary 3.10. Suppose that assumption i) in Corollary 3.8 is fulfilled
and that 7 is finite dimensional. Then the conclusion of Theorem 3.7 holds.

Now we are going to show that optimality conditions with Lagrange—Fritz
John multipliers can be derived from the results above.

Theorem 3.11. Suppose that either assumption ii) in Corollary 3.8 is ful-
filled or Z is finite dimensional. Then there exist some k > 0 and a nonzero
pair (y*,2*) € Y* x Z* such that

(y*,y)y >0 for all ye€ K,z* € kdad(z; D) (resp. z* € kOcd(Z; D))
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and
0e€ DYF(Z,9)(y") + D4G(T,2)(2") + k0ad(T; S)
(resp. 0 € DEF(Z,7)(y*) + DEG(T,Z)(2%) + kOcd(T; S)).

Proof. 1If the assumption i) in Corollary 3.8 is satisfied, then the result fol-
lows from this corollary. Otherwise there exists a nonzero z* € R, 04 (F; D)
such that

0€ D3G(7,2)(2") + Ry0s(7;S)

and hence it is enough to choose y* = 0. U

One can also easily derive from the results above the necessary optimality
conditions established in El Abdouni and Thibault [14], Thibault [38] and
Jourani [21] for Pareto optimization problems with single-valued objective
mappings which are compactly Lipschitzian in the sense introduced by the
second author (see [35, 36]).

4. The convex case. In this section we are going to consider the convex
case. We will show in this case that all the preceding necessary optimality
conditions are sufficient too.

Recall that the set-valued mapping F' is convex if its graph is a convex
subset of X x Y.

Theorem 4.1. Assume that F' and G are conver and that S and D are
conver subsets of X and Z. Let T € SNG™ (D) and y € F(x). If there
exist Z € G(T) N D, a nonzero y* in Y* with (y*,y) > 0 for ally € K and
z* € RyOa(F ;D) such that

0 € D4F(@7)(y") + DAG(E,2)(=") + R4 04 (7).
then T solves the problem (P) in 7.

Proof. Suppose that T does not solve (P) in 7. Then, there exist x €
SNG (D) and y € F(x) such that

Y1 =y — 7y € —inty K.

As y* # 0, there exists yo € Y with (y*,y0) > 0, and since y; € —inty K,
we may choose t > 0 such that —y; — tyy € inty K which ensures

Moreover, we may write (because of the assumptions)

(4.2) 0 =27+ 25+ 23
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with (27, —y*) € RyOs (3, 7~; GNF), (DN, —F*) € Rpoa (A, F;GNG) and
xy € Ryoa(7;S). Since z € SN G~ (D), there exists some z € G(xz) N D
and by subdifferential calculus rules in convex analysis we have

(27,2 —T) — (y",y—7) <0 and (z3,2 —T) — (2", 2 — Z) < 0.
Therefore
(x1 + 25,2 —F) — (y,4n) — (2,2 -2) <0
and hence, since x5 € Ry 04 (75;S) and 2* € Ry, (F; D), we obtain by (4.2)
(Y y1) > — (25,2 —T) — (", 2 —2Z) > 0,

which is in contradiction with (4.1). So the proof is complete. O
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