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Abstract. We consider the problem to minimize an integral functional
defined on the space of absolutely continuous functions and measurable
controls with values in an infinite-dimensional complex Banach space. The
states are governed by abstract first order semilinear differential equations
and are subject to periodic or anti—periodic type boundary conditions. We
derive necessary conditions for optimality and introduce the notion of a
dual field of extremals to obtain sufficient conditions for optimality. Such
a dual field of extremals is constructed and a dual optimal synthesis is
proposed. The paper is an extension of an earlier paper written for real
Banach spaces. This extension covers optimal control problems which are
governed by equations like the Schrodinger equation and other equations
arising in Quantum mechanics.
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1. Introduction. Let X and U be complex separable reflexive Banach
spaces. Let X* be the dual to X and let (z*, x) denote the duality pairing
between X* and X . Let A(t) : X — X,t € [0,T], be a family of densely
defined linear operators with domains D(A(¢)) and let U(t),t € [0,7], be a
family of subsets of U. We consider the problem to minimize

J(z,u) = /OT L(t,z(t), u(t))dt + 1(z(0),z(T)) (1)

over all absolutely continuous functions z : [0,7] — X and Lebesgue me-
asurable functions u : [0,7] — U, the controls, subject to

z(t) + A(t)x(t) = f(t,z(t),u(t)) a.e. in [0, 77, (2)
and
u(t) € U(t) a.e. in [0, 7. (3)

The maps are defined between the following spaces L : [0,7] x X x U — R,
f:00,7T)x X xU — X, and

[ 4oo if a#Db, i +oo if a # —b,
l(“’b)—{ 0 ifa—b { 0 ifa——b (4)

depending on whether periodic or anti—periodic boundary conditions are
imposed.

Necessary conditions for optimal control problems in abstract spaces have
been considered in several papers starting with references [4, 7]. In [7] Lions
considered a general distributed parameter control problem in a Banach
space without a priori given initial conditions, so—called systems with insuf-
ficient data. Papageorgiou extended this result in [12] to the case of a general
convex integral functional by using the Dubovitskii-Milyutin method (see
[3]). His results found continuations in the analysis of problems with termi-
nal data [8] as well as for abnormal problems and problems with nonopera-
tor type equality constraints [9] using some extensions of the Dubovitskii-
Milyutin method. In [10] following the ideas in references [12, 8, 9], the
Dubovitskii-Milyutin method as well as its generalization by Walczak [13]
are applied to the above abstract optimal control problem and the local
Maximum Principle is formulated for the cases without and with nonope-
rator equality constraints. However, the case considered there concerned
problems in real Banach spaces which limited its applications. In the pa-
per the case of complex Banach spaces is considered and using a complex
formulation of the Dubovitskii-Milyutin theory the results of [10] are gene-
ralized to this setting. Necessary conditions for optimality in the form of
the local and global versions of the Maximum Principle for this problem are
formulated here.
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Classical sufficiency theorems which apply field theories (Weierstrass type
sufficiency theorems) [1, 10, 15] or dynamic programming as well as (opti-
mal) feedback control require assumptions imposed not only on the data of
the problem, but also on objects which are constructed during the study
of these problems. Quite often it is rather difficult to verify these assump-
tions. This is so because constraints appear and this only allows at best for
piecewise regularity of the constructed objects (fields of extremals, feedback
control, or value function). A dual approach to these objects is an attempt
to overcome these difficulties (compare [11]). Now the whole construction
is done in the dual space (in the space of multipliers). Some regularity is
required too, however, only for objects which are dual to the classical ob-
jects and so these need not be regular. In this paper an extension of of the
dual field theory and the dual feedback control [10] to more general fields
of extremal — chains of flights — is described.

The main contribution of the paper lies in its setting of the problem
in a complex Banach spaces. In this setting we can use our model for
optimal control problems of systems governed by many nonlinear equations
of quantum mechanics, e.g. the Schrodinger equation.

2. Necessary conditions for optimality. Let X C H be a complex
separable reflexive Banach space embedded continuously and densely in a
Hilbert space H. Let U be a complex separable reflexive Banach space
modelling the control space. Furthermore, let || - ||, | - |, and || - ||« denote
the norms in the spaces X, H, and X™ respectively where X™* denotes the
dual space to X. We denote the inner product in H by (-, -) and the duality
pairings from X* on X and from U* on U by (-,-). Then we have for every
z€ X CHand he HC X* that (z,h) = (h,z). Let A(t) : X — X* and
f:]0,T] x X x U — X be operators, L:[0,T] x X x U — R a functional,
U : [0, T] — P(U) a multifunction with nonempty, closed, convex subsets
as images.

We make the following basic assumptions:

(HO) For each (z,u) € X x U, the functions t — L(t,z,u), t — f(t,z,u) are
L-measurable. For each t € [0,T], the functions (z,u) — L(t,z,u),
(x,u) — f(t,x,u) are continuously differentiable. The set {(¢,u) €
[0, 7] xU : u(t) € U(t)} is L x B-measurable, i.e. belongs to the o—
algebra of subsets of [0,7] x U generated by products of Lebesgue
measurable subsets of [0, 7] and Borel measurable subsets of U.

(H1) For each z € D(A(t)) the function t — A(t)x is X -measurable in [0, T].
For t € [0, T], the linear operators A(t) : X — X™ are continuous.

In order to derive the necessary optimality conditions below, we also need
some technical assumptions on the operators A and f and the function L
which we list separately.



70 U. LEDZEWICZ AND A. NOWAKOWSKI

(A1) There exist functions a’(-) € L2,i = 1,2,3 and numbers p > 2, g > 2
such that |L(t,z,u)| < a1(t) + az(t)|z|? + as(t)||u||? a.e. in [0,T].

(A2) ||f(t,x,u)|]e < b1(t) 4 ba(t)|z| + bs(t)||u|| with some functions by, by €
L?% and b3 € L.

Let us call the problem (1)—(4) under assumptions (HO)-(H1) and (Al)-
(A2) Problem I. If u(t) is a control function subject to (3) and () is an abso-
lutely continuous function corresponding to u(t) (by (2)) and L(¢, z(t), u(t))
is integrable, then the pair (x(t¢),u(t)) will be called admissible and z(t) is
an admissible trajectory. Along an admissible pair (z(¢),u(t)) we need the
following assumptions:

(B1) Fort € [0,T], the linear operators B(t) = A(t) — fx(t, z(t),u(t)) : X —
X* are coercive uniformly in [0,7] i.e. there are A > 0, > 0 such
that

(B(t)h, h) + Alh|* > af|h]>.
(B2) There exists a constant ¢ > 0 such that for ¢ € [0,T] we have
1B Lx,x+) < e

(B3) There exists a constant 7 > 0 such that for ¢t € [0,T] we have
[ty 2(8), w@)|x,x0) < -

2.1. The Local Extremum Principle. Denote by W([0,77]) the Banach
space
W(0,7)) = {z € I*(X) : & € L*(X*)}

with norm

T T
IIxII%V([O,T])z/O ||x(t)||2dt+/0 &(8)| 2. (5)

Since the space of absolutely continuous functions x : [0,7] — X is dense
in W([0,T]) and J(x,u) is continuous in W ([0,T]), Problem I considered in
both spaces has the same value. However, to derive the necessary conditions
it is more convenient to work in the space W ([0, T]). Thus we seek a solution
of the above problem in the subspaces of periodic or antiperiodic solutions,

WP([0,T]) = {z € W([0,T]) : (0) = z(T)},
respectively
WA([0,T]) = {x € W([0,T]) : z(0) = —x(T)}.

We simply use the notation W ([0,T]) to denote either of them depending
on the circumstances. We also denote the space of square-integrable Le-
besgue measurable functions mapping [0, 7] into U by L?(U). Using the
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Dubovitskii-Milyutin method necessary conditions for optimality for Pro-
blem I can be derived in the form of the extremum principle given below.
In its proof we need the following auxiliary result (see [6, Ch. 3, Vol. 1]):

Lemma 1. Suppose (HO) and (H1), and let (xz(t),u(t)) be an admissible
pair such that assumptions (B1), and (B2) hold. Furthermore suppose the
mapping t — g(t) belongs to L*(X*). Then there exist a unique solution

h € W([0,T]) to the variational equation

h(t) + A(t)h(t) — folt, z(t), u(t))h(t) = g(t) (6)
and a unique solution y € W([0,T]) to the covariational or adjoint equation
—y(t) + A" (O)y(t) = fo (62 (), ult)y(t) = 9(t)  a.e. (7)

_ For the Dubovitskii-Milyutin formalism we introduce the operator F :
W([0,T]) xL*(U) — L*(X*) given by

Pz, u) = 2(t) + A()x(t) — f(tx(t), u(t))- (8)
In terms from optimization theory, our optimal control problem can be

formulated as minimizing a functional I(z,u) under the constraints (x,u) €
Z1 N Zy where

71 ={(z,u) : F(x,u) =0}, 9)

Zy ={(z,u) :u eV} (10)

and

V ={ue L*U):u(t) € Ut) ae.}.
We say the pair (z,u) € W([0,T]) x L?(U) is admissible if (z,u) € Z1 N Zo.
Note that the set Z; is an equality constraint, i.e. intZ; = (), and Z5 can

be either an inequality constraint (i.e. intZs # () or equality constraint (if
intZs = 0).

Theorem 2 (Local Extremum Principle). Assume (HO), (H1), and
(A1) to (A2) hold and let the admissible process (x,u) be optimal for Pro-
blem I. Furthermore, suppose that conditions (B1) to (B3) are satisfied along
(z,u). Then there exist y¥° <0 and y € W([0,T)) with the property that

0
1y (@)l x= + |y (11)
does not vanish and such that they satisfy the adjoint equation

§(t) = = f2 (& (), u(®)y(t) + A" (Oy(t) — y ' Lo(t,2(1),u(t))  a.c. )
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and the following mazimum condition

[ R Lt (000 + F2(6s0). Do)~ u(o)de < 0
0 (13)

forallueV.

Proof. 1f Z5 is an inequality constraint, i.e. when intZs # (), then we can de-

rive the extremum principle for this problem using the Dubovitskii—-Milyutin

framework. However, since the classical Dubovitskii-Milyutin formalism is

formulated in real Banach spaces, some modifications become necessary to

adjust to the complex setting. More generally consider the problem to
minimize I : X — R in a complex Banach space X subject to
TE€EZ = ﬂ?:"'ll Z;where Z; C X,i1=1,... ,nrepresent inequality
constraints (i.e. int Z; # () and Z,41 = {z € X : F(z) = 0}
represents an equality constraint.

Recall that a subset C' C X is a cone if AC C C for all A > 0.

Definition 1. If C' is a cone in a complex Banach space, then the dual or
polar cone C* consists of all continuous linear functionals for which their
real part is nonnegative on C,

C*={fe X" :Ref(x) >0 Vzel}.

Then the following extremum principle is valid:

Theorem 3. Suppose I attains a local minimum on Z = ﬂ?jll Z; at xg and

the cones DC(I,xy), FC(Z;,x0), i = 1,... ,n, and TC(Z,4+1,%0) are no-
nempty and convex. Then there exist linear functionals fo € DC(I;xz0)*, fi €
FC(Zj;x0)*, fori=1,2,... ,n, and fp41 € TC(Zyy1;20)*, which do not
all vanish identically, such that

f0+f1+---+fn+fn+150- (14)

Thus we need to determine the cone of decrease for the functional I at
(z,u), DC(I,(x,u)), the tangent cone to the set Z; at (z,u), TC(Z1, (z,u))
and the feasible cone to the set Zy at (z,u), FC(Za, (z,u)) as well as the
corresponding dual cones.

Repeating arguments from [12] and [8] and applying [3, Theorem 7.4], it
follows that

DC(I, (z,u)) = {(h,v) € W([0,T]) x L*(U) :

/OT Re ((La(t, 2(t), u(t)), h(t)) + (Lu(t, z(t), u(t)), v(t))) dt < 0} (15)
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and

DC(I, (x,u))* = {fy: there exists a y° < 0 such that

foh,v) = y° /OT (La(t, 2(t), u(t)), h(t)) + (Lu(t, x(t),u(t)), v(t)) dt}. (16)

In view of the assumptions of the theorem the operator F' defined in (8) is
continuously Fréchet differentiable at (z,u) with derivative given by
F'(x,u)(h,v)(t) = h(t) + A)h(t) = folt,x(t), u(t))h(t)
— fult, x(t), u(®)v(t). (17)

It follows from Lemma 1 that in fact for arbitrary v € L*(U) and 2z €
L?(X*), the equation

h(t) + A®)h(t) = fult, z(t), u(t)h(t) — fu(t,z(t), u(t))o(t) = 2(t)

has a unique solution h € W ([0, T]). Hence F'(x,u) maps W ([0, T]) x L*(U)
onto L2(X*) and the classical Lusternik Theorem applies. We obtain that

TC(Z1, (z.w)) = {(h,v) € W([0,T]) x LX(U) :

h(t) + A()h(t) = fult, x(t), u(t))R(t) — fult, z(t), u(t))o(t) = 0} (19)
The structure of the corresponding dual cone will not be required in the
remainder of the proof.
We now analyze the inequality constraint Zs given by (10). Theorem 10.5
in [3] implies that

FC(Za, (z,u)) = {(h,v) € W([0,T]) x L*(U) :
v=ANw-—u),weV} (20)

FC(Zy, (z,u))* = {f2(h,v) = (0, f3(v)) where Refs is a functional
supporting the set V at u}. (21)

Hence by Theorem 3 there exist linear functionals fo € DC(I, (z,u))*, f1 €
TC(Zy, (z,u))* and fo € FC(Za, (x,u))*, not all zero, such that

fo(h,v) 4+ fi(h,v) + fo(h,v) =0 ¥ (h,v) € W([0,T]) x L*(U).
Let (h,v) € TC(Zy,(z,u)). Since T'C(Zy,(z,u)) is a subspace, we have
fi(h,v) = 0. Hence, for (h,v) € TC(Z1,(x,u)) and using (15) and (21), the
Euler—-Lagrange equation implies
T
yo/o Re (L (L, 2(1), u(t), h(t)) + (Lu(t, x(t), u(t)), v(t))) dt
+ Refy(v) =0. (22)
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By Lemma 1 the adjoint equation (12) has a solution y € W ([0,T]). Using
the adjoint equation in (22) we obtain

T T
=3 [ Re(Lu(t.a(t).ult). h(6) dt = [ Re(j(e). (o))t
0 0
T T
— [ Re(a* @u(o). he)de + [ Re(f(t(t), ule)u(e) hie)dt.

Using Lemma 5.1 from [14] about integration by parts and the fact that
h € W([0,T]) we obtain

_ 0 /0 "Re (Lo (t, 2(t), u(t)), h(1)) dt

= /TRe<y(t), —h(t) — A@R)h(t) + fo(t, z(t),u(t))h(t))dt. (23)
Since (h,v) € TC(Z1, (z,u)), using (19) in (23) we have that

/Re (1), u(t)), h(2)) dt
/Re ), fults2(t), u(®))v(t)dt.  (24)

Combining equations (22) and (24) it follows therefore that

Ref3(v) = — /OT Re(y” Lu(t, 2 (t), u(t)) + fi(t, 2(t), u(t))y(t), v(t))dt.

The maximum condition (13) of the theorem follows now directly from the
definition of a supporting functional to V" at (z,u).

This proves the theorem for the case when the cone of decrease for I at
(z,u), DC(I,(x,u)), given by (15) is nonempty. If it is empty, then actually

/OT Re ((La(t, 2(t), u(t)), h(t)) + (Lu(t, 2(t), u(t)), v(t))) dt = 0

for all (h,v) € W([0,T]) x L*(U). This equation takes the form of the
Euler-Lagrange equation with multipliers equal to 3° = 0 and f5 = 0. Now
proceeding as above, the theorem follows.

If the set V has empty interior in L?(U), then the geometric model for
the Dubovitskii-Milyutin method changes since we now have two equality
constraints and one of them is in the nonoperator form. Such a case is
not included in the classical Dubovitskii-Milyutin formalism. The difficulty
stems from the fact that in the derivation of the Euler—Lagrange equation
from the Hahn—Banach theorem we need the property that

(Ne) -xe
i=1 i=1
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which in general only holds for open cones, i.e. for inequality constraints.
For closed convex cones we have

(ﬂ c;) =>.C;
=1 =1

where the bar denotes the closure in the weak-* topology. In [13] the concept
of cones of the same sense has been introduced and it has been shown that
the algebraic sum of closed cones of the same sense is weak-* closed. This
allowed to formulate an extension of the Dubovitskii-Milyutin formalism
to problems with many equality constraints [13]. In [10] this extension has
been applied to our problem formulated in a real Banach space and it has
been shown that the cones dual to the tangent cones to the constraints Z;
and Zs in our problem are of the same sense. This remains true for complex
Banach spaces and thus the identical argument can be made as in [10]. We
omit this argument here. U

Remark 2.1. 1If we assume in addition that
: _ . 2
(A6) the mapping t — |U(t)| = sup{||u|| : v € U(t)} belongs to L7,
then, proceeding like in Theorem 3.1 in [12], we can express the maximum
condition in the following simpler form:

Re(y’ Lu(t, x(t), u(t)) + fi(t,x(t), u(t))y(t),v —u(t)) <O (25)
for all v € U(¢t) and almost everywhere in [0, T7.

Remark 2.2. 1f U(t) = L?(U) for all t € [0,T], i.e. there are no constraints
on the control functions, then the maximum condition (25) becomes

Re (y"Lu(t,2(t), u(t) + £t 2(0), w()y(t)) =0 ace.

2.2. The Global Extremum Principle. The Maximum Principle for-
mulated in Theorem 2 gives the local form of the maximum condition.
The stronger global versions can be derived using Milyutin’s method of
variable time-transformations as it is outlined in [3] by applying the lo-
cal version (Theorem 2) to an auxiliary problem whose controls are time—
transformations along trajectories. The assumptions are the same except
that differentiability is no longer required in the control variable u and that
we choose a constant control set U(t) = Uy. But now Uj can be an arbitrary
control set. We denote the correspondingly modified assumption (HO) by
(HO’). Then we have:
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Theorem 4 (Global Extremum Principle). Assume (H0%), (H1), and (A1)
to (A2) hold and let the admissible process (x,u) be optimal for Problem I.
Furthermore, suppose that conditions (B1) to (B3) are satisfied along (z,u).
Then there exist y° < 0 and y € W([0,T]) with the property that

ly(®)llx- + [y°] (26)

does not vanish and such that they satisfy the adjoint equation

§(t) = = fr(ta(t), u(®)y() + A" (Oy(t) =y Lo(t,2(t), u(t))  a.e. o)

and the following mazimum condition
Re (4 L(t,a(t),u(®) + £*(t.a(0),u(®)y(®)) =
maxRe( OL(t,(t),v) + f*(t. z(t), )y(t)). (28)

veUy

We briefly outline the main idea of the proof, but need to refer the reader
to Girsanov’s monograph [3] for the details of the method of variable time
transformations. A non-negative function 7 : [0,1] — [0,7],s — t = 7(s)
of the form

(s) = /Osw(r)dr, 1) =T (29)

with w € L. (0,1) defines a time transformation from [0, 1] onto [0, 7]. The
function 7 is one-to—one in intervals where w(s) > 0. But if w(s) = 0 for
all s in some interval A then 7(s) = const on A and all of A is mapped
into one point. Choosing the left endpoint in such a case defines a unique
inverse

o(t) =inf{s > 0:7(s) =t}.
Let us denote by Bp the set

By ={we L. (0,1): /01 w(r)dr =T}.

Let (x,u) be an admissible process for Problem I defined over [0, 7] and let
w € L. (0,1) be a non-negative function in By. Set By = {s € [0,1] : w
0} and Ry = {s € [0,1] : w(s) = 0}. The reparametrised process (Z(-),
is defined as z : [0,1] — R™,s — z(s) = z(7(s)) while @ : [0,1] — U
chosen of the form

- u(7(s for s € Ry
u(s) = { arl()it(rzir)y for s € Ry

leaving, for the moment, the values on Rs unspecified. The triple (z(-), a(-),
w(+)) is then an admissible process for the reparametrised problem and the
values of the corresponding objectives are equal. Conversely, if the process
(Z,u,w) is admissible for the reparametrised problem, then (z,u) defined
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by z(t) = Z(o(t)) and u(t) = u(o(t)) is admissible for the original problem
and the values of the corresponding objectives agree. Therefore, if (zg, ug)
defined over [0, 7] is optimal for Problem I, then the process (Z, 4, w) is
optimal for any nonnegative w € Br and vice versa. Furthermore, if we
freeze the control g in the reparametrised problem, then the pair (Zg,w)
with w € Br is still optimal for the corresponding reparametrised problem
where we only minimize over w.

Thus the Local Extremum Principle Theorem 2 can be applied to give
necessary conditions for optimality. A judicious choice of the transformation
wg allows to transform the conditions back to the original time-scale to
obtain Theorem 4. Choose R; as a Cantor set (i.e. a perfect, nowhere
dense subset of [0,1] which is obtained by deleting a countable number
of disjoint intervals from [0, 1]) of positive measure v(R;) and let Ry be
its complement. Thus Ry is a countable union of pairwise disjoint open
intervals. In addition choose R; so that it has the additional property that,
whenever I C [0,1] is any interval of positive measure so that I N Ry is
nonempty, then I N Ry contains an interval. The construction of sets of this
kind is a standard exercise in Real Variables. Then define wy as

[ T/v(Ry) forseRy
wo(s) = { 0 for s € Ry. (31)

Finally, specifying u on Ro so that it takes values in a countable dense subset
of the control set Uy, the result follows. For more details of the argument
we refer the reader to [3].

3. Canonical spray of flights. We now formulate sufficient conditions
for optimality. We say that an admissible pair (x(t),u(t)), t € [0,7] is
a line of flight (briefly 1.f.) if it satisfies the following conditions (the
maximum principle): along xz(t) there exist a conjugate vector function
y(t), absolutely continuous in [0, 7] with values in X*, and a number 3° < 0
such that [|y(t)||x+ + |¢°| is nonvanishing and

Y(t) = —fr(t,x(t), u(t))y(t) — y°La(t, z(t), u(t)) + A*(t)y(t), ae. )

Re(y(t), f(t,x(t), u(t))) + y L(t, x(t), u(t))
= sup{Re(y(t), f(t, z(t),u)) +y° L(t,z(t),u) : u € U(t)}, (33)
U(z(0),z(T)) = U(y(0),y(T)) =0 (34)

condition (34) is not satisfied. (35)
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Since for the construction of a field of extremals the class of extremals
which satisfy (34) would generate a too narrow field in our construction we
will allow some extremals which do not satisfy this boundary condition.

For a given line of flight (z(t),u(t)) we write z(t) = (—z%(t), z(t)) where

29(t) = /tTL(T,I(T),U(T))dT,t € [0,7]

and we write p(t) = (y°,y(t)) where (y(t),3°) are the corresponding con-
jugate function satisfying conditions (32)-(34) or (35). We call a triple
(z(t),p(t),u(t)) of functions such that (x(¢), u(t)) define a line of flight
and (y(t),y") are the corresponding conjugate function satisfying condi-
tions (32)—(34) or (35) a canonical line of flight (briefly c.Lf). In the
usual way we define an open arc line of flight or canonical line of flight.
Further, denote by P C R? x X* a set covered by graphs of p (¢) such that
z(t), p(t), u(t) is a c..f., which in the sequel may be reduced to a smaller one;
let @ C R x X denote a set covered by graphs of z(t) such that (z(t),u(t))
is a line of flight. If (o, po) € P, then we write V (¢o,po) for the value of

Y0 /T L(t, xo(t), uo(t))dt — Re(zo(to), yo(to)) = —Re(z0(to), po(to))=
fo (36)

where the Re(:,), in (30) is defined by the left hand side, and 2o(t) =
(=xd(t),z0(t)), po(t) = (¥, v0(t)), uo(t) is a c.L.f. such that po(to) = po. Of
course, the map (t,p) — V(¢,p) in P might be a multifunction. Here we
assume that

(HS) the set P is such that the map (¢,p) — V(¢,p) is single valued in P.

Further we shall consider only those c.lf. which are subject to (HS). A
rectifiable curve C' lying in P is called bounded if V (¢, p) is bounded along
it.

In order to construct a spray of flights from canonical lines of flights
defined above, we must choose a certain family of arcs of canonical lines of
flight which satisfy extra regularity hypotheses. In this section we describe
such a family of arcs of canonical lines of flight Let W be a separable reflexive
Banach space and on an open set G C W define a pair of differentiable
continuous functions

t=(0),t*(0), t~ (o) <t* (o), o€,
with values in [0,T]. Let

ST = {(t,o):t=t"(0) >0, o€ G},
S = {(t,o):t (o) <tF (o), 0 € G},
St = {(t,o):t=t"(0) <T, ocG},

and set [S] = ST USUST.
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The family of canonical lines of flight is described by the functions
z(t,0),p(t,0)ult, o),  (t,0) € [S] (37)

and will be denoted by X. The sets of pairs (t,z) where x = z(t,0) with
(t,0) belonging to S~, 5, 5™, [S] will be denoted by E~, E, E*, |E], respec-
tively, and the set of pairs (¢, z(¢,0)) with (t,0) in S~,5,5,[S] by D™,

D, DY [D]; E*~, E*, E**, [E*] will denote the sets of values of (t,p(t,o))

with (t,0) in §7, 5, S*,[S]. We shall write (when o € G) V1 (o) for the

expression V (t* (o), p(t* (o), 0)).

We shall make the following regularity hypotheses on X:

(H2) The functions z(t,0) and p(t,o) are C* in [S] and u(t,o) is Borel
measurable in [S].

(H3) The functions L(t,0) = L(t,z(t,0). u(t,0)), f(t,o) = f(t,z(t,0),
u(t,o)) are continuous in [S]; they have continuous derivatives
L,(t,0), f-(t,0) in [S] and for each fixed (£,z) in [E], the partial
derivatives %L(t,x,u(t,a)), %f(t,m,u(t,a)) at © = z(t,0) satisfy
the following relations:

g_i(t,o—) = 8L(t,$a’:(t’a)) + La(t, 2, u(t, 0)) 24 (L, 0),
of ~ Of(t,z,ult,0))
%(t’g) == + fu(t,z,u(t, 0))zs(t,0).

(H4) The maps S~ — D™, S — D defined by (t,0) — (t, 2(t,0)) have the
following property: given any arc C, C D~ (or C, C D) with the
description t; < 7 < tg, (—2%(7),z(7)) where z(t) is a trajectory of
an admissible pair (z(t),u(t)), t € [0,T], 2°(t) = tTL(T,.’.L'(T),U(T))dT,
issuing from (t1, z(t1,01)), there exists a rectifiable curve I' C S~ (or
I' C S) issuing from (¢1,01) such that every small arc of C, issuing
from (t1,2(t1,01)) is the image under the map (¢,0) — (¢,2(¢,0)) of a
small arc of T issuing from (1, 071).

Definition 2. If hypotheses (H2)—(H4) are satisfied then ¥ will be called
a canonical spray of flights.

For (t,p) € [E*] let Z(t,p),U(t,p) stand for the sets of values of z(t, o)
and u(t,o) at those (¢,0) € [S] for which p(t,o0) = p. For (t,z) € [E],
P(t,x),U(t,x) denote the sets of values of p(t, o) and u(t, o) at those (t,0) €
[S] for which z(t,0) = z. By an admissible pair of functions

z(t,p) € Z(t,p),  ult,p) € U(L,p), (t,p) € [E7],  (38)

we shall mean single valued functions (z(¢,p),u(t,p)) in [E*] such that for
each (to,po) € [E*] there exists a canonical line of flight (z(¢), p(t),u(t)) for
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which p(ty) = po, z(to, po) = z(to), u(to,po) = u(tp). By an admissible pair
of functions

p(t,z) € P(t,z), u(t,z) € U(t,x), (t,x) € [E],

we mean single valued functions (z(t,z),u(t,z)) in [E] such that for each
(to,ro) € [F] there is a canonical line of flight z(t) = (2°(¢),z(t)), p(t) =
(3", y(t)), u(t) for which z(to) = o, p(to, z(ty)) = p(to), ulto, z(to)) = u(to)-

On any bounded rectifiable curve C'in [E*]| with the arc length description
t(s),p(s),0 < s < s¢, we define the curvilinear integral

/C{yOL(t, z(t,p),u(t, p)) + Re(y, f(t,z(t,p),u(t,p)) — A(t)x(t,p))}dt
+Re (2(t,p), dp), =

| @) L), 2 (t(s).pl). u(t(s).p(s))
HRe(y(s), ((6). 2(0(6). (). u(t(5). p(5))) — Alt(3))a(t(5).(5)))

ds
dp
PRe(z(t(s).p(s)). ) )as

for any admissible pair of functions (32) such that ({y°L +re(y, f — Az)} +
re(z,dp/ds), is a measurable function of the arc length s along C.

We call a subset R of [E*] an exact set, if for each bounded rectifia-
ble curve C' C R with ends (¢1,p1), (t2,p2), having the property that the
expression ({y°L +re(y, f — Az)} + Re(z,dp/ds), at almost every point of
C' takes the same value for all admissible pair (38), we have

/C {L(t.2(t,p). u(t,p)) + Rey, f(t,2(t, p) u(t,p)) — A(t)a(t,p)) | dt
+ Re(z(t,p), dp>z = V(tlapl) - V(t2ap2) (39)

for each admissble pair z(t,p) € Z(t,p),u(t,p) € U(t,p), (t,p) € [F*].
In this section we assume that we are given a spray of flights for which
the set E*T is exact.

Remark 3.1. Let C, denote any small arc contained in D~ or D, with the
description t; < 7 < to, (—2°(7),2(7)) where z(t) is a trajectory of an
admissible pair (z(t),u(t)), t € [0,T], with I(z(0),z(T)) = 0, 2°(t) =
JEL(r,2(7), u(r))dr, issuing from (1, z(t1,01)). We also represent C, in
terms of its arc length s as t = t(s) z = z(s) = (2°(s),z(s)), s € [0,s¢.]-
Furthermore, let I' denote a rectifiable curve in S~ or S such that small arcs
of C, issuing from (¢, 2(t1,01)) are, in accordance with (H4), the images
under the map (¢,0) — (t,2(t,0)) of small arcs of I" issuing from (¢1,01).
We represent T' in terms of its arc length A by functions ¢(\),5(A), so that
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the point (¢1,071) corresponds to A = 0. We can then define a continuous
increasing function s(\) having inverse A(s), which satisfies the relation

ts(A) =t(A),  z(s(N) = 2(t(A),a(N)).
In turn, let C, be the image under the map (¢,0) — (¢,p(t,0)) of I' issuing
from
(t1,p(t1,01)) = (t1,p1) = (t1, 975 91)-

We easily see that to small arcs of I' issuing from from (¢1,07) there cor-
respond small arcs of C), issuing from (t1,p;). Thus we can express the
final points of the small arcs of C), as a function of s, (t(s),p(s)). De-
note by (t2,p2) the terminal point of C), which corresponds to that of

Ci(ta, —2°(t2), 2(t2)).

Lemma 5. Let C), be one of the arcs described in Remark 3.1. Then along
Cyp, the function V (t,p) is bounded and there exists a Borel measurable ad-
missible pair of functions (z(t,p), u(t,p)) along Cp. Moreover, the functions
2(6,p), L{t,a(t,p), ult,p)), [(t,2(t,p), ult,p)) are bounded along it

Proof. The proof is identical to that in [10, Lemma 3]. O

Lemma 6. Let any oo € G be given. Then for each w € W the function
t — Re(p(t,00), 24 (t, 00)w), =
— y%(00)Re(zg (t, 0),w) + Re(y(t, 00), 24(t, 00)w)  (40)

is constant in (t~(o0),t* (00)).

Proof. Proceeding analogously as in [10, Lemma 3] and taking partial deri-
vative with respect to time of re(pg(t), zo(t, og)w). O

Lemma 7. Let I denote any small rectifiable curve in [S] with (tg,00) as
the initial point and (t1,01) as the terminal one. Then

d d
[ Gireta(t.0).plts )it + —re(a(t,0). p(t,0))do =
V (to, p(to, 00)) — V(t1,p(t1, 01)).
The proof follows directly from the definition of the function V (¢, p).

Lemma 8. In the set ST the quantity
re(p(t, o), z5(t,0)w), (41)

is identically zero, w € W.
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Proof. Let (ty,00) be any point in ST. Let I' be any sufficiently small
rectifiable curve in ST which starts from (¢g,00) and has the description
t = tT (%) where o varies from o to o7 along asegment with direction w.
Now let C be the image of I" in £** under the map (t,0) — (¢, p(t,0)) with
ends (tg,po), (t1,p1). From the exactness of E*T we get

Vito.po) = V(tn.p1) = [ {°Lt.a(t.p). ult.p)) + Rely. /(t.a(t.p). ult.p)
—A(t)z(t,p))} dt + Re(z(t, p), dp)-
/ (0)L(t,0) + Rely(t,0), f(t.0) — A(D)z(t,o))
+ Re(yi(t,0),z(t,0)))dt + Re(z(t, 0), po (L, 0)do) .
_ / S Re(x(t,0), (. a)>zdt+%Re@(t,a),p(t,a»zda

~ [ Re{p(t.0), 7 (t,)do).
r
From the above in view of Lemma 7 we obtain
/ Re(p(t,0), 2 (t, 0)do) = 0.
N

Because I is arbitrarily small and o% varies from o( to o1 along a segment
with direction w, we get the assertion of the lemma. U

As a direct consequence of Lemmas 6 and 8 we have the following corol-
lary.

Corollary 9. The quantity (41) is identically zero in [S].
Similarly as Lemma 5 we obtain the following lemma

Lemma 10. Along an arc t1 < 7 < to, x(7) lying in E~ (or E), there exist
Borel measurable functions p(t, x),u(t,x), (t,x) € [E] with the property that
the functions p(t,x), L(t,z,u(t,z)), f(t,z,u(t,x)) are bounded along it.

Theorem 11. Let C, and C), be as described in Remark 3.1. Then the
following relation holds for some admissible pair p(t,z),u(t,z), (t,x) € [E]:

V(t1,p1) — V(t2,p2) — Re(z(ta), ya) + Re(z(t),y1) + 2°(t2)ys — 2°(t1)y]
—/ L(t, 2, ult, ) + Rely(t, o), f(t, 2, ult,z)) — A(t)z))dt
~Re(p(t, x),dz)..
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Proof. Let e(s) = (£,492) stand for the direction of the tangent to C,
defined for a.e. s in [0,sc,]. Let sop be any point in [0, s¢,]| such that e(s)
and p(s) are approximately continuous at it. We set ty = ¢(s), zog = x(s0),

eo = e(s0), to = dt(so)/ds, 20 = dz(so)/ds, Ag = A(to)xo. Let po = (y3,v0),
up be any admissible vectors from the sets P(to,x0),U(to,x0) such that
p(to, 00) = po, u(to,o0) = up for any (to,00) belonging to the graph of I'.
We also put fo = f(to,zo,u0), Lo = L(to,z0,up) and let A9 be such that
oy = 5’()\0).

Denote by v a sufficiently small arc ' starting from (¢, 0¢) defined over
an interval I = [X\g, A2] of values of A, i.e. the functions t(\), a()\) are
restricted now to the interval I. Denote by AV the difference in V(¢,p) at
the ends of the small arc C), starting from (to,po) which is the image of 7,
and denote by As the corresponding difference in s. By Lemma 7, Corollary
9, and taking into account Remark 3.1, we obtain

AR = —AV —Re(z(t(X2)), y(t(A2)), o (A ))>+Re<( 0)>Y0)
2 (H(X2))y’(7(A2)) — 2°(to)yo
= L(y( o)L(t,0) + Re(y(t,0), f(t,0) — A(t)z(t,0))
+Re(yi(t, o), 2(t,0)))dt + Re(z(t,0), py(t,0)do)
/ (Re(z(t,0),p(t,0)). + Re(2(t,0), pe(t, 0))odt  (42)
Y Re(p(t,0), 20 (t, 0)do), + Re(z(t, o), po (£, 0)do)
= /[(yo( (M)L(EA), &(N)) + Re(y(E(M), a(N)), f(EX),a(N))

AN, TN 5.~ Re(p(F(N),5(N), T)-]ds ().

Since p(t,0), L(t,o), f(t,0), z(t,0), A(t)z(t,0) are continuous on 7, we
deduce that they are bounded on I. This along with (40) implies the uniform
boundedness of the ratio AR/As for all sufficiently small As. Thus the
function V' (s) = V(¢(s), p(s)) is locally Lipschitz (as z(s) and p(s) are locally
Lipschitz). To prove the assertion of the theorem it is enough to show that
lim % = {yOLO + Re{yo, fo— A0>}t0 - Re<p0, Z0>z as As — 0.

But this is quite analogous to the corresponding part of the proof of Lemma,
25.3 in [15] if we take there

=9\ = <{y0i+Re (v.f = Az)} % _Re< (‘Z>Z>

- ({ySLO + Re (o, fo — A0>} to — Re(po, é0>z> '
O
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4. Chain of flights. Now we are going to extend our argument from
one spray of flights to a sequence of sprays forming a chain of flights.

Definition 3. A finite sequence of canonical sprays of flights
217227---72n (43)

will be called a chain of flights if for i = 1,2,..., N, they fit together
in inverse order so that the set E~ corresponding to )7 contains E;‘_tl
corresponding to Y 7, ;.

In order to derive some more information on our sets E; Ez*++1 we need
one more hypothesis for each ;. For convenience we omit the indices 7.
(H5) The maps S~ — E* defined by (t,0) — (t,p(t,0)) are descriptive:
amap S~ — E* is descriptive if for each (t,0) € S~ and any given
rectifiable curve C' C E*~ starting from (¢, p(¢,0)) there exists a recti-
fiable curve I' C S~ starting from (¢, o) such that every small arc of C'
starting from (¢, p(t,0)) is the image under the above map of a small
arc of I starting from (¢,0) (see also [15]).
We put V(s) = V(t(s),p(s)) along any rectifiable curve C' in E*~ with
the arc length description ¢ = t(s), p = p(s), 0 < s < s¢.

Theorem 12. The function V(s) is absolutely continuous along C and,
for almost all s in [0, s¢], and each admissible pair (z(t,p),u(t,p)), (t,p) €
[E*~] we have:

d%V(S) = —({y°(s)L(t(s), z(t(s), p(5)), ult(s), p(5)))
+Re(y(s), f(i(s), z(t(s), p(s)), u(t(s), p(s))) (44)
—As))2(1(5), P} o + Re(a(t(s),p(s)), B
Proof. The proof proceeds analogously as in Theorem 4.1 of [10]. O

Integrating (44) along C, we obtain the following corollary:

Corollary 13. For each admissible pair z(t,p),u(t,p), (t,p) € [E* ],

V(t1,p) = Vitzip2) = [ {5°L(t.a(t.p), ult,p)

+ Re(y, f(t, z(t,p), u(t,p)) — A(t)x(t,p)) }dt + Rez(t,p),dp )., (45)
where (t1,p1), (t2,p2) are the initial and final points of C'.

A direct consequence of Corollary 13 we get the following corollary.
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Corollary 14. The set Ez*fl of > iyq is ewact for Y, as well for Y7, 4,
i=1,...,N.

If E5T of 3°; happens to be an exact set, then all sets £, i =1,... , N,
are also exact sets and in each [S;] Corollary 9 holds.

Let G, G1 be open sets of parameters 0!V, 0!, respectively, associated

with the spray Y, and ;. Let (z*(¢),u*(t)),t € [0,T] be a Lf. satisfying

(34). Suppose

(H6) There exists at least one o} € Gy, and o} € Gisuch that z*(t) =
2(t,0)),t € [t (o)), trod], 2°(t) = a(t, ob), t € [t (od), t( b)) -
There exits a countinuously differentiable function h : G; — Gy, such
that z(t,0{’) = x(t, h(0})), and for each o the trajectory x(t, o), t €
[t~ (oY), tT (o)) define the same L.f. as z(t, h(c1)),t € [t~ (h(c!)), tT (h(ah))]
and h(G1) = Gn. Moreover, if condition (34) is not satisfied for a c.Lf.
2(t,ob), p(t,ot), u(t,o!) then

Re(y(tt(oh),ob), z,1(tT(c1),01)) = 0.

A chain of flights which satisfies hypothesis (H6) will be called a distingu-
ished chain of flights.

Lemma 15. For any distinguished chain of flights, the quantity (41) is
identically zero in Si.

Proof. First notice that the Fenchel conjugate of the function I defined in (4)
is the same function (for g : X — R, ¢*(z*) = sup{(z*,z) — g(z), = € X},
x* € X), thus condition (34) may equivalently be written as

(y(0), —y(T)) € Al(x(0), x(T)) (46)

where 0l denotes the subdifferential of the convex function . In view of (H6)
we can confine ourselves to the case when our canonical lines of flight satisfy
condition (34). Since the function o — (p(tT (o), 1), z,1 (tT(01), oV )w)., is
continuous, the set G of o' defining those canonical lines of flight, for which
condition (34) is satisfied is open. Hence and by (34) I,1(z(0, h(ct)), (T, o))
= (0. From this we infer the assertion of the lemma. O

Suppose we are given a distinguished chain of flights with the trajectory
x* described in (H6). Denote again by @ the set covered by graphs of
trajectories of that chain.
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Remark 4.1. Now let C, be any trajectory with the description 0 <t < T,
(—2°(t), z(t)) where x(t) is a trajectory of an admissible pair (z(t), u(t)), t €
[0, T), I(x(0),2(T)) = 0,whose graph contained in Q, z°(t) = ftTL T, z(T
u(7))dr. Then we can divide C, into a finite number of small arcs (see
(H4)), which are described in Remark 3.1 and in the way presented there
we are able to obtain an arc C}, with ends (0, p(0)), (7', p(T')), corresponding
to C',. Of course, for each such small arcs Theorem 4 holds. This implies
the corollary below.

Corollary 16. Let C, and C, be as in Remark 4.1. Then the following
relation holds for some admissible pair (p(t,x),u(t,z)), (t,x) € Q:

V(0,p(0)) + Re(y(0), z(0)) — 2°(0)y°(0)
_ /C(yo(t,x)L(t,x,u(t,x))+Re<( ), f(t, 2, u(t, 7))

z

—A(t)z))dt — Re(p(t, x), dz) .

(47)

The last corollary allows us to derive sufficient conditions for a relative
minimum of J. Denote by G, C G! the set of those ol for which z(t,¢")
satisfy (34) and let E, = {(0,2) : z = z(0, h(c"), o' € G,}, and denote by
z(t,k(ch)), t € [t~ (h(ol),tT(o1)], ot € G, the trajectories which correspond
to x(t,ot),t € [t (ol),tT(ah)].

Theorem 17. Assume that we are given a distinguished chain of flights.
Let a triple of functions z*(t) = (=2 (t),2*(t)), p*(t) = (y**,y*(t)), u*(t),
t €10, T], satisfying (34) be a member of our chain and suppose that

J(a*,u’) = min / L(t, (t, ko)), ut, k(o)) dt. (48)
Then
—QOJ(w*,u*) < —gjOJ(x,u) (49)

relative to all admissible pairs (z(t),u(t)), t € [0,T], with x(t) satisfying
(34), for which the graphs of x(t) are contained in Q, z(0) € E; and §° =
y°(aN) where oV is such that x(0,6") = x(0).

Proof. Let (z(t),u(t)), t € [0,T], be any admissible pair with z(t) satisfying
(34) and its graph contained in @, z(0) € E, . Put l(x(0),z(T)) =0, 20(t) =
ftTL(T,x(T), u(7))dr and let C, denote the trajectory z(t) = (—a%(t), z(t))
and C) the corresponding (see Remark 4.1) trajectory in the (¢, p)-space
with the initial point (7°,7(0)) = p(0). Let 2(t),p(t) = (F°,9(t)), u(t),
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t € [0,7], z(0) = z(0), with z(t),y(t) satisfying (34) be a member of our
spray. Then by Corollary 16 and equation (33) we have

T T
yO/O L(t,i(t),ﬂ(t))dt—go/o L(t, 2(t), u(t))dt
T

= /0 [y (¢, 2 () (L(t, x(8), u(t, 2(t))) — L(t, 2((1), u(t)))) (50)
+Re(y(t, z(t)), f(t, 2, (1), u(t, x(t)) — [t x(t), u(t)))]dt > 0.
Hence —3°J(z,u) < —y°J(x,u) and by (48) we get (46). O

Remark 4.2. In the assertion of Theorem 17, the multiplier " depends on
z(t), i.e. §° is determined by x(0) (see Remarks 3.1 and 4.1). If y°(o!) # 0
for all o' € G, then (z*,u*) is a strong relative minimum for .J.

5. Dual feedback control. In this section we assume all notations and
assumptions of the previous sections. In Theorems 12 and 17 we used a
Borel measurable selection u(t,z) of the multifunction U(t, z), (t,z) € Q.
In applications this function is considered a feedback control or synthesis.
In practice it often plays a more useful role than minimizers of functionals
and it is very important to have an algorithm to determine feedback func-
tions. In fact, in Section 4 we gave a method to calculate the multifunction
U(t, z) whose existence is ensured by the existence of a chain of flights. Ho-
wever, from the theorems in Section 4 we cannot infer that there exists a
selection of U(t,z) which would be an optimal feedback control. That is so
because relations (50) and (44) are satisfied only for some admissible pair
(p(t,x),u(t,x)), (t,z) € [E], and hence we need the aditional requirement
(48) in the sufficiency result Theorem 17.

The aim of this section is to study properties of selections u(t,p) of the
multifunction U(¢, p) introduced at the begining of Section 3 which we will
call dual feedback controls. We give also sufficient conditions under which
they become optimal feedback controls. To this effect we need one more
hypothesis in each spray of flights of a distinguished chain of flights.

(H7) The map S — E* defined by (t,0) — (t,p(t,0)) is descriptive.

We put V(s) = V(t(s),p(s)) along any rectifiable curve C' in E*~ or E*
with the arc length description ¢t = t(s), p = p(s), 0 < s < s¢.

Theorem 18. The function V (s) is absolutely continuous along C and, for
almost all s in [0, sc], and each admissible pair (z(t,p),u(t,p)), (t,p) € [F*]
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we have:

%V(S) = —({y°(s)L(t(s), z(t(s), p(s)), u(t(s). p(s))) (51)
+Re(y(s), f(t(s), z(t(s), p(s)), u(t(s), p(s)))
~A(H(5))a(t(s), P} 5. + Rel=(t(s), p(5)), L),

Proof. The proof is exactly the same as that of Theorem 12. U

Integrating (51) along C, we obtain the following corollary:

Corollary 19. For each admissible pair z(t,p),u(t,p), (t,p) € [E*],

V(tp) = Vite.p) = [ ('Lt a(t.p). ult,p)
+ Re(y, f(t,z(t,p), u(t, p)) — A(t)z(t,p)) }dt + Re(z(t,p), dp )=, (52)
where (t1,p1), (t2,p2) are the initial and final points of C'.

Now we give a precise definition of a dual feedback control and we show
that the selections u(t, p) of U(t,p) are really dual feedback controls. Let a
Borel measurable function u = u(t, p) from a set P C R? x X* of the points
(t,p) = (t,3°,9), t € [0,T)], y° <0, into U(t) be given. Then the differential
equation

x4+ A(t)x = f(t,xz,u(t,p)), (53)

has in general many solutions z(¢, p) in P. We say that v = u(t, p) is a dual
feedback control if we can choose any solution z(t,p) of (53) such that for
each admissible trajectory z(t) lying in Q = {(¢,z) : x = z(t, p), (t,p) € P},
there exists a function p(t) = (y°,y(¢)) of bounded variation lying in P which
satisfies z(t) = z(t, p(t)).

Proposition 20. If z(t,p),u(t,p), (t,p) € P, is an admissible pair of func-
tions, then u(t,p) is a dual feedback control.

Proof. By the definition of an admissible pair of functions we easily see that
z(t,p) from z(t,p) = (—2°(¢,p),z(t,p)) is a solution to (53). In Remarks
3.1 and 4.1 for each admissible trajectory z(t) = (—2°(t),z(t)) with z(t)
lying in @, the construction of a function p(t) is described. From that
construction we see that p(t) lies in P and is of bounded variation and that

z(t, p(t)) = x(t). O
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For a given dual feedback u(t,p) with corresponding trajectory z(t,p),
(t,p) € P, let us define the dual value function Sp(¢,p) in the set P as

So(t.p) =il [ Lir,2(r),u(r)ir)

where the infimum is taken over all admissible pairs (z(7), u(7)) restricted
to [¢t,T] with z(7) satisfying (34) and having graph in Q.

A dual feedback u(t,p) will be called optimal if for each (¢,p) € P there
exists an absolutely continuous function p(7) = (3°,y(7)), 7 € [0,T], with
graph in P such that

T
Sp(t,p) = —yo/t L(r, (7, p(7)), u(r, p(T)))dT (54)

(z(t,p) is a function corresponding to u(t,p)) and a function V'(¢,p) in P
such that the triple V (t,p), 2(t,p) = (—2°(t, p), z(t,p)), u(t, p) satisfies (48)
for all rectifiable curves C' lying in P.

The next theorem gives sufficient conditions for the existence of an opti-
mal dual feedback control.

Theorem 21. Assume we are given a canonical spray of flights satisfy-
ing (H5) and that there exists an admissible pair of functions z(t,p) =

(—2°(t,p), 2(t,p)), u(t,p), (t,p) € P for it such that
y L(t, z(t, p), u(t,p)) + Rely, f(t, z(t,p),u(t,p)) — A(t)z(t,p))
= sup  {y"L(t,x(t,p), alt, p)) (55)
a(t,p)eU(t,p)
+ Re(y, f(t, z(t,p),u(t,p)) — A(t)z(t,p))}

where U(t, p) is a multifunction corresponding to the chain of flights descri-
bed in Section 4. Moreover, suppose that for each (t,p) € P there exists
a B(r), 7 € [t,T], such that #(r) = a(r,p(r)), p(r),a(r) = u(r,p(r)) is a
member of our spray. Then u(t,p) is an optimal dual feedback control.

Proof. 1t is quite anologous to the corresponding Theorem 4.2 in [10]. O

Remark 5.1. The existence of an optimal dual fedback control gives us more
information about the problem under consideration then the sufficiency The-
orem 17. However, to obtain a sufficiency theorem on the existence of an
optimal feedback (Theorem 21) we need much stronger assumptions.
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