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Abstract. The idea behind thecoset codeconstruction (see [G.D. Forney,Coset Codes, IEEE Transactions on
Information Theory, Part I: Introduction and Geometrical Classification, pp. 1123–1151;Part II: Binary lattices
and related codes, pp. 1152–1187; F.R. Kschischang and S. Pasupathy,IEEE Transactions on Information Theory
38 (1992), 227–246.]) is to reduce the construction of sphere packings to error-correcting codes in a unified
way. We give here a short self-contained description of this method. In recent papers [J. Bierbrauer and Y. Edel,
IEEE Transactions on Information Theory43 (1997), 953–968; J. Bierbrauer and Y. Edel,Finite Fields and Their
Applications3 (1997), 314–333; J. Bierbrauer and Y. Edel,IEEE Transactions on Information Theory44 (1998),
1993; J. Bierbrauer, Y. Edel, and L. Tolhuizen,Finite Fields and Their Applications,submitted for publication.]
we constructed a large number of new binary, ternary and quaternary linear error-correcting codes. In a number
of dimensions our new codes yield improvements. Recently Vardy [A. Vardy,Inventiones Mathematicae121,
119–134; A. Vardy, Density doubling, double-circulants, and new sphere packings,Trans. Amer. Math. Soc.351
(1999), 271–283.] has found a construction, which yields record densities in dimensions 20, 27, 28, 29 and 30.
We give a short description of his method using the language of coset codes. Moreover we are able to apply this
method in dimension 18 as well, producing a sphere packing with a record center density of(3/4)9.

Keywords: sphere packing, lattice, code, center density, hexagonal lattice, dual code, Mordell’s inequality,
Leech lattice

1. Sphere packings and coset codes

Let E = RN be theN-dimensional Euclidean space,0 ⊂ E a discrete subset. Denote by
‖x‖ the Euclidean distance ofx from the origin, byµ(0) the minimum norm (= square of
the distance) between different elements of0. The valueρ(0) = √µ(0)/2 is called the
packing radiusof 0. The meaning ofρ is that open balls of radiusρ centered at the lattice
points do not intersect, andρ is the maximum such radius. We will be mainly interested in
the parameter

δ = δ(0) = ρN

vol(0)
,

thecenter densityof 0. As the discrete sets0 constructed in this paper will be unions of
cosets of lattices the determination of the volume will be no problem (if0 is the union of
M different cosets of a lattice of volumeν, then0 has volumeν/M). Observe thatδ is
unchanged if a constant positive nonzero multiplicative factor is applied:δ(c · 0) = δ(0).
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We can therefore assumeρ = 1. Thenδ is the reciprocal of the volume of0. Our objective
is to construct sphere packings with a high center density.

1.1. Coset codes

Let A0 ⊃ A1 ⊃ · · · ⊃ Al be a chain ofm-dimensional lattices, where the factor group
Ai−1/Ai is isomorphic to the abelian groupAi of orderai , i = 1, 2, . . . , l . Let further
Ci be anai -ary code of lengthn, with Mi elements and minimum distancedi . We choose
representativesαi j , j = 1, 2, . . . ,ai for the cosets ofAi in Ai−1. Chooseαi 1 = 0. Put
Ai = {αi j , j = 1, 2, . . . ,ai }. ChooseAi as the alphabet over which the codeCi is defined.
It is convenient and no loss of generality to assume that the all-0 word belongs toCi . The
N= nm-dimensional packing

0 = 0(A0 ⊃ A1 ⊃ · · · ⊃ Al ;C1,C2, . . . ,Cl )

is defined as the union ofM1M2 · · ·Ml cosets of the sublattice(Al )
n. The cosets

are parametrized byl -tuples of codewords(v1, v2, . . . , vl ), where vi ∈Ci . Let vi =
(vi 1, . . . , vin), wherevi j ∈ Ai . Then the cosetN(v1, v2, . . . , vl ) is defined as

N(v1, v2, . . . , vl )=
(

l∑
i = 1

vi j

)n

j = 1

+ (Al )
n.

Observe thatN(0, 0, . . . ,0)= (Al )
n. It is clear that these cosets are distinct so that

vol(0)= vol(Al )
n

M1 · · ·Ml
.

How about the minimal norm? Letx, y ∈ 0, x 6= y. If x andy belong to the same coset,
then their difference is in(Al )

n. It follows ‖x − y‖ ≥ √µ(Al ). So assume they are in
different cosets. Letx ∈ N(v1, v2, . . . , vl ), y ∈ N(v′1, v

′
2, . . . , v

′
l ) andi minimal such that

vi 6= v′i . As Ci has minimum distancedi it follows thatx− y has indi of its n components
an entry inAi−1\Ai . It follows ‖x − y‖ ≥ √di · µ(Ai−1).

1.2. The case m= 1

We haveA0 = Z,Ai = q1 · · ·qiZ (i = 1, 2, . . . , l ), µ(Ai ) = (q1 · · ·qi )
2, thus

µ(0) ≥ Min
{
d1, d2q

2
1, . . . ,dl (q1 · · ·ql−1)

2, (q1q2 · · ·ql )
2
}
.

If we use linear codes [n, ki , di ]qi we obtain

δ(0) ≥ 1

2n

l∏
i=1

qki−n
i · µ(0)n/2.
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1.3. The case m= 2

Let A0=〈(1, 0), ( 1
2,
√

3
2 )〉= 〈a0, b0〉 be the hexagonal lattice (as generated by

root systems of typesA2 and G2). The latticeA0 has volume
√

3
2 and minimum norm

1. The imageA1,0 of A0 under the linear mapping with matrix (1
−1

1
2) (with respect to

basisa0, b0) has index 3 inA0, is generated bya0 + b0 and−a0 + 2b0 and has minimum
distance‖a0+ b0‖ =

√
3. As a0+ b0 and−a0+ 2b0 have the same length and include an

angle ofπ/3 we see thatA1,0 is similar toA0. Applying the same matrix repeatedly we
getA j,0 = A0M j , for instanceA2,0= 3〈b0,−a0 + b0〉=3A0. Aside of this operation we
also consider sublattices of index 4 obtained by multiplication with the constant 2. This
leads to the following Definition:A j,k= 2kA0M j . It is clear that vol(A j,k) = 4k3 j

√
3

2
andµ(A j,k) = 4k3 j . We apply the coset code construction withAi =A j (i ),k(i ), where
j (i )+ k(i ) = i and eitherAi+1 = A j (i )+1,k(i ) orAi+1 = A j (i ),k(i )+1, of index 3 or 4 inAi .

We have

vol(0) =
(
22k(l )−13 j (l )+1/2

)n
|C1| · · · |Cl |

and

µ(0) ≥ Min{µ(Al ); di+1µ(Ai ), i = 0, 1, . . . , l − 1}.

2. A variant of the coset code-construction

We use the following chain of 1-dimensional lattices:A0=Z⊃A1= 2Z⊃A2=
4Z ⊃ A3 = 8Z and the following codes:C1 = [n, 1, n] (the repetition code),C3

= C⊥1 = [n, n − 1, 2] and binary codesC2,C′2 of lengthn, minimum distances≥d and
≥d′, respectively. Observe thatC2,C′2 are not required to be linear codes. As alphabets
for our codes we useA1 = {0, 1}, A2 = {0,−2}, A3 = {0, 4}.With this notation we define
0 = 0∗(A0 ⊃ A1 ⊃ A2 ⊃ A3;C1, (C2,C′2),C3) as the union of the following cosets of
(8Z)n in Zn:

N(0, v2, v3), wherev2 ∈ 1+ C2, v3 ∈ C3 (vectors ofeven type)

N(1, v2, v3), wherev2 ∈ C′2, v3 /∈ C3 (vectors ofodd type).

Here0 and1 stand for the vectors of lengthn with all entries 0 and 1, respectively. It is
clear that the addition of cosets is as follows:

N(0, v2, v3)+ N(0, w2, w3) = N(0, v2+ w2, v3+ w3+ v2 ∩ w2)

N(0, v2, v3)+ N(1, w2, w3) = N(1, v2+ w2, v3+ w3+ v2 ∩ w2)

N(1, v2, v3)+ N(1, w2, w3) = N(0, v2+ w2+ 1, v3+ w3+ v2 ∪ w2+ 1)

Let us determine the minimum Euclidean distance between different elements of0.

Assume at firstx, y are both of even type,x ∈ N(0, v2, v3), y ∈ N(0, w2, w3). If v2 6= w2,

then‖x − y‖ ≥ 2
√

d. If v2 = w2, v3 6= w3, then‖x − y‖ ≥ 2
√

2 = √32. If finally
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v2 = w2, v3 = w3, then‖x − y‖ ≥ 8. The same arguments apply ifx and y are both
of odd type. We just have to replaced by d′. Let finally x ∈ N(1, v2, v3) be of odd type
and y ∈ N(0, w2, w3) of even type. All entries ofx − y are odd integers. We wish to
impose conditions onC2,C′2 ensuring that for at least one coordinate the entry ofx − y is
±3 (mod 8). If this is the case, then‖x − y‖ ≥ √n− 1+ 9 = √n+ 8. Assume to the
contrary all entries ofx− y are±1(mod 8). Fix a coordinate. Consider the 16 possibilities
of how it may be distributed on the vectorsv2, v3, w2, w3.Eight of these are excluded as they
lead to a difference±3(mod 8). Write v2 = 1+ u2, whereu2 ∈ C2. The eight remaining
cases are the following:

u2 v3 w2 w3 N(1, v2, v3) − N(0, w2, w3)

1 0 0 0 1− 0= 1

1 0 1 1 1− 2=−1

1 1 0 1 5− 4= 1

1 1 1 0 5− (−2)=−1

0 0 0 0 − 1− 0=−1

0 0 1 0 − 1− (−2)= 1

0 1 0 1 3− 4=−1

0 1 1 1 3− 2= 1

Here the entry in the last column is to be taken as an integer mod 8, whereas the entries
in the first four columns are 1 or 0. As an example consider the second row of this table:
asu2= 1 (equivalentlyv2= 0) andv3= 0, the entry inN(1, v2, v3) is 1+ 0+ 0= 1. As
w2=w3= 1, the entry inN(0, w2, w3) is −2+ 4= 2. This explains the last entry 1− 2=
−1 (mod 8).

This table showsv3+w3 = w2∩u2 (herev+w is the symmetric differencev). Observe
that v3 + w3 has odd weight. We will get the desired contradiction ifw2 ∩ u2 is even,
equivalently ifC2 andC′2 are orthogonal codes.

Theorem 1 Let C2,C′2 be binary codes of length n and minimum distances d, d′, respec-
tively, which are orthogonal to each other. Then the n-dimensional sphere packing

0 = 0∗(Z ⊃ 2Z ⊃ 4Z ⊃ 8Z; [n, 1, n], (C2,C
′
2), [n, n− 1, 2])

has minimum Euclidean distancemin{2√d, 2
√

d′,
√

32,
√

n+ 8} and volumevol(0) =
22n+1/{|C2| + |C′2|}. If C2 = C′2 is a self-orthogonal linear code containing the all-1
vector, then0 is a lattice.

Proof: The statements concerning the minimum Euclidean distance and volume are by
now obvious. 0 is a lattice if and only if the cosets it consists of form a subgroup of
(Z)n/(8Z)n. The last claim follows from the addition rules given earlier. 2

This method yields the densest known packings in dimensions 18, 20, 24, 27, 28, 29, 30.
In each caseC2,C′2 are an orthogonal pair of linear codes with the same parameters. These
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parameters are

[18, 9, 6], [20, 9, 7], [24, 12, 8], [27, 13, 8], [28, 14, 8], [29, 14, 8], [30, 15, 8].

Only in dimension 24 can we chooseC2 = C′2. This is the extended binary Golay code
and we obtain a construction of the famous Leech lattice. All the other packings are non-
lattice packings. The orthogonal pair with parameters [20, 9, 7] may be derived from the
extended Golay codeG: chooseC2 to be the subcode vanishing in the first three coordinates,
projected to the last 20 coordinates, andC′2 the subcode vanishing at coordinates 1, 2 and
4, also projected to the last 20 coordinates. The orthogonal pair in dimension 18 can be
chosen as extended quadratic residue codes.

3. Recursive constructions

The following are relatively straightforward recursive constructions.

Lemma 1 If there are packings of center densitiesδN, δ j in dimensions N and j, then
there is an(N + j )-dimensional packing of center densityδ1δ2.

Proof: Let01, 02 be the packings whose existence is assumed above. We can choose the
minimum distance of both packings to be= 2. The(N + j )-dimensional packing01⊕ 02

still has minimum Euclidean distance 2, henceδ(01⊕ 02) = vol(01⊕ 02)
−1 = δ1δ2. 2

The following Theorem may be proved along the lines of [5], page 167:

Theorem 2 (Mordell’s inequality) Let 0 ⊂ Rn be an n-dimensional lattice of center
densityδ, not less dense than its dual0∗. Let 0 6= x ∈ 0∗ be a vector of minimum norm.
Then〈x〉⊥ ∩0 is an(n− 1)-dimensional lattice of center density≥ 1

2δ
(n−2)/n.

4. Some packings in high dimensions

We note that in a number of dimensions use of new codes constructed by us in [1–4] as in-
gredients in the coset-codes construction yields packings, which are denser that what can be
derived from known packings via Lemma 1 or Theorem 2. The new codes used in these con-
structions can be derived from the following codes: [144, 51, 32]2, [140, 50, 32]2, [155, 132,
8]2, [162, 138, 8]2, [86, 77, 5]3, [85, 74, 6]3, [86, 54, 14]3. Naturally it has to be expected
that more sophisticated constructions will yield improvements in all these cases. Still it is
noteworthy that the coset-code construction in its simplest form is capable of producing
dense packings in low dimensions as well as in rather high dimensions. We conclude with
a couple of examples.

In dimension 110 casem = 2 of the coset-code construction applied to ternary codes
[55, 1, 54]3, [55, 25, 18]3, [55, 44, 6]3, and [55, 54, 2]3 yields density 341.5. In dimension
170 we can use ternary codes [85, 16, 42]3, [85, 53, 14]3, [85, 76, 5]3 and [85, 84, 2]3 and
obtain density 785/368.5. In dimension 140 we can apply casem = 1 of the coset-code
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method. Binary codes [140, 1, 128]2, [140, 50, 32]2, [140, 117, 8]2 and [140, 139, 2]2 yield
a packing of density 297.
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