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Abstract. The idea behind theoset codeonstruction (see [G.D. Forne@oset CodedEEE Transactions on
Information TheoryPart I: Introduction and Geometrical Classificatippp. 1123—-1151Part II: Binary lattices

and related codepp. 1152-1187; F.R. Kschischang and S. PasuplER§E Transactions on Information Theory
38(1992), 227-246.]) is to reduce the construction of sphere packings to error-correcting codes in a unified
way. We give here a short self-contained description of this method. In recent papers [J. Bierbrauer and Y. Edel,
IEEE Transactions on Information Theof$ (1997), 953—968; J. Bierbrauer and Y. Edehite Fields and Their
Applications3 (1997), 314-333; J. Bierbrauer and Y. EJEIEE Transactions on Information Theofy (1998),

1993; J. Bierbrauer, Y. Edel, and L. Tolhuizéinite Fields and Their Applicationsubmitted for publication.]

we constructed a large number of new binary, ternary and quaternary linear error-correcting codes. In a number
of dimensions our new codes yield improvements. Recently Vardy [A. Vdnggntiones Mathematicak21,
119-134; A. Vardy, Density doubling, double-circulants, and new sphere packnags, Amer. Math. So&51

(1999), 271-283.] has found a construction, which yields record densities in dimensions 20, 27, 28, 29 and 30.
We give a short description of his method using the language of coset codes. Moreover we are able to apply this
method in dimension 18 as well, producing a sphere packing with a record center deri3ji#)8f

Keywords: sphere packing, lattice, code, center density, hexagonal lattice, dual code, Mordell’s inequality,
Leech lattice

1. Sphere packings and coset codes

Let E = RN be theN-dimensional Euclidean spade,c E a discrete subset. Denote by
IIX|| the Euclidean distance affrom the origin, byu (I') the minimum norm+£ square of
the distance) between different elementd ofThe valuep(I') = /u(T")/2 is called the
packing radiusof I'. The meaning op is that open balls of radiys centered at the lattice
points do not intersect, andis the maximum such radius. We will be mainly interested in
the parameter

oN

8=0) = vol(I')’

the center densityf I'. As the discrete setS constructed in this paper will be unions of
cosets of lattices the determination of the volume will be no problem {#the union of
M different cosets of a lattice of volume thenT" has volumev/M). Observe thaé is
unchanged if a constant positive nonzero multiplicative factor is appligd:I") = §(T).
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We can therefore assurpe= 1. Then is the reciprocal of the volume &f. Our objective
is to construct sphere packings with a high center density.

1.1. Coset codes

Let A9 D A1 D --- D A be a chain oim-dimensional lattices, where the factor group
Ai_1/A; is isomorphic to the abelian grous of ordera;,i = 1,2,...,1. Let further

C; be ana-ary code of lengti, with M; elements and minimum distande We choose
representativea;j, j = 1,2,..., & for the cosets of4; in 4;_;. Choosex;; = 0. Put

A ={aij, ] =1,2,...,&}. ChooseA as the alphabet over which the cdGeis defined.

It is convenient and no loss of generality to assume that the all-0 word belo@gysToe

N = nm-dimensional packing

'=TAgDA1D---DA;C,Cy,...,C)

is defined as the union oM{M,--- M, cosets of the sublattic€A4,)". The cosets

are parametrized by-tuples of codewordgvy, vo, ..., v), where v; € Cj. Let v =
(vit, ..., vin), Wherev;; € Ai. Then the cosel (vy, vo, ..., v) is defined as
| n
N (v1, vz,---,vl)=(zvij> + (A"
i=1 =1
Observe thalN(0, 0, ..., 0) = (A)". Itis clear that these cosets are distinct so that
| n
vol(I") = M
M- M,

How about the minimal norm? Let y € I', X # y. If x andy belong to the same coset,
then their difference is iA4)". It follows ||x — y|| > /u(A)). So assume they are in
different cosets. Lex € N(v1, va, ..., ),y € N(vy, v5, ..., v)) andi minimal such that
v # vi. As C; has minimum distance it follows thatx — y has ind; of its n components

an entry ind;_1\ 4. It follows ||x — y|| > /& - n(Ai_1).

1.2. Thecasem1l

We havedo=Z, Ai =qu---qZ (i =1,2,...,1), u(Ai) = (o - - - )2 thus
w(T) = Minf{dy, doti?, ..., di(G -+ - G-1)% (G- - )2}

If we use linear codesi[ k;, di]o we obtain

1 I ki—n 2
8(T) > ﬁ]lqi ()2,
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1.3. Thecasem2

Let Ao=((1,0), (%, */75)) =(ap, bp) be the hexagonal lattice (as generated by
root systems of type#\, and G,). The lattice Ag has vqume§ and minimum norm

1. The imageA; o of A under the linear mapping with matrixf{ é) (with respect to
basisag, bg) has index 3 indy, is generated by + by and—ag + 2bg and has minimum
distancel|ag + bo|| = +/3. As ag + by and—ag + 2by have the same length and include an
angle ofrr/3 we see thatd; o is similar to.4g. Applying the same matrix repeatedly we
getAjo =AM I, for instanceA o = 3(bo, —ap + bp) = 3.4,. Aside of this operation we
also consider sublattices of index 4 obtained by multiplication with the constant 2. This
leads to the following Definition:A;j x = 2AoM 1. It is clear that volA;x) = 43 %é

and u(A;j k) = 431, We apply the coset code construction with = Aj ) ki), where
j()+k@) =i and eithetdi 11 = Ajgi)+iki) OF Ait1 = Aji ki1, Of index 3 or4in4;.

We have

(220-13]+172)"

() =
Vol = e c)

and

2. Avariant of the coset code-construction

We use the following chain of 1-dimensional latticesty=7Z>.4;=27Z> A=

47. > Az = 8Z and the following codes:C; = [n, 1, n] (the repetition code)Cs

= C{ = [n,n — 1, 2] and binary code€,, C, of lengthn, minimum distances-d and
>d’, respectively. Observe thél, C,, are not required to be linear codes. As alphabets
for our codes we usé; = {0, 1}, A, = {0, —2}, Az = {0, 4}. With this notation we define

I =T*(A4 D A1 D Az D Az; Cq, (Cy, C)), Cs) as the union of the following cosets of
(8Z)" in Z":

N(0, vp, v3), Wherev, € 14 C,, vz € Cgz(vectors ofeven typg
N(1, vz, v3),  Wherev, € Cj, v3 ¢ Cg(vectors ofodd typg.

Here0 and1 stand for the vectors of lengthwith all entries 0 and 1, respectively. It is
clear that the addition of cosets is as follows:

N(O, vz, v3) + N(O, wz, wz) = N(O, v2 + wa, v3 + w3 + v2 N wy)
N (O, vz, v3) + N(1, wz, w3) = N(1, v2 + wo, v3 4+ w3z + v2 N w2)
N(l, v, v3) + N(l, Wy, W3) = N(O, vo 4+ wo + 1, v3+w3+v2Uw2+1)

Let us determine the minimum Euclidean distance between different elements of
Assume at firsk, y are both of even type; € N(O, v, v3), ¥ € N(O, wa, w3z). If va # wy,
then|x — y|| > 2J/d. If vo = wo, v3 # w3, then|x — y|| > 2v/2 = /32 If finally
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v2 = wp, v3 = ws, then||x — y|| > 8. The same arguments applyxfandy are both
of odd type. We just have to repladeby d’. Let finally x € N(1, v,, v3) be of odd type
andy € N(O, w,, wz) of even type. All entries ok — y are odd integers. We wish to
impose conditions of,, C, ensuring that for at least one coordinate the entry efy is
+3 (mod 8. If this is the case, thefix — y|| > +/n—1+9 = +/n + 8. Assume to the
contrary all entries ok — y are£+1 (mod 8. Fix a coordinate. Consider the 16 possibilities
of how it may be distributed on the vectars vs, w,, ws. Eight of these are excluded as they
lead to a difference-3 (mod 8. Write v, = 1 + u,, whereu, € C,. The eight remaining
cases are the following:

uz v3 w2 w3 N(1, v2, v3) — N(O, w2, w3)
1 0 0 0 1-0=1

1 0 1 1 1-2=-1

1 1 0 1 5-4=1

1 1 1 0 5 (-2)=-1

0 0 0 0 —-1-0=-1

0 0 1 0 -1-(-2=1

0 1 0 1 3-4=-1

0 1 1 1 3-2=1

Here the entry in the last column is to be taken as an integer mod 8, whereas the entries
in the first four columns are 1 or 0. As an example consider the second row of this table:
asu, =1 (equivalentlyv, = 0) andvz =0, the entry inN (1, v, v3) is 1+0+0=1. As
w2 = w3 =1, the entry inN (0, w, ws3) is —2+44=2. This explains the last entry-12 =
—1(mod 8.

This table showss + w3 = woNuy (herev + w is the symmetric difference). Observe
that vz + w3 has odd weight. We will get the desired contradictionvif N u, is even,
equivalently ifC, andC are orthogonal codes.

Theorem 1 Let G, C; be binary codes of length n and minimum distances drespec-
tively, which are orthogonal to each other. Then the n-dimensional sphere packing

I'=T"(Z>2Z>4Z > 8Z;[n,1,n], (Cz C5),[n,n—1,2)])

has minimum Euclidean distanoein{2+/d, 2/d’, v/32, +/n + 8} and volumevol(I') =
2201 /01Cy| + IC5]}. If C2 = C; is a self-orthogonal linear code containing the all-
vector, thenT is a lattice.

Proof: The statements concerning the minimum Euclidean distance and volume are by
now obvious. T is a lattice if and only if the cosets it consists of form a subgroup of
(Z)"/(8Z)". The last claim follows from the addition rules given earlier. O

This method yields the densest known packings in dimensioria01.24, 27, 28, 29, 30.
In each cas€,, C;, are an orthogonal pair of linear codes with the same parameters. These
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parameters are
[18, 9, 6], [20, 9, 7], [24, 12, 8], [27. 13, 8], [28, 14, 8], [29, 14, 8], [30, 15, 8].

Only in dimension 24 can we choos§k = C,. This is the extended binary Golay code
and we obtain a construction of the famous Leech lattice. All the other packings are non-
lattice packings. The orthogonal pair with parameters @] may be derived from the
extended Golay cod8: chooseC, to be the subcode vanishing in the first three coordinates,
projected to the last 20 coordinates, aPidthe subcode vanishing at coordinates 1, 2 and

4, also projected to the last 20 coordinates. The orthogonal pair in dimension 18 can be
chosen as extended quadratic residue codes.

3. Recursive constructions
The following are relatively straightforward recursive constructions.

Lemma 1 |If there are packings of center densitigg, §; in dimensions N and, jthen
there is an(N + j)-dimensional packing of center density,.

Proof: LetT';, I'; be the packings whose existence is assumed above. We can choose the
minimum distance of both packings tos&€. The(N + j)-dimensional packing’, & I',
still has minimum Euclidean distance 2, hed¢E, @& ') = vol(T1 @ )L = 818,. O

The following Theorem may be proved along the lines of [5], page 167:

Theorem 2 Mordell's inequality LetI” ¢ R" be an n-dimensional lattice of center
densitys, not less dense than its duBlf. LetO # x € I'* be a vector of minimum norm.
Then(x)- NT is an(n — 1)-dimensional lattice of center density 36"=2/".

4. Some packings in high dimensions

We note that in a number of dimensions use of new codes constructed by us in [1-4] as in-
gredients in the coset-codes construction yields packings, which are denser that what can be
derived from known packings via Lemma 1 or Theorem 2. The new codes used in these con-
structions can be derived from the following codes: [13 32],, [140, 50, 32],, [155, 132,
8], [162, 138 8], [86, 77, 513, [85, 74, 6]3, [86, 54, 14]5. Naturally it has to be expected
that more sophisticated constructions will yield improvements in all these cases. Still it is
noteworthy that the coset-code construction in its simplest form is capable of producing
dense packings in low dimensions as well as in rather high dimensions. We conclude with
a couple of examples.

In dimension 110 casm = 2 of the coset-code construction applied to ternary codes
[55, 1, 54]s, [55, 25, 18]s, [55, 44, 6]3, and [55 54, 2]; yields density 35, In dimension
170 we can use ternary codes [885, 42]s, [85, 53, 14]3, [85, 76, 5]3 and [85 84, 2]; and
obtain density #/3%85_ In dimension 140 we can apply case= 1 of the coset-code
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method. Binary codes[14Q, 128}, [140, 50, 32],, [140, 117, 8], and [14Q 139, 2], yield
a packing of density¥Z.
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