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Abstract. In this paper, k-blocking sets in PG(n, q), being of Rédei type, are investigated. A standard method
to construct Rédei type k-blocking sets in PG(n, ¢) is to construct a cone having as base a Rédei type k’-blocking
set in a subspace of PG(n, g). But also other Rédei type k-blocking sets in PG(n, ¢), which are not cones, exist.
We give in this article a condition on the parameters of a Rédei type k-blocking set of PG(n, ¢ = p™), p a prime
power, which guarantees that the Rédei type k-blocking set is a cone. This condition is sharp. We also show that
small Rédei type k-blocking sets are linear.
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1. Introduction

There is a continuously growing theory on Rédei type blocking sets and their applications,
also on the set of directions determined by the graph of a function or (as over a finite field
every function is) a polynomial; the intimate connection of these two topics is obvious.

Throughout this paper AG(n, ¢) and PG(n, q) denote the affine and the projective space
of n dimensions over the Galois field GF(q) where ¢ = p”", p a prime power. We consider
PG(n, g) as the union of AG(n, q) and the ‘hyperplane at infinity’ H,,. A point set in
PG(n, q) is called affine if it lies in AG(n, q), while a subspace of PG(n, g) is called affine
if it is not contained in Hy. So in this sense an affine line has one infinite point on it. Let
On =1PG(n, q)I.

A k-blocking set B C PG(n, q) is a set of points intersecting every (n — k)-dimensional
subspace, itis called trivial if it contains a k-dimensional subspace. A pointb € B is essential
if B\{b} is no longer a k-blocking set (so there is an (n — k)-subspace L intersecting B in
b only, such an (n — k)-subspace can be called a tangent); B is minimal if all its points are
essential. Note that for n =2 and k = 1 we get the classical planar blocking sets.
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Definition 1 We say that a set of points U C AG(n, q) determines the direction d € Hoo,
if there is an affine line through d meeting U in at least two points. Denote by D the set of
determined directions. Finally, let N = |D|, the number of determined directions.

We will always suppose that |U| = g*. Now we show the connection between directions
and blocking sets:

Proposition 2 IfU C AG(n, q), |U|=q*, then U together with the infinite points corre-
sponding to directions in D form a k-blocking set in PG(n, q). If the set D does not form a
k-blocking set in Hy, then all the points of U are essential.

Proof: Any infinite (n — k)-subspace H,_; C Hy is blocked by D: there are qk‘l (dis-
joint) affine (n — k + 1)-spaces through H,_;, and in any of them, which has at least two
points in U, a determined direction of D N H,,_; is found.

Let H,_x—1 C Hy and consider the affine (n — k)-subspaces throughit. f D N H,,_;_| #
¢ then they are all blocked. If H,_;_; does not contain any point of D, then every affine
(n — k)-subspace through it must contain exactly one point of U (as if one contained at
least two then the direction determined by them would fall into D N H,_;_1), so they are
blocked again. So U U D blocks all affine (n — k)-subspaces and all the points of U are
essential when D does not form a k-blocking set in Hy. O

Unfortunately in general it may happen that some points of D are non-essential. If D is
not too big (i.e. |D| < ¢*, similarly to planar blocking sets) then it is never the case.

Proposition 3 If|D| < q‘ﬁ:—if_ll, then all the points of D are essential.

Proof: Take any point P € D. The number of (n — k — 1)-subspaces through P in Hy is
% Any other O € D\{P} blocks at most % of them. So some affine
(n — k)-subspace through one of those infinite (n — k — 1) subspaces containing P only,

will be a tangent at P. g

The k-blocking set B arising in this way has the property that it meets a hyperplane
in |B| — ¢* points. On the other hand, if a minimal k-blocking set of size <2¢* meets a
hyperplane in |B| — ¢* points then, after deleting this hyperplane, we find a set of points
in the affine space determining these |B| — ¢* directions, so the following notion is more
or less equivalent to a point set plus its directions: a k-blocking set B is of Rédei type if
it meets a hyperplane in |B| — ¢* points. We remark that the theory developed by Rédei
in his book [4] is highly related to these blocking sets. Minimal k-blocking sets of Rédei
type are in a sense extremal examples, as for any (non-trivial) minimal k-blocking set B
and hyperplane H, where H intersects B in a set H N B which is not a k-blocking set in
H,|B\H| > qk holds.

Since the arising k-blocking set has size g* + |D|, in order to find small k-blocking sets
we will have to look for sets determining a small number of directions.

Hence the main problem is to classify sets determining few directions, which is equivalent
to classifying small k-blocking sets of Rédei type. A strong motivation for the investigations
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is, that in the planar case, A. Blokhuis, S. Ball, A. Brouwer, L. Storme and T. Sz6nyi clas-
sified blocking sets of Rédei type, with size < g + "—“;3, almost completely:

Result 4[1] Let U U D be a minimal blocking set of Rédei type in PG(2,q), g =p",
U CAGQ2,q), |U|=gq, D is the set of directions determined by U, N =|D|. Let e (with
0 < e < h) be the largest integer such that each line with slope in D meets U in a multiple
of p¢ points. Then we have one of the following:

(1) e=0and (g +3)/2 <N <q+1,

(i) e=1,p=2,and (g +5)/3 <N <q—1,
(iii) p*>2,elh,andq/p*+1 <N <(qg—D/(p*—1),
(iv) e=hand N =1.

Moreover, if p® > 3 or (p° =3 and N =q/3 + 1), then U is a GF (p®)-linear subspace,
and all possibilities for N can be determined explicitly.

We call a Rédei k-blocking set B of PG(n, q) small when |B| < g% + £2¢*1 4+ ¢*~2 +
g*=3 4+ --- + q. These small Rédei k-blocking sets will be studied in detail in the next
sections.

It is our goal to study the following problem. A small Rédei k-blocking set in PG(n, q)
can be obtained by constructing a cone with vertex a (k — 2)-dimensional subspace IT;_,
in PG(n, ¢) and with base a small Rédei blocking set in a plane IT), skew to IT;_,.

However, these are not the only examples of small k-blocking sets in PG(n, ¢q). For
instance, the subgeometry PG(2k, q) of PG(n =2k, q?) is a small k-blocking set of PG
2k, q2), and this is not a cone.

We give a condition (Theorem 16) on the parameters of the small Rédei k-blocking set in
PG(n, ¢) which guarantees that this small Rédei k-blocking set is a cone; so that the exact
description of this k-blocking set is reduced to that of the base of the cone.

This condition is also sharp since the k-blocking set PG(2k,q) in PG(2k,q>) can
be used to show that the conditions imposed on 7,k and 4 in Theorem 16 cannot be
weakened.

To obtain this result, we first of all prove that small Rédei k-blocking sets B of PG(n, q)
are linear (Corollary 12). In this way, our results also contribute to the study of linear
k-blocking sets in PG(n, q) discussed by Lunardon [3].

Warning In the remaining part of this paper we always suppose that the conditions of the
“moreover” part of Result 4 are fulfilled.

2. k-blocking sets of Rédei type

Proposition 5§ Let U CAG(n, q), |U| = qk, and let D C Hy, be the set of directions
determined by U . Then for any point d € D one can find an (n — 2)-dimensional subspace
W C Hy, d € W, such that D NW blocks all the (n — k — 1)-dimensional subspaces of W .

The proposition can be formulated equivalently in this way: D is a union of some
Bi, ..., B;, each one of them being a (k — 1)-blocking set of a projective subspace W1, . . .,
W, resp., of dimension n — 2, all contained in Hyo.
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Proof: The proof goes by induction; for any point d € D we find a series of subspaces
S1CS C---CS_1 CAG(n,q),dim(S,) =r suchthats, = |S, NU| > ¢g*" + 1
and d is the direction determined by S;. Then, using the pigeon hole principle, after the r-th
step we know that all the (n — k — 1)-dimensional subspaces of S, N H, are blocked by the
directions determined by points in S,, as there are g*~"*" disjoint affine (n — k)-subspaces
through any of them in S,, so at least one of them contains 2 points of U N §,..

Forr = 1 itis obvious as d is determined by at least 2 = ¢ 4+ 1 > ¢*~"*' + 1 points of
some line S;. Then for r + 1 consider the q;:l subspaces of dimension r + 1 through S,,
then at least one of them contains at least

k k—n—+r -
s + q,,,,f;jr — qurlf}’lJrl‘ + (Sf -9 n:rl)(qn ' _q) - qk+17n+r

q qn ro__ 1

q—1

points of U. O

Corollary 6 For k = n — 1 it follows that D is the union of some (n — 2)-dimensional
subspaces of Huo.

Observation7 A projective trianglein PG(2, q), q odd, is ablocking set of size 3(¢+1) /2
projectively equivalent to the set of points {(1, 0, 0), (0, 1, 0), (0,0, 1), (0, 1, ap), (1, 0, ay),
(—az, 1,0)}, where ay, a;, a, are non-zero squares [2, Lemma 13.6]. The sides of the
triangle defined by (1, 0, 0), (0, 1, 0), (0, 0, 1) all contain (¢ 4 3)/2 points of the projective
triangle, so it is a Rédei blocking set.

A cone, with a (k — 2)-dimensional vertex at H,, and with the ¢ points of a planar
projective triangle, not lying on one of those sides of the triangle, as a base, has ¢* affine
points and it determines <2 ¢*~! 4+ ¢*=2 + ¢* 3 + ... 4+ ¢ + 1 directions.

Lemma 8 Let U CAG(n,q), |U| = q”’l, and let D C Hy, be the set of directions
determined by U . If H, € Hy, is a k-dimensional subspace not completely contained in D
then each of the affine (k + 1)-dimensional subspaces through it intersects U in exactly ¢*
points.

Proof: There are ¢”~'~* mutually disjoint affine (k 4 1)-dimensional subspaces through
H,.. If one contained less than ¢* points from U then some other would contain more than
g* points (as the average is just g*), which would imply by the pigeon hole principle that
H, C D, contradiction. O

Theorem 9 Let U CAG(n,q), |U| = q"’l, and let D C Hy, be the set of directions

determined by U. Suppose |D| < #q"‘z +q" 3 +q" 4+ -+ g%+ q. Then for any

affine line £ either

@) |UNE =1{feNHy & D), or

@) [UNL =0 (mod p°) for some e = e;|h.

(iii) Moreover, inthe second case the point set U N L is GF (p®)-linear, so ifwe consider the
point atinfinity p of £; two other affine points po and p; of U N €, with p; = po+ Poo,
then all points py + Xpeo, with x € GF(p®), belong to U N L.
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Proof: (i) A direction is not determined iff each affine line through it contains exactly
one point of U. (ii) Let |[U N£| > 2,d = £ N Hy. Then, from Corollary 6, there exists an
(n — 2)-dimensional subspace H C D, d € H. There are ¢" 2 lines through d in Hy, \ H,
so at least one of them has at most

_IDI-H| _fg"P -1 g+l 1
qn—2 - qn—2 - 2 - qn—2

points of D, different from d. In the plane spanned by this line and ¢ we have exactly ¢
points of U, determining less than % directions. So we can use Result 4 for (ii) and (iii).

O

Corollary 10  Under the hypothesis of the previous theorem, U is a GF (p®)-linear set for
some e | h.

Proof: Take the greatest common divisor of the values e, appearing in the theorem for
each affine line £ with more than one point in U. O

The preceding result also means that for any set of affine points (‘vectors’) {ay, az, . .., a;}
inU, and ¢y, ¢y, ...,¢; € GF(p©), Z§=1 ¢i =1, we have Z?:l c;a; € U as well. This is
true for ¢+ = 2 by the corollary, and for # > 2 we can combine them two by two, using
induction, like

caa+---+ca;
Cq Cr—1

=1+ Fo)|——a+ o+ —" 4 )+,
(¢ rl)<C1+"'+Ctl | T oo rl) 1y

wherec; +---+¢, = 1.

Theorem 11 Let U C AG(n,q), |U| = qk, and let D C Hy, be the set of directions
determined by U. If |D| < qzi‘}q"’1 +q*2 + .-+ ¢q* + q, then any line € intersects U
either in one point, or U N €| =0 (mod p°), for some e = e;|h. Moreover, the set U N £ is
GF(p®)-linear.

Proof: If k=n — 1, then the previous theorem does the job, so suppose k <n — 2. Take
a line ¢ intersecting U in at least 2 points. There are at most ¢g¥ — 2 planes joining £ to
the other points of U not on £; and their infinite points together with D cover at most
¢**' + 1g* + - points of Hy, so they do not form a (k + 1)-blocking set in Ho. Take
any (n — k — 2)-dimensional space H,_;_, not meeting any of them, then the projection
m of U U D from H,_;_, to any ‘affine’ (k + 1)-subspace Sy, is one-to-one between U
and (U); w(D) is the set of directions determined by 7 (U), and the line 7 (£) contains
the images of U N £ only (as H,_;_; is disjoint from the planes spanned by £ and the other
points of U not on £). The projection is a small Rédei k-blocking set in Si, so, using
the previous theorem, (U N £) is GF (p°)-linear for some e|h. But then, as the projection
preserves the cross-ratios of quadruples of points, the same is true for U N £. O
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Corollary 12 Under the hypothesis of the previous theorem, U is a GF (p®)-linear set for
some e|h.

Proof: Let e be the greatest common divisor of the values e, appearing in the preceding
theorem for each affine line with more than one point in U'. O

3. Linear point sets in AG(n, q)
First we generalize Lemma 8.

Proposition 13 Let U CAG(n, q), |U| = qk, and let D C Hy, be the set of directions
determined by U . If H, C Hy, is an r-dimensional subspace, and H, N D does not block
every (n — k — 1)-subspace of H, then each of the affine (r + 1)-dimensional subspaces
through H, intersects U in exactly ¢" 17" points.

Proof: There are ¢"~'~" mutually disjoint affine (» + 1)-dimensional subspaces through

H,. If one contained less than ¢" *¥*!1=" points from U then some other would contain more
than ¢’ t¥+1=" points (as the average is just ¢’ ***1="), which would imply by the pigeon
hole principle that H. N D would block all the (n — k — 1)-dimensional subspaces of H,,
contradiction. O

Lemma 14 Let U C AG(n, p"), p > 2, be a GF(p)-linear set of points. If U contains
a complete affine line £ with infinite point v, then U is the union of complete affine lines
through v (so it is a cone with infinite vertex, hence a cylinder).

Proof: Take any line ¢’ joining v and a point Q" € U\¢, we prove that any R’ € ¢’ is in
U. Take any point Q € ¢, let m be the line Q'Q, and take a point Qg € U N m (any affine
combination of Q and Q' over GF (p); see paragraph after the proof of Corollary 10). Now
the cross-ratio of Qp, Q’, Q (and the infinite point of m) is in GF (p). Let R := £ N QoR’,
so R € U. As the cross-ratio of Qg, R’, R, and the point at infinity of the line R’'R, is still
in GF(p), it follows that R € U. Hence ¢’ C U. O

Lemma 15 Let U C AG(n, p") be a GF (p)-linear set of points. If |{U| > p" "=V then U
contains a line.

Proof: The proof goes by double induction (the ‘outer’ for n, the ‘inner’ for r). The
statement is true for n = 1. First we prove that for every 0 < r < n—1, there exists an
affine subspace S, dim S, = r, such that it contains at least |S, NU| = s, > plr—n+2 points.
For r =0, let Sy be any point of U. For any r > 1, suppose that each r-dimensional affine

subspace through S,_; contains at most p""~"*! points of U, then
hn h(r—1)
hn—n+1 p—Dp hr—n+1 __
P SIS S e Sro1) + 81
p'"—phh 1 h(r—1)—n-+2 h(r—1)—n+2
hr—n+1 __ (r—1)—n+ r—1)—n+
< e (P P )+ p :

But this is false, contradiction.
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So in particular for r =n — 1, there exists an affine subspace S, containing at least
IS, NU| = p""=D=%2 points of U. But then, from the (n — 1)-st (‘outer’) case we know
that S,_; N U contains a line. O

Now we state the main theorem of this paper. We assume p > 3 to be sure that Result 4
can be applied.

Theorem16 LetU C AG(n, q), n>3,|U| = q*.Suppose U determines |D| < #qk’1+
q* 2 +q* 3 + -+ ¢* + q directions and suppose that U is a GF (p)-linear set of points,
where g = p", p>3.

Ifn —1>(n—k)h, then U is a cone with an (n — 1 — h(n — k))-dimensional vertex at
Ho, and with base a GF (p)-linear point set U,_i, of size q(”_k)(h_l), contained in some
affine (n — k)h-dimensional subspace of AG(n, q).

Proof: It follows from the previous lemma (as in this case |U| = p"* > p"¢=D+1) that
U =U, is a cone with some vertex Vy = vg € H,,. The base U,_; of the cone, which is the
intersection with any hyperplane disjoint from the vertex Vj, is also a GF(p)-linear set,
of size ¢g*~!. Since U is a cone with vertex V) € Ho, the set of directions determined by
U is also a cone with vertex V in Hy,. Thus, if U determines N directions, then U, _;
determines at most (N — 1)/q < 42¢*2 4+ ¢*=3 + ¢¥* 4 ... + ¢* + ¢ directions. So if
h < % then U,,_; is also a cone with some vertex v; € H, and with some GF (p)-
linear base U,_», so in fact U is a cone with a one-dimensional vertex V| = (vg, v1) C Hwo
and an (n — 2)-dimensional base U,_,, and so on; before the r-th step we have V,_; as
vertex and U,_,, a base in an (n — r)-dimensional space, of the current cone (we started
“with the O-th step™). Thenif 7 < % , then we can find a line in U,,_, and its infinite
point with V,_; will generate V, and a U,,_;_, can be chosen as well. When there is equality
inh < %, sowhenr = n — (n — k)h — 1, then the final step results in U,_x), and
Va—1-hn—k)- O

The previous result is sharp as the following proposition shows.

Proposition 17  In AG(n, ¢ = p"), for n < (n — k)h, there exist GF(p)-linear sets U of
size g* containing no affine line.

Proof: For instance, AG(2k, p) in AG(2k, p?) for which n =2k = (n — k)h = (2k — k)2.

More generally, write hk = dy +dy + -+ dy, 1 <di<h -1 (i = 1,...,n)in
any way. Let U; be a GF(p)-linear set contained in the i-th coordinate axis, O €
Ui, |Ul=p% (@(=1,...,n). Then U=U, xUy;x---xU, is a proper choice
for U. -
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