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Abstract. In this paper, k-blocking sets in PG(n, q), being of Rédei type, are investigated. A standard method
to construct Rédei type k-blocking sets in PG(n, q) is to construct a cone having as base a Rédei type k′-blocking
set in a subspace of PG(n, q). But also other Rédei type k-blocking sets in PG(n, q), which are not cones, exist.
We give in this article a condition on the parameters of a Rédei type k-blocking set of PG(n, q = ph), p a prime
power, which guarantees that the Rédei type k-blocking set is a cone. This condition is sharp. We also show that
small Rédei type k-blocking sets are linear.
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1. Introduction

There is a continuously growing theory on Rédei type blocking sets and their applications,
also on the set of directions determined by the graph of a function or (as over a finite field
every function is) a polynomial; the intimate connection of these two topics is obvious.

Throughout this paper AG(n, q) and PG(n, q) denote the affine and the projective space
of n dimensions over the Galois field GF(q) where q = ph , p a prime power. We consider
PG(n, q) as the union of AG(n, q) and the ‘hyperplane at infinity’ H∞. A point set in
PG(n, q) is called affine if it lies in AG(n, q), while a subspace of PG(n, q) is called affine
if it is not contained in H∞. So in this sense an affine line has one infinite point on it. Let
θn = |PG(n, q)|.

A k-blocking set B ⊂ PG(n, q) is a set of points intersecting every (n − k)-dimensional
subspace, it is called trivial if it contains a k-dimensional subspace. A point b ∈ B is essential
if B\{b} is no longer a k-blocking set (so there is an (n − k)-subspace L intersecting B in
b only, such an (n − k)-subspace can be called a tangent); B is minimal if all its points are
essential. Note that for n = 2 and k = 1 we get the classical planar blocking sets.
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Definition 1 We say that a set of points U ⊂ AG(n, q) determines the direction d ∈ H∞,
if there is an affine line through d meeting U in at least two points. Denote by D the set of
determined directions. Finally, let N = |D|, the number of determined directions.

We will always suppose that |U | = qk . Now we show the connection between directions
and blocking sets:

Proposition 2 If U ⊆ AG(n, q), |U | = qk, then U together with the infinite points corre-
sponding to directions in D form a k-blocking set in PG(n, q). If the set D does not form a
k-blocking set in H∞ then all the points of U are essential.

Proof: Any infinite (n − k)-subspace Hn−k ⊂ H∞ is blocked by D: there are qk−1 (dis-
joint) affine (n − k + 1)-spaces through Hn−k , and in any of them, which has at least two
points in U , a determined direction of D ∩ Hn−k is found.

Let Hn−k−1 ⊂ H∞ and consider the affine (n − k)-subspaces through it. If D ∩ Hn−k−1 �=
∅ then they are all blocked. If Hn−k−1 does not contain any point of D, then every affine
(n − k)-subspace through it must contain exactly one point of U (as if one contained at
least two then the direction determined by them would fall into D ∩ Hn−k−1), so they are
blocked again. So U ∪ D blocks all affine (n − k)-subspaces and all the points of U are
essential when D does not form a k-blocking set in H∞. ✷

Unfortunately in general it may happen that some points of D are non-essential. If D is
not too big (i.e. |D| ≤ qk , similarly to planar blocking sets) then it is never the case.

Proposition 3 If |D| < qn−1−1
qn−k−1−1 , then all the points of D are essential.

Proof: Take any point P ∈ D. The number of (n − k − 1)-subspaces through P in H∞ is
θn−2θn−3...θk

θn−k−2θn−k−3...θ1·1 . Any other Q ∈ D\{P} blocks at most θn−3...θk

θn−k−3...θ1·1 of them. So some affine
(n − k)-subspace through one of those infinite (n − k − 1)-subspaces containing P only,
will be a tangent at P . ✷

The k-blocking set B arising in this way has the property that it meets a hyperplane
in |B| − qk points. On the other hand, if a minimal k-blocking set of size ≤2qk meets a
hyperplane in |B| − qk points then, after deleting this hyperplane, we find a set of points
in the affine space determining these |B| − qk directions, so the following notion is more
or less equivalent to a point set plus its directions: a k-blocking set B is of Rédei type if
it meets a hyperplane in |B| − qk points. We remark that the theory developed by Rédei
in his book [4] is highly related to these blocking sets. Minimal k-blocking sets of Rédei
type are in a sense extremal examples, as for any (non-trivial) minimal k-blocking set B
and hyperplane H , where H intersects B in a set H ∩ B which is not a k-blocking set in
H , |B\H | ≥ qk holds.

Since the arising k-blocking set has size qk + |D|, in order to find small k-blocking sets
we will have to look for sets determining a small number of directions.

Hence the main problem is to classify sets determining few directions, which is equivalent
to classifying small k-blocking sets of Rédei type. A strong motivation for the investigations
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is, that in the planar case, A. Blokhuis, S. Ball, A. Brouwer, L. Storme and T. Szőnyi clas-
sified blocking sets of Rédei type, with size < q + q+3

2 , almost completely:

Result 4 [1] Let U ∪ D be a minimal blocking set of Rédei type in PG(2, q), q = ph ,
U ⊂ AG(2, q), |U | = q , D is the set of directions determined by U , N = |D|. Let e (with
0 ≤ e ≤ h) be the largest integer such that each line with slope in D meets U in a multiple
of pe points. Then we have one of the following:

(i) e = 0 and (q + 3)/2 ≤ N ≤ q + 1,
(ii) e = 1, p = 2, and (q + 5)/3 ≤ N ≤ q − 1,

(iii) pe > 2, e | h, and q/pe + 1 ≤ N ≤ (q − 1)/(pe − 1),
(iv) e = h and N = 1.

Moreover, if pe > 3 or (pe = 3 and N = q/3 + 1), then U is a GF(pe)-linear subspace,
and all possibilities for N can be determined explicitly.

We call a Rédei k-blocking set B of PG(n, q) small when |B| ≤ qk + q+3
2 qk−1 + qk−2 +

qk−3 + · · · + q . These small Rédei k-blocking sets will be studied in detail in the next
sections.

It is our goal to study the following problem. A small Rédei k-blocking set in PG(n, q)

can be obtained by constructing a cone with vertex a (k − 2)-dimensional subspace 
k−2

in PG(n, q) and with base a small Rédei blocking set in a plane 
′
2 skew to 
k−2.

However, these are not the only examples of small k-blocking sets in PG(n, q). For
instance, the subgeometry PG(2k, q) of PG(n = 2k, q2) is a small k-blocking set of PG
(2k, q2), and this is not a cone.

We give a condition (Theorem 16) on the parameters of the small Rédei k-blocking set in
PG(n, q) which guarantees that this small Rédei k-blocking set is a cone; so that the exact
description of this k-blocking set is reduced to that of the base of the cone.

This condition is also sharp since the k-blocking set PG(2k, q) in PG(2k, q2) can
be used to show that the conditions imposed on n, k and h in Theorem 16 cannot be
weakened.

To obtain this result, we first of all prove that small Rédei k-blocking sets B of PG(n, q)

are linear (Corollary 12). In this way, our results also contribute to the study of linear
k-blocking sets in PG(n, q) discussed by Lunardon [3].

Warning In the remaining part of this paper we always suppose that the conditions of the
“moreover” part of Result 4 are fulfilled.

2. k-blocking sets of Rédei type

Proposition 5 Let U ⊂ AG(n, q), |U | = qk, and let D ⊆ H∞ be the set of directions
determined by U. Then for any point d ∈ D one can find an (n − 2)-dimensional subspace
W ⊆ H∞, d ∈ W, such that D ∩ W blocks all the (n − k −1)-dimensional subspaces of W .

The proposition can be formulated equivalently in this way: D is a union of some
B1, . . . , Bt , each one of them being a (k − 1)-blocking set of a projective subspace W1, . . . ,

Wt resp., of dimension n − 2, all contained in H∞.
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Proof: The proof goes by induction; for any point d ∈ D we find a series of subspaces
S1 ⊂ S2 ⊂ · · · ⊂ Sn−1 ⊂ AG(n, q), dim(Sr ) = r such that sr = |Sr ∩ U | ≥ qk−n+r + 1
and d is the direction determined by S1. Then, using the pigeon hole principle, after the r -th
step we know that all the (n − k − 1)-dimensional subspaces of Sr ∩ H∞ are blocked by the
directions determined by points in Sr , as there are qk−n+r disjoint affine (n − k)-subspaces
through any of them in Sr , so at least one of them contains 2 points of U ∩ Sr .

For r = 1 it is obvious as d is determined by at least 2 = q0 + 1 ≥ qk−n+1 + 1 points of
some line S1. Then for r + 1 consider the qn−r −1

q−1 subspaces of dimension r + 1 through Sr ,
then at least one of them contains at least

sr + qk − sr
qn−r −1

q−1

= qk+1−n+r + (sr − qk−n+r )(qn−r − q)

qn−r − 1
> qk+1−n+r

points of U . ✷

Corollary 6 For k = n − 1 it follows that D is the union of some (n − 2)-dimensional
subspaces of H∞.

Observation 7 A projective triangle in PG(2, q), q odd, is a blocking set of size 3(q+1)/2
projectively equivalent to the set of points {(1, 0, 0), (0, 1, 0), (0, 0, 1), (0, 1, a0), (1, 0, a1),

(−a2, 1, 0)}, where a0, a1, a2 are non-zero squares [2, Lemma 13.6]. The sides of the
triangle defined by (1, 0, 0), (0, 1, 0), (0, 0, 1) all contain (q +3)/2 points of the projective
triangle, so it is a Rédei blocking set.

A cone, with a (k − 2)-dimensional vertex at H∞ and with the q points of a planar
projective triangle, not lying on one of those sides of the triangle, as a base, has qk affine
points and it determines q+3

2 qk−1 + qk−2 + qk−3 + · · · + q + 1 directions.

Lemma 8 Let U ⊂ AG(n, q), |U | = qn−1, and let D ⊆ H∞ be the set of directions
determined by U. If Hk ⊆ H∞ is a k-dimensional subspace not completely contained in D
then each of the affine (k + 1)-dimensional subspaces through it intersects U in exactly qk

points.

Proof: There are qn−1−k mutually disjoint affine (k + 1)-dimensional subspaces through
Hk . If one contained less than qk points from U then some other would contain more than
qk points (as the average is just qk), which would imply by the pigeon hole principle that
Hk ⊆ D, contradiction. ✷

Theorem 9 Let U ⊂ AG(n, q), |U | = qn−1, and let D ⊆ H∞ be the set of directions
determined by U. Suppose |D| ≤ q+3

2 qn−2 + qn−3 + qn−4 + · · · + q2 + q. Then for any
affine line � either

(i) |U ∩ �| = 1 (iff � ∩ H∞ �∈ D), or
(ii) |U ∩ �| ≡ 0 (mod pe) for some e = e�|h.

(iii) Moreover, in the second case the point set U ∩ � is GF(pe)-linear, so if we consider the
point at infinity p∞ of �; two other affine points p0 and p1 of U ∩ �, with p1 = p0+ p∞,

then all points p0 + xp∞, with x ∈ GF(pe), belong to U ∩ �.
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Proof: (i) A direction is not determined iff each affine line through it contains exactly
one point of U . (ii) Let |U ∩ �| ≥ 2, d = � ∩ H∞. Then, from Corollary 6, there exists an
(n − 2)-dimensional subspace H ⊂ D, d ∈ H . There are qn−2 lines through d in H∞\H ,
so at least one of them has at most

≤ |D| − |H |
qn−2

≤
q+1

2 qn−2 − 1

qn−2
= q + 1

2
− 1

qn−2

points of D, different from d . In the plane spanned by this line and � we have exactly q
points of U , determining less than q+3

2 directions. So we can use Result 4 for (ii) and (iii).
✷

Corollary 10 Under the hypothesis of the previous theorem, U is a GF(pe)-linear set for
some e | h.

Proof: Take the greatest common divisor of the values e� appearing in the theorem for
each affine line � with more than one point in U . ✷

The preceding result also means that for any set of affine points (‘vectors’) {a1, a2, . . . , at }
in U , and c1, c2, . . ., ct ∈ GF(pe),

∑t
i = 1 ci = 1, we have

∑t
i = 1 ci ai ∈ U as well. This is

true for t = 2 by the corollary, and for t > 2 we can combine them two by two, using
induction, like

c1a1 + · · · + ct at

= (c1 + · · · + ct−1)

(
c1

c1 + · · · + ct−1
a1 + · · · + ct−1

c1 + · · · + ct−1
at−1

)
+ ct at ,

where c1 + · · · + ct = 1.

Theorem 11 Let U ⊂ AG(n, q), |U | = qk, and let D ⊆ H∞ be the set of directions
determined by U. If |D| ≤ q+3

2 qk−1 + qk−2 + · · · + q2 + q, then any line � intersects U
either in one point, or |U ∩ �| ≡ 0 (mod pe), for some e = e�|h. Moreover, the set U ∩ � is
GF(pe)-linear.

Proof: If k = n − 1, then the previous theorem does the job, so suppose k ≤ n − 2. Take
a line � intersecting U in at least 2 points. There are at most qk − 2 planes joining � to
the other points of U not on �; and their infinite points together with D cover at most
qk+1 + 1

2 qk + · · · points of H∞, so they do not form a (k + 1)-blocking set in H∞. Take
any (n − k − 2)-dimensional space Hn−k−2 not meeting any of them, then the projection
π of U ∪ D from Hn−k−2 to any ‘affine’ (k + 1)-subspace Sk+1 is one-to-one between U
and π(U ); π(D) is the set of directions determined by π(U ), and the line π(�) contains
the images of U ∩ � only (as Hn−k−2 is disjoint from the planes spanned by � and the other
points of U not on �). The projection is a small Rédei k-blocking set in Sk+1, so, using
the previous theorem, π(U ∩ �) is GF(pe)-linear for some e|h. But then, as the projection
preserves the cross-ratios of quadruples of points, the same is true for U ∩ �. ✷
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Corollary 12 Under the hypothesis of the previous theorem, U is a GF(pe)-linear set for
some e|h.

Proof: Let e be the greatest common divisor of the values e� appearing in the preceding
theorem for each affine line with more than one point in U . ✷

3. Linear point sets in AG(n, q)

First we generalize Lemma 8.

Proposition 13 Let U ⊂ AG(n, q), |U | = qk, and let D ⊆ H∞ be the set of directions
determined by U. If Hr ⊆ H∞ is an r-dimensional subspace, and Hr ∩ D does not block
every (n − k − 1)-subspace of Hr then each of the affine (r + 1)-dimensional subspaces
through Hr intersects U in exactly qr+k+1−n points.

Proof: There are qn−1−r mutually disjoint affine (r + 1)-dimensional subspaces through
Hr . If one contained less than qr+k+1−n points from U then some other would contain more
than qr+k+1−n points (as the average is just qr+k+1−n), which would imply by the pigeon
hole principle that Hr ∩ D would block all the (n − k − 1)-dimensional subspaces of Hr ,
contradiction. ✷

Lemma 14 Let U ⊆ AG(n, ph), p > 2, be a GF(p)-linear set of points. If U contains
a complete affine line � with infinite point v, then U is the union of complete affine lines
through v (so it is a cone with infinite vertex, hence a cylinder).

Proof: Take any line �′ joining v and a point Q′ ∈ U\�, we prove that any R′ ∈ �′ is in
U . Take any point Q ∈ �, let m be the line Q′ Q, and take a point Q0 ∈ U ∩ m (any affine
combination of Q and Q′ over GF(p); see paragraph after the proof of Corollary 10). Now
the cross-ratio of Q0, Q′, Q (and the infinite point of m) is in GF(p). Let R := � ∩ Q0 R′,
so R ∈ U . As the cross-ratio of Q0, R′, R, and the point at infinity of the line R′ R, is still
in GF(p), it follows that R′ ∈ U . Hence �′ ⊂ U . ✷

Lemma 15 Let U ⊆ AG(n, ph) be a GF(p)-linear set of points. If |U | > pn(h−1) then U
contains a line.

Proof: The proof goes by double induction (the ‘outer’ for n, the ‘inner’ for r ). The
statement is true for n = 1. First we prove that for every 0 ≤ r ≤ n−1, there exists an
affine subspace Sr , dim Sr = r , such that it contains at least |Sr ∩U | = sr ≥ phr−n+2 points.
For r = 0, let S0 be any point of U . For any r ≥ 1, suppose that each r -dimensional affine
subspace through Sr−1 contains at most phr−n+1 points of U , then

phn−n+1 ≤ |U | ≤ phn − ph(r−1)

phr − ph(r−1)
(phr−n+1 − sr−1) + sr−1

≤ phn − ph(r−1)

phr − ph(r−1)

(
phr−n+1 − ph(r−1)−n+2

) + ph(r−1)−n+2.

But this is false, contradiction.
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So in particular for r = n − 1, there exists an affine subspace Sr containing at least
|Sr ∩ U | ≥ ph(n−1)−n+2 points of U . But then, from the (n − 1)-st (‘outer’) case we know
that Sn−1 ∩ U contains a line. ✷

Now we state the main theorem of this paper. We assume p > 3 to be sure that Result 4
can be applied.

Theorem 16 Let U ⊂ AG(n, q), n ≥ 3, |U | = qk. Suppose U determines |D| ≤ q+3
2 qk−1+

qk−2 + qk−3 + · · · + q2 + q directions and suppose that U is a GF(p)-linear set of points,
where q = ph, p > 3.

If n − 1 ≥ (n − k)h, then U is a cone with an (n − 1 − h(n − k))-dimensional vertex at
H∞ and with base a GF(p)-linear point set U(n−k)h of size q(n−k)(h−1), contained in some
affine (n − k)h-dimensional subspace of AG(n, q).

Proof: It follows from the previous lemma (as in this case |U | = phk ≥ pn(h−1)+1) that
U = Un is a cone with some vertex V0 = v0 ∈ H∞. The base Un−1 of the cone, which is the
intersection with any hyperplane disjoint from the vertex V0, is also a GF(p)-linear set,
of size qk−1. Since U is a cone with vertex V0 ∈ H∞, the set of directions determined by
U is also a cone with vertex V0 in H∞. Thus, if U determines N directions, then Un−1

determines at most (N − 1)/q ≤ q+3
2 qk−2 + qk−3 + qk−4 + · · · + q2 + q directions. So if

h ≤ (n−1)−1
(n−1)−(k−1)

then Un−1 is also a cone with some vertex v1 ∈ H∞ and with some GF(p)-
linear base Un−2, so in fact U is a cone with a one-dimensional vertex V1 = 〈v0, v1〉 ⊂ H∞
and an (n − 2)-dimensional base Un−2, and so on; before the r -th step we have Vr−1 as
vertex and Un−r , a base in an (n − r)-dimensional space, of the current cone (we started
“with the 0-th step”). Then if h ≤ (n−r)−1

(n−r)−(k−r)
, then we can find a line in Un−r and its infinite

point with Vr−1 will generate Vr and a Un−1−r can be chosen as well. When there is equality
in h ≤ (n−r)−1

(n−r)−(k−r)
, so when r = n − (n − k)h − 1, then the final step results in U(n−k)h and

Vn−1−h(n−k). ✷

The previous result is sharp as the following proposition shows.

Proposition 17 In AG(n, q = ph), for n ≤ (n − k)h, there exist GF(p)-linear sets U of
size qk containing no affine line.

Proof: For instance, AG(2k, p) in AG(2k, p2) for which n = 2k = (n − k)h = (2k − k)2.
More generally, write hk = d1 + d2 + · · · + dn , 1 ≤ di ≤ h − 1 (i = 1, . . ., n) in

any way. Let Ui be a GF(p)-linear set contained in the i-th coordinate axis, O ∈
Ui , |Ui | = pdi (i = 1, . . . , n). Then U = U1 × U2 × · · · × Un is a proper choice
for U . ✷
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