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Abstract In this paper, we prove that the arithmetical rank of a squarefree monomial
ideal I is equal to the projective dimension of R/I in the following cases: (a) I is an
almost complete intersection; (b) arithdeg I = reg I ; (c) arithdeg I = indeg I + 1.

We also classify all almost complete intersection squarefree monomial ideals in
terms of hypergraphs, and use this classification in the proof in case (c).

Keywords Arithmetical rank · Almost complete intersection · Alexander duality ·
Regularity · Arithmetic degree · Initial degree

1 Introduction

Throughout this paper, let R = k[x1, . . . , xn] be a polynomial ring over a field k with
the unique homogeneous maximal ideal m = (x1, . . . , xn)R, and let I be a homoge-
neous ideal of R, unless otherwise specified. Then the arithmetical rank of I , denoted
by ara I , is defined as follows:

ara I := min
{
r ∈ N : there exist a1, . . . , ar ∈ I such that

√
(a1, . . . , ar ) = √

I
}
.
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This paper deals with the problem of computing the arithmetical rank of a monomial
ideal (that is, the minimal number of equations needed to define the variety associated
to a monomial ideal).

A trivial upper bound on ara I is the minimal number of generators of I , denoted
by μ(I). On the other hand, it is well known that height I gives a lower bound for
ara I . An ideal I satisfying ara I = height I is said to be a set-theoretic complete
intersection. Let Hi

I (R) denote the ith local cohomology module of R with support
at V (I). Then the cohomological dimension of I is defined by cd(I ) = max{i ∈ Z :
Hi

I (R) �= 0}. From the expression of the local cohomology modules in terms of Čech
complex, one can easily see that cd(I ) ≤ ara I .

Now assume that I is a squarefree monomial ideal of R. Then Lyubeznik [9]
showed that cd(I ) = pdR R/I , the projective dimension of R/I . We also note that
height I ≤ pdR R/I always holds, and that equality holds if and only if R/I is
Cohen–Macaulay. Combining all inequalities stated above, we have

height I ≤ pdR R/I = cd(I ) ≤ ara I ≤ μ(I). (1.1)

In particular, if I is a set-theoretic complete intersection, then R/I is Cohen–
Macaulay. So, we consider the following fundamental question:

Question Let I be a squarefree monomial ideal of R. When does ara I = pdR R/I

hold? In particular, suppose that R/I is Cohen–Macaulay. When is I a set-theoretic
complete intersection?

Barile proved the equality for certain classes of squarefree monomial ideals in
[1–6]. We remark that it does not always hold as was shown by Yan [15]. He showed
that ara I = 4 for the squarefree monomial ideal I generated by monomials

x1x2x3, x1x2x4, x1x3x5, x1x4x6, x1x5x6, x2x3x6, x2x4x5, x2x5x6, x3x4x5, x3x4x6,

which is the Stanley–Reisner ideal of the triangulation of P
2(R) with six vertices.

However, when chark �= 2, R/I is Cohen–Macaulay and pdR R/I = height I = 3 <

4 = ara I . In particular, I is not a set-theoretic complete intersection. In this example,
the deviation d(I) = μ(I)− height I = 7 is rather big. So, in this paper, we focus our
attention on ideals with “small deviation” (e.g., almost complete intersection ideals)
and on the Alexander dual of such ideals.

Before stating our results, we recall several definitions. Let M be an arbitrary
noetherian graded R-module, and let

0 →
⊕

j∈Z

R(−j)βtj (M) → ·· · →
⊕

j∈Z

R(−j)β1j (M) →
⊕

j∈Z

R(−j)β0,j (M) → M → 0

be a graded minimal free resolution of M over R, where R(−j) is a graded free
R-module whose nth graded piece is given by Rn−j , and t = pdR M , the projective
dimension of M over R. The regularity and the initial degree of M are defined as
follows:

regM = max{j − i ∈ Z : βij (M) �= 0};
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indegM = min{j ∈ Z : β0j (M) �= 0},
i.e., indegM is equal to the minimal degree of the generators of M . Note that
indegM ≤ regM .

For a squarefree monomial ideal I of R, the arithmetic degree, denoted by
arithdeg I , is coincident with the number of prime components of I . It is known
that reg I ≤ arithdeg I . See [7, 8].

Schenzel–Vogel [11] and Schmitt–Vogel [12] showed that ara I = pdR R/I for the
squarefree monomial ideal I with indeg I = arithdeg I . One of the motivation for our
study is to generalize this result.

Theorem 1.1 (See also Theorems 2.1, 5.1 and 6.1) Let R be a polynomial ring over
a field k, and let I be a squarefree monomial ideal of R which satisfies one of the
following conditions:
(1) μ(I) ≤ pdR R/I + 1 (e.g., I is an almost complete intersection).
(2) arithdeg I = reg I .
(3) arithdeg I = indeg I + 1.

Then we have that ara I = pdR R/I .

Let us explain the organization of this paper. In Section 2, we consider the question
in the case of almost complete intersection ideals (i.e., μ(I) = height I + 1); see
Theorem 2.1.

In Section 3, we introduce the notion of hypergraphs associated to squarefree
monomial ideals. In the next section, we classify almost complete intersection square-
free monomial ideals in terms of hypergraphs; see Theorem 4.4. As an application,
we compute some invariants (the regularity, analytic spread etc.) for such ideals.

In Section 5, we consider the question in the case of arithdeg I = reg I (those
ideals satisfying this condition are obtained as the Alexander dual ideals of square-
free monomial ideals with μ(I) = pdR R/I ); see Theorem 5.1. The main tool in our
argument is the Schmitt–Vogel method in [12].

Finally in Section 6, we consider the question in the Alexander dual case of al-
most complete intersection squarefree monomial ideals; see Theorem 6.1. We use
Theorems 4.4, 5.1 in the proof of Theorem 6.1.

2 Arithmetical rank of almost complete intersection squarefree monomial
ideals

A homogeneous ideal I of a polynomial ring R is said to be an almost complete inter-
section (resp. a complete intersection) if μ(I) = height I + 1 (resp. μ(I) = height I ).

Let I be a squarefree monomial ideal of R. Then

height I ≤ pdR R/I ≤ ara I ≤ μ(I) (2.1)

holds as stated in the introduction. In particular, if I is a complete intersection, then
ara I = height I , and so there is nothing to do any more. On the other hand, if I is an
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almost complete intersection, then we have

0 ≤ μ(I) − pdR R/I ≤ 1.

The purpose of this section is to determine the arithmetical rank in this situation.
Before stating our result, let us recall the definition of a Taylor resolution. Let
I = (m1, . . . ,mμ) be a monomial ideal with the minimal set of monomial genera-
tors G(I) = {m1, . . . ,mμ}. Then the Taylor resolution F• of I is a finite graded free
complex of the following shape:

F• : 0 −→ Fμ

dμ−→ Fμ−1 −→ · · · −→ F1
d1−→ F0 −→ R/I −→ 0,

where

Fp =
⊕

1≤�1<···<�p≤μ

R e�1···�p ,

dp(e�1···�p ) =
p∑

i=1

(−1)i
lcm(m�1 , . . . ,m�p )

lcm(m�1 , . . . , m̂�i
, . . . ,m�p )

e�1···�̂i ···�p
.

That is, the free basis of Fp is {e�1···�p } with deg e�1···�p = deg lcm(m�1 , . . . ,m�p ). It
is known that F• is not necessarily the minimal graded free resolution of R/I . This
implies that pdR R/I ≤ μ(I), and that if F• is minimal, the equality holds. Note that
the converse is also true.

Theorem 2.1 (See also [2, Corollary 1]) If I is a squarefree monomial ideal of R

with μ(I) ≤ pdR R/I + 1, then we have ara I = pdR R/I . In particular, if I is an
almost complete intersection, then the same formula holds.

In order to prove the theorem, we need the following lemma.

Lemma 2.2 Let I be a squarefree monomial ideal of R. Then pdR R/I ≤ μ(I) − 1
if and only if ara I ≤ μ(I)− 1. In other words, pdR R/I = μ(I) if and only if ara I =
μ(I).

Proof It is enough to show that ara I ≤ μ(I) − 1 holds whenever pdR R/I ≤
μ(I) − 1. To do that, let G(I) = {m1, . . . ,mμ} be the minimal set of monomial gen-
erators of I , where μ = μ(I). Now suppose that pdR R/I ≤ μ − 1. Then since the
Taylor resolution of I is not minimal, we may assume that m1m2 · · ·mμ−1 is divisible
by mμ. For each i = 1, . . . ,μ − 1, let si be the ith elementary symmetric polynomial
in m1,m2, . . . ,mμ−1. Since every mj (j = 1, . . . ,μ − 1) is a root of the polynomial

(X − m1)(X − m2) · · · (X − mμ−1) = Xμ−1 − s1X
μ−2 + · · · + (−1)μ−1sμ−1,

we get

m
μ−1
j = s1m

μ−2
j − · · · + (−1)μsμ−1 ∈ (s1, . . . , sμ−2, sμ−1).
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Hence m
μ−1
j ∈ (s1, · · · , sμ−2,mμ) because mμ|sμ−1 = m1 · · ·mμ−1. It follows that

I = √
(s1, . . . , sμ−2,mμ), and thus ara I ≤ μ − 1, as required. �

Proof of Theorem 2.1 If pdR R/I = μ(I), then Lemma 2.2 implies that ara I =
μ(I) = pdR R/I . Otherwise, pdR R/I = μ(I) − 1 by assumption. Then Lemma 2.2
implies that ara I ≤ μ(I) − 1 = pdR R/I . But the converse is always true. Hence
ara I = pdR R/I . �

Example 2.3 Let I = (x1x2x3, x2x4x6, x3x5x6, x2x3x4x5), then μ(I) = 4, height
I = 2 and pdR R/I = 3. In particular, μ(I) − pdR R/I = 1 holds, but I is
not an almost complete intersection. The proof of the lemma above shows that
I = √

(s1, s2, x2x3x4x5), where

s1 = x1x2x3 + x2x4x6 + x3x5x6,

s2 = x1x
2
2x3x4x6 + x1x2x

2
3x5x6 + x2x3x4x5x

2
6 .

3 Hypergraphs

In this section, we introduce the construction of a particular hypergraph for any given
squarefree monomial ideal. In the next section, we will classify all almost complete
intersection squarefree monomial ideals using this notion. Furthermore, in Section 6,
we will use this classification in order to determine the arithmetical rank for the
Alexander dual ideals of those ideals.

Let us begin with the definition of hypergraphs associated to squarefree monomial
ideals. Let [μ] denote the subset {1, . . . ,μ} of N.

Definition 3.1 Let V = [μ]. We call H ⊂ 2V a hypergraph with the vertex set V if

⋃

F∈H
F = V.

Let I be a squarefree monomial ideal, and let G(I) = {m1,m2, . . . ,mμ} denote
the minimal set of monomial generators of I . For such an ideal I , we construct a
hypergraph H(I ) with the vertex set V = {1,2, . . . ,μ} as follows:

F ∈ H(I ) ⇐⇒ there exists i (1 ≤ i ≤ n) such that
for all j ∈ V ,

mj is divisible by xi if j ∈ F

and mj is not divisible by xi if j ∈ V \ F .

That is,

H(I ) =
{
{j ∈ V : mj is divisible by xi} : 1 ≤ i ≤ n

}
.

We call H(I ) the hypergraph associated to a squarefree monomial ideal I .
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Notice that the hypergraph H = H(I ) satisfies

for all j1, j2 ∈ V (j1 �= j2),

there exist F1,F2 ∈ H such that j1 ∈ F1 ∩ (V \ F2), j2 ∈ F2 ∩ (V \ F1).
(3.1)

Conversely, for any hypergraph H on V = [μ] satisfying condition (3.1), there ex-
ists a squarefree monomial ideal I in a polynomial ring with enough variables such
that H = H(I ). For example, if we put IH := (

∏
F�j xF : 1 ≤ j ≤ μ) in a polyno-

mial ring k[xF : F ∈ H], then H = H(IH) holds. Note that such a choice of I is not
unique. In fact, one can obtain the same hypergraph as the original one if one replaces
each variable by a squarefree monomial no two of which have common factors. For
example, let I1 = (x1x5, x2x5, x3x6, x4x6) and I2 = (x1x5, x2x5, x3x6x7, x4x6x7).
Then we have

H(I1) = H(I2) = {{1}, {2}, {3}, {4}, {1,2}, {3,4}}.

Definition 3.2 A subset C of H is said to be a cover of H if
⋃

F∈C
F = V.

In particular, C is called a minimal cover of H if no proper subset of C is a cover
of H.

H itself is a cover of H. Assume that H satisfies condition (3.1). Then H is a
minimal cover of H if and only if H consists of isolated points.

Note that the cardinality of the minimal cover is not constant in general: for in-
stance, for a hypergraph H = {{1,2}, {2,4}, {1,4}, {1,3}, {3}} on V = {1,2,3,4},
C1 = {{1,2}, {2,4}, {3}} and C2 = {{2,4}, {1,3}} are both minimal covers of H. In
general, we have

Proposition 3.3 Let I be a squarefree monomial ideal. Then the following two con-
ditions are equivalent:
(1) I has a prime component of height h.
(2) H = H(I ) has a minimal cover of cardinality h.

In particular,

height I = min{�C : C is a (minimal) cover of H}.

Proof Set G(I) = {m1, . . . ,mμ} to be the minimal set of monomial generators of I .
(1) ⇒ (2): Let P = (xi1, . . . , xih) be a prime component of I with height h. Set

F� = {j ∈ V : mj is divisible by xi�} for 1 ≤ � ≤ h. Then C = {F1, . . . ,Fh} is a mini-
mal cover of H.

(2) ⇒ (1): Let C = {Fi : 1 ≤ i ≤ h} be a minimal cover of H. By definition, we
may assume that for each Fi (1 ≤ i ≤ h),

j ∈ Fi ⇐⇒ mj is divisible by xi .
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Since
⋃h

�=1 F� = V , we have I = (m1, . . . ,mμ) ⊂ (x1, . . . , xh) = P . Thus there is a
prime component P ′ of I such that P ′ = (xi1, . . . , xis ) ⊂ P . By the argument as in the
proof of (1) ⇒ (2), C′ = {Fi1, . . . ,Fis } ⊂ C is a minimal cover of H. The minimality
of C implies that C = C′ and P = P ′. �

Let H be a hypergraph. An element of H is said to be a face in H. The dimension
of a face F in H is defined by dimF = �F − 1, and the dimension of H, denoted
by dim H, is defined as the maximal dimension of all faces in H. A face F with
dimF = 1 is said to be an edge. Two edges are said to be disjoint if they do not
intersect.

Proposition 3.4 Let I be a squarefree monomial ideal of R. Then we have

dim H(I ) ≤ μ(I) − height I.

Proof Put d(I) = μ(I) − height I . Suppose H(I ) has a face F with dimF > d(I).
For each j ∈ V \ F , we choose Gj ∈ H such that j ∈ Gj . Then C = {F } ∪ {Gj : j ∈
V \ F } is a cover of H. Since �C ≤ �V − �F + 1 < μ(I) − d(I), this contradicts
Proposition 3.3. �

Example 3.5 The equality dim H(I ) = μ(I) − height I does not necessarily hold.
For example, if we put I = (x1x5, x2x5, x3x6, x4x6), then μ(I) = 4, height I = 2 and
H(I ) = {{1}, {2}, {3}, {4}, {1,2}, {3,4}}. In particular, dim H(I ) = 1 < 2 = μ(I) −
height I .

4 Classification of almost complete intersection squarefree monomial ideals

In this section, we classify almost complete intersection squarefree monomial ideals
in terms of hypergraphs. Let us begin with studying hypergraphs of those ideals.

Lemma 4.1 Assume that I is an almost complete intersection. Then:
(1) dim H(I ) = 1.
(2) There are no two disjoint edges in H(I ).

Proof (1) Proposition 3.4 shows that dim H(I ) ≤ 1. Moreover, it is easy to see that I

is a complete intersection if and only if dim H(I ) = 0. Hence dim H(I ) = 1.
(2) Suppose H = H(I ) has two disjoint edges F1,F2. For each j ∈ V \ (F1 ∪F2),

we choose Gj ∈ H such that j ∈ Gj . Then C = {F1,F2} ∪ {Gj : j ∈ V \ (F1 ∪ F2)}
is a cover of H, and �C is at most μ(I) − 2. This contradicts Proposition 3.3 as
height I = μ(I) − 1. �

By the lemma above, the hypergraph H = H(I ) associated to any almost complete
intersection ideal I of height h ≥ 1 can be represented as a simple graph H equipped
with some weight function w : V −→ {0,1}. In other words, H is the simple graph
H = (V , H1), where H1 = {F ∈ H : dimF = 1} with the weight function w : V →
{0,1}; w(j) = 1 if {j} ∈ H and w(j) = 0 otherwise.
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In this paper, we will describe a vertex of the hypergraph (of dimension one) by
the following rule: � if w(j) = 1; � if w(j) = 0.

Proposition 4.2 Assume that I is an almost complete intersection squarefree mono-
mial ideal with h = height I ≥ 2. Then the hypergraph H(I ) consists of one of the
following one-dimensional hypergraphs with finitely many isolated points.

In the picture below, p, p′ are integers with 2 ≤ p ≤ h and 1 ≤ p′ ≤ h.
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Remark 4.3 An almost complete intersection squarefree monomial ideal of height
1 is of the form (AB1,AB2), where A, B1, B2 are squarefree monomials no two
of which have common factors. This ideal corresponds to (H2) with p′ = 1 in the
proposition.

Proof of Proposition 4.2 Put H = H(I ). Since dim H = 1 by Lemma 4.1(1), H con-
sists of vertices and 1-faces (edges). We may assume that H does not contain any
isolated points. Then one can easily see that H is connected by Lemma 4.1(2).

Case 1: The case where H contains no cycles.
Since H is a connected graph without cycles, it is a tree. Moreover, H does not have
two disjoint edges, thus it is isomorphic to either (H1) or (H2).

Case 2: The case where H contains a cycle C.
If the number of edges of C (say, m) is bigger than 3, then one can find two disjoint
edges. Thus m = 3. Since H cannot have edges that do not belong to C, H is a
triangle as a graph. Then, H is isomorphic to one of (H3), . . . , (H6). �

Using Proposition 4.2, we classify almost complete intersection squarefree mono-
mial ideals. We say that I is isomorphic to J if I is obtained from J by renumbering
the variables.

Theorem 4.4 Let I be an almost complete intersection squarefree monomial ideal
of height I = h ≥ 2. Then I can be written in one of the following forms, where
A1,A2, . . . ,B1,B2, . . . are non-trivial squarefree monomials no two of which have
common factors, and p, p′ are integers with 2 ≤ p ≤ h and 1 ≤ p′ ≤ h.
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(1) I1 = (A1B1,A2B2, . . . ,ApBp,Ap+1, . . . ,Ah, B1B2 · · ·Bp).
(2) I2 = (A1B1,A2B2, . . . ,Ap′Bp′ ,Ap′+1, . . . ,Ah,Ah+1B1B2 · · ·Bp′).
(3) I3 = (B1B2,B1B3,B2B3,A4, . . . ,Ah+1).
(4) I4 = (A1B1B2,B1B3,B2B3,A4, . . . ,Ah+1).
(5) I5 = (A1B1B2,A2B1B3,B2B3,A4, . . . ,Ah+1).
(6) I6 = (A1B1B2,A2B1B3,A3B2B3,A4, . . . ,Ah+1).

Moreover, R/I is unmixed if and only if I is isomorphic to Ii for some i =
1,3,4,5. When this is the case, R/I is Cohen–Macaulay.

Proof We assign each vertex (resp. edge) in H to Ai (resp. Bj ). We give pictures
only for the cases (H2) and (H6).

(H2)

�

�

�

�

...

����
�����
�

�
�

Ah+1
A1

A2

Ap′

B1

B2

Bp′

� · · · �
Ap′+1 Ah

(H6)
�

� ��
�
�
��

�
�

�
��
A1

A2 A3

B1 B2

B3

� · · · �
A4 Ah+1

Then I is isomorphic to one of Ii for 1 ≤ i ≤ 6 by virtue of Proposition 4.2.
It is clear that R/Ii is unmixed if and only if i = 1,3,4 or 5. In I1, if we put

mh+1 = B1 · · ·Bp and mj = AjBj for every j = 1, . . . , p, then m1 · · ·mp is divisible
by mh+1. In I3, I4 or I5, if we put m1 = A1B1B2, m2 = A2B2B3 and m3 = B2B3,
then m1m2 is divisible by m3, where we consider A1 = A2 = 1 in I3 (resp. A2 = 1 in
I4). In any case, using the Taylor resolution we obtain that pdR R/Ii ≤ μ(Ii) − 1 =
height Ii , that is, R/Ii is Cohen–Macaulay. �

The following corollary gives an answer to the question stated in the introduction
in the case of almost complete intersection squarefree monomial ideals. Let r(R/I)

denote the Cohen–Macaulay type of R/I .

Corollary 4.5 Let I = (m1, . . . ,mh+1) be an almost complete intersection square-
free monomial ideal with h ≥ 2. Then the following conditions are equivalent:
(1) R/I is Cohen–Macaulay.
(2) R/I is unmixed.
(3) There exists m� such that m� |m1 · · · m̂� · · ·mh+1.
(4) I is a set-theoretic complete intersection.

When this is the case, under the same notation as in Theorem 4.4, we have

r(R/I1) = p; r(R/Ii) = 2 (i = 3,4,5).

Moreover, the regularity is obtained by the following formula:

reg I1 =
h∑

i=1

degAi +
p∑

j=1

degBj − min{degAi : 1 ≤ i ≤ p} − h + 1;
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reg Ii =
h+1∑

i=4

degAi +
3∑

j=1

degBj + max{degA1, degA2} − h + 1

for each i = 3,4,5, where we consider A1 = A2 = 1 in I3 (resp. A2 = 1 in I4).

Proof We first show that the above four conditions are equivalent. (1) ⇒ (2) and
(2) ⇒ (3) are clear. By Lemma 2.2, we have (3) ⇒ (4). (4) ⇒ (1): from (4),
height I = pdR R/I . Thus R/I is Cohen–Macaulay.

Secondly, let us determine the Cohen–Macaulay type and the regularity in the case
I = I1. We may assume p = h. Set mj = AjBj for 1 ≤ j ≤ h and mh+1 = B1 · · ·Bh.
Considering the Taylor resolution of I1, by [10, Theorem 5.2], we have

reg I1 = max{j ∈ Z : βh,j (R/I) �= 0} − h + 1

= max{deg lcm(m1, . . . , m̂i , . . . ,mh,mh+1) : 1 ≤ i ≤ h} − h + 1

=
h∑

i=1

degAi +
h∑

j=1

degBj − min{degAi : 1 ≤ i ≤ h} − h + 1,

as required. Moreover, r(R/I) = ∑
j∈Z

βh,j (R/I) = p.
In the case I = I3, I4 or I5, one can also prove the formula by a similar argument

as above. So we omit the proof here. �

As an application of our classification, we consider the analytic spread. The an-
alytic spread of I is defined by �(I ) := �(Im) = dim

⊕
n≥0 In

m/mIn
m, and satisfies

ara I ≤ �(I ) ≤ μ(I).

Corollary 4.6 Let I be an almost complete intersection squarefree monomial ideal.
Then it is of linear type, that is, �(I ) = μ(I).

Proof Set I = (m1, . . . ,mh+1). It suffices to show that the kernel of the natural map
R[Y1, . . . , Yh+1] → R[m1t, . . . ,mh+1t] is generated by miYj − mjYi , 1 ≤ i < j ≤
h + 1. One can easily reduce the proof to the case p = h in I1 (resp. h = 2 in I3, I4
or I5). Then it is easy to check it. �

From Theorem 4.4, we can also classify almost complete intersection (not nec-
essarily squarefree) monomial ideals. For A = x

j1
i1

· · ·xjm

im
(j1, . . . , jm > 0), we set√

A := xi1 · · ·xim .

Corollary 4.7 Let I be an almost complete intersection monomial ideal. Then I is
one of the following types, where C1,C2, . . . ,D1,D2, . . . are monomials no two of
which have common factor:

(1) (D1, . . . ,Dp,Cp+1Dp+1, . . . ,CqDq,Cq+1, . . . ,Ch,Ch+1D1
′ · · ·Dq

′), where

p ≥ 0, q ≥ 1, p ≤ q ,
√

Di = √
Di

′ for each of i = 1, . . . , q and Di
′ is not divisi-

ble by Di for each of i = 1, . . . , p, Cp+1, . . . ,Ch,D1, . . . ,Dp �= 1. Moreover, if
p = 0, then q ≥ 2 or Ch+1 �= 1.
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(2) (C1D1D2,C2D1
′D3,C3D2

′D3
′,C4, . . . ,Ch+1), where

√
Di = √

Di
′ for each of

i = 1,2,3, C4, . . . ,Ch+1,D1,D2,D3 �= 1.

When this is the case,
√

I is a complete intersection if and only if p ≥ 1 in (1).

Proof As h = height I = height
√

I ≤ μ(
√

I ) ≤ μ(I) = h + 1,
√

I is a complete
intersection or an almost complete intersection.

Case 1:
√

I is a complete intersection

By the assumption, the ideal I can be written as I = (M1, . . . ,Mh+1), where Mi

are monomials such that
√

Mh+1 ∈ (
√

M1, . . . ,
√

Mh). Put Bi = gcd(
√

Mi,
√

Mh+1).
By renumbering the monomials, we may assume that p ≥ 1, and that Bi �= 1 if and
only if 1 ≤ i ≤ q and

√
Mi =

{
Bi if 1 ≤ i ≤ p;
AiBi if p + 1 ≤ i ≤ q,

where Ai �= 1 is a squarefree monomial for i = p + 1, . . . , q . Thus we can write

I = (D1, . . . ,Dp, Cp+1Dp+1, . . . ,CqDq, Cq+1, . . . ,Ch, Ch+1D
′
1 · · ·D′

p),

where Ci , Dj (resp. Ci , D′
j ) are coprime monomials and

√
Ci = Ai and

√
Dj = Bj

(resp.
√

D′
j = Bj ). Conversely, if I can be written in the above form, then

√
I = (B1, . . . ,Bp,Ap+1Bp+1, . . . ,AqBq, Aq+1, . . . ,Ah)

is a complete intersection.

Case 2:
√

I is an almost complete intersection

By the assumption, the ideal I can be written as I = (M1, . . . ,Mh+1), where Mi

are monomials such that
√

I = (
√

M1, . . . ,
√

Mh+1).
Suppose that

√
I = (A1B1, . . . ,AqBq,Ah+1, . . . ,Ah,Ah+1B1 · · ·Bq), where Ai ,

Bj are non-trivial monomials for i = 1, . . . , h, j = 1, . . . , q , and Ah+1 is a mono-
mial; see Theorem 4.4(1),(2). Then I can be written as:

(C1D1, . . . ,CqDq,Cq+1, . . . ,Ch,Ch+1D1
′ · · ·Dq

′),

where
√

Ci = Ai ,
√

Di = Bi , and q ≥ 2 when Ch+1 = 1. This is the form described
in (1) with p = 0.

Next suppose that
√

I = (A1B1B2,A2B1B3,A3B2B3,A4, . . . ,Ah+1), that is, it is
isomorphic to Ii for some i = 3,4,5,6. Then one can easily see that I can be written
as the ideal in (2). �

Remark 4.8 One can prove this corollary using polarization (see [13, p. 107, Chap-
ter II Section 1]).
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5 Arithmetical rank of the case arithdegI = regI

In this section, using Alexander duality, we consider the arithmetical rank of square-
free monomial ideals with arithdeg I = reg I . Before stating our result, we recall the
definition and fundamental properties of Alexander duality.

Put V = [n]. For � ⊆ 2V , � is called a simplicial complex on the vertex set V if
(a) {i} ∈ � for every i ∈ V and (b) F ∈ �, G ⊆ F implies G ∈ �. For a simplicial
complex � on V , the Alexander dual complex of � is defined by �∗ := {F ⊂ V :
V \ F /∈ �}.

Let I be a squarefree monomial ideal of R. Then there exists a simplicial com-
plex � on V such that I = I�, where I� is the Stanley–Reisner ideal of �:
I� = (xi1 · · ·xip : 1 ≤ i1 < · · · < ip ≤ n, {i1, . . . , ip} /∈ �)R. Now suppose that
height I ≥ 2. Then we set I ∗ := I�∗ and call it the Alexander dual ideal of I .
Then it is easy to see that I ∗∗ = I . Let I = Q1 ∩ Q2 ∩ · · · ∩ Qq be the irre-
dundant primary decomposition of I , and let m� be the product of all variables
which appear in Q� for each � = 1, . . . , q . Then I ∗ = (m1,m2, . . . ,mq). This im-
plies that height I = indeg I ∗ and μ(I ∗) = arithdeg I . Moreover, it is known that
pdR R/I = reg I ∗ (see, e.g., [14, Corollary 1.6]). Considering Alexander dual of the
relation (2.1), we have

indeg I ≤ reg I ≤ arithdeg I. (5.1)

See [7, 8].
Schenzel–Vogel [11] and Schmitt–Vogel [12] showed that ara I = pdR R/I for the

squarefree monomial ideal I with indeg I = arithdeg I . We generalize it as follows:

Theorem 5.1 Let I be a squarefree monomial ideal. If arithdeg I = reg I , then we
have ara I = pdR R/I .

From now on, we prove this theorem. When height I = 1, I can be written in the
form uI0, where u is a squarefree monomial and height I0 ≥ 2. In order to prove
Theorem 5.1, we may assume that height I ≥ 2 by replacing I with I0. Then we have
following:

Lemma 5.2 Any squarefree monomial ideal I with arithdeg I = reg I can be written
(by renumbering the variables) in the form

I = (y1, xt11, . . . , xt1j1
) ∩ (y2, xt21, . . . , xt2j2

) ∩ · · · ∩ (yq, xtq1 , . . . , xtqjq
),

where y�, xtij are variables in R with y� �= xtij , yi �= yi′ for i �= i′, and xtij �= xtij ′ for
j �= j ′.

Proof Since a squarefree monomial ideal has no embedded associated primes, the
assertion follows from [8, Theorem 2.6]. �

Lemma 5.3 Using the same notation as in Lemma 5.2, we have

pdR R/I = �{xt11, xt12, . . . , xt1j1
, xt21, xt22, . . . , xt2j2

, . . . , xtq1 , xtq2 , . . . , xtqjq
} + 1.



J Algebr Comb (2009) 29: 389–404 401

Proof Since the Taylor resolution of I ∗ is minimal, we have

regR/I ∗ = deg lcm
(
m1/y1, . . . ,mq/yq

)
.

Since pdR R/I = reg I ∗ = regR/I ∗ + 1, we obtain the required assertion. �

Proof of Theorem 5.1 By Lemma 5.2, I can be written as follows:

I = Q1 ∩ Q2 ∩ · · · ∩ Qq, Qi = (yi, xti1, . . . , xtiji
), i = 1, . . . , q,

where q = arithdeg I . Set {x1, x2, . . . , xr} = {xtij }. By Lemma 5.3, to prove the theo-

rem, it suffices to find r + 1 elements g0, . . . , gr ∈ I such that
√

I = √
(g0, . . . , gr ).

Note that any squarefree monomial with respect to x1, . . . , xr can be written as
follows:

xi = xi1,...,i� = xi1 · · ·xi� (1 ≤ i1 < · · · < i� ≤ r; � = 0,1, . . . , r).

For i = (i1, . . . , i�), we put �(i) = {j : 1 ≤ j ≤ q, xi /∈ Qj }. Set

Pr−� =
{
xi1 · · ·xi�

( ∏

j∈�(i)

yj

) : 1 ≤ i1 < · · · < i� ≤ r

}

for every � = 0,1, . . . , r . In particular, P0 = {x1 · · ·xr} and Pr = {y1 · · ·yq}. Then
the following are satisfied:

(SV-1)
⋃r

�=0 P� = P contains all minimal monomial generators of I .
(SV-2) �P0 = 1.
(SV-3) For any � (0 ≤ � < r) and any a, a′′ ∈ Pr−� (a �= a′′), there is �′ (� < �′ ≤ r)

and a′ ∈ Pr−�′ such that a · a′′ ∈ (a′).

Let us check (SV-3) only. For i = (i1, . . . , i�), i′′ = (i′′1 , . . . , i′′� ) with i �= i′′, we have
that �({i} ∪ {i′′}) ≥ � + 1. We also see that �({i} ∪ {i′′}) ⊆ �({i}). The assertion
immediately follows from here.

If we set

g� =
∑

i=(i1,...,i�)

xi1 · · ·xi�

( ∏

j∈�(i)

yj

)
for every � = 0,1, . . . , r,

then we have
√

I = √
(a : a ∈ P )R = √

(g0, . . . , gr )R by virtue of Schmitt–Vogel
lemma (see [12, Lemma, p. 249]). �

Example 5.4 Let us consider

I = (y1, x1, x2) ∩ (y2, x2, x3) ∩ (y3, x4)

= (x1x3x4, x1x3y3, x1x4y2, x2x4, x3x4y1, x1y2y3, x2y3, x3y1y3, x4y1y2, y1y2y3).



402 J Algebr Comb (2009) 29: 389–404

Then g�’s in the proof of Theorem 5.1 are given by the following:

g0 = x1x2x3x4,

g1 = x1x2x3y3 + x1x2x4 + x1x3x4 + x2x3x4,

g2 = x1x2y3 + x1x3y3 + x1x4y2 + x2x3y3 + x2x4 + x3x4y1,

g3 = x1y2y3 + x2y3 + x3y1y3 + x4y1y2,

g4 = y1y2y3.

6 Alexander dual of almost complete intersection squarefree monomial ideals

In this section, we consider squarefree monomial ideals with arithdeg I = indeg I +1.
For such an ideal I with height I ≥ 2, the Alexander dual J of I is an almost complete
intersection. Utilizing this fact, we determine ara I .

Theorem 6.1 If I is a squarefree monomial ideal with arithdeg I = indeg I + 1, then
ara I = pdR R/I .

Proof We may assume that height I ≥ 2. Put h = indeg I ≥ 2, and let J = I ∗ de-
note the Alexander dual of I . Then since J is an almost complete intersection, it is
isomorphic to one of I1, . . . , I6; see Theorem 4.4. Noting that I = J ∗, we get

Lemma 6.2 Let I be a squarefree monomial ideal with arithdeg I = indeg I + 1 and
height I ≥ 2. Then I is isomorphic to one of the following ideals, where xij , y� are
variables that are different from each other:

•I
′
1 = (x11, x12, . . . , x1j1) ∩ (x21, x22, . . . , x2j2) ∩ · · · ∩ (xh1, xh2, . . . , xhjh

)

∩(x11, x12, . . . , x1i1, x21, x22, . . . , x2i2, . . . , xp1, xp2, . . . , xpip ),

where 2 ≤ p ≤ h, 1 ≤ i� < j� (� = 1,2, . . . , p), jp+1, . . . , jh ≥ 1.

•I ′
2 = (x11, x12, . . . , x1j1) ∩ (x21, x22, . . . , x2j2) ∩ · · · ∩ (xh1, xh2, . . . , xhjh

)

∩(xh+11, xh+12, . . . , xh+1jh+1 ,

x11, x12, . . . , x1i1, x21, x22, . . . , x2i2, . . . , xp1, xp2, . . . , xpip ),

where 1 ≤ p ≤ h, 1 ≤ i� < j� (� = 1,2, . . . , p), jp+1, . . . , jh, jh+1 ≥ 1.

•I ′
3 = (x11, x12, . . . , x1i1, y1, y2, . . . , yp) ∩ (x21, x22, . . . , x2i2, y1, y2, . . . , yp)

∩(x31, x32, . . . , x3j3) ∩ · · · ∩ (xh1, xh2, . . . , xhjh
)

∩(x11, x12, . . . , x1i1, x21, x22, . . . , x2i2),

where h ≥ 2, p, i1, i2, j3, . . . , jh ≥ 1.
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•I ′
4 = (x11, x12, . . . , x1i1, y1, y2, . . . , yp) ∩ (x21, x22, . . . , x2j2, y1, y2, . . . , yp)

∩(x31, x32, . . . , x3j3) ∩ · · · ∩ (xh1, xh2, . . . , xhjh
)

∩(x11, x12, . . . , x1i1, x21, x22, . . . , x2i2),

where h ≥ 2, p, i1, i2, j3, . . . , jh ≥ 1 and j2 > i2.

•I ′
5 = (x11, x12, . . . , x1j1 , y1, y2, . . . , yp) ∩ (x21, x22, . . . , x2j2 , y1, y2, . . . , yp)

∩(x31, x32, . . . , x3j3) ∩ · · · ∩ (xh1, xh2, . . . , xhjh
)

∩(x11, x12, . . . , x1i1, x21, x22, . . . , x2i2),

where h ≥ 2, p ≥ 1, 1 ≤ i� < j� (� = 1,2), j3, . . . , jh ≥ 1.

•I ′
6 = (x11, x12, . . . , x1j1 , y1, y2, . . . , yp) ∩ (x21, x22, . . . , x2j2 , y1, y2, . . . , yp)

∩(x31, x32, . . . , x3j3) ∩ · · · ∩ (xh1, xh2, . . . , xhjh
)

∩(xh+11, xh+12, . . . , xh+1jh+1 , x11, x12, . . . , x1i1, x21, x22, . . . , x2i2),

where h ≥ 2, p ≥ 1, 1 ≤ i� < j� (� = 1,2), j3, . . . , jh, jh+1 ≥ 1.

We now return to the proof.
Case 1. The case I = I ′

2 or I = I ′
6.

Then as R/J is not Cohen–Macaulay, we have that pdR R/J = heightJ + 1. This
means that reg I = indeg I + 1. Hence we can apply Theorem 5.1 by assumption.

Case 2. The case I = I ′
1.

We first compute pdR R/I . We may assume that all variables appear in the minimal
monomial generators of I , and that

j1 − i1 = min{j� − i� : � = 1,2, . . . , p}.
By Corollary 4.5, we have

pdR R/I = regJ = i1 + j2 + · · · + jh − h + 1.

Next, we will find pdR R/I elements generating I up to radical. Indeed, it is
enough to take

g� =
∑

�1+···+�h=�+h

�1 ≤ i1 or �2 ≤ i2 or · · · or �p ≤ ip

x1�1x2�2 · · ·xh�h
, � = 0,1, . . . , i1 +

h∑

t=2

jt − h.

Case 3. The case I = I ′
3, I ′

4 or I ′
5.

Put j1 = i1 in the case of I ′
3, I ′

4, and j2 = i2 in the case of I ′
3. We may assume that

j1 − i1 ≤ j2 − i2 in the case of I ′
5. Then

pdR R/I = i1 + j2 + · · · + jh + p − h + 1.
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It is enough to take

g� =
∑

�1+···+�h=�+h

�1 ≤ i1 or �2 ≤ i2

x1�1x2�2 · · ·xh�h
, � = 0,1, . . . , i1 +

h∑

t=2

jt + p − h,

where x1j1+i = x2j2+i = yi . This completes the proof. �

Remark 6.3 We define the homogeneous arithmetical degree of the monomial ideal
I by

arah I = min

{
r ∈ N : there are homogeneous a1, . . . , ar ∈ I

such that
√

(a1, . . . , ar ) = √
I

}
.

Then, obviously, one has ara I ≤ arah I . However, the converse is open in general.
Note that one can easily obtain that pdR R/I = arah I in Theorems 2.1, 5.1 and 6.1.
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