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Abstract. In this note, we state certain product formulae for Jackson integrals associated with any root systems
involved in elliptic theta functions which appear as connection coefficients. The fomulae arise naturally in case of
arbitrary root systems by extending the connection problem which has been investigated in [1, 4] inchgeeof

root system. This is also connected with the Macdonald-Morris constant term identity investigated by |. Cherednik
[6], and K. Kadell [15] on the one hand, and of the Askey-Habsieger-Kadgbglberg integral formula and its
extensions [4, 8, 12, 14, 15] on the other. This is also related with some of the results due to R.A. Gustafson [10
11], although our integrands are different from his.
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1. The product formula

Let q be the elliptic modulus satisfying|| < 1. Leth andH be then-dimensional Cartan
subalgebra and its Cartan subgroup, associated with a simple Lie aigebrankn over
C. Leth* be the dual oh. Let R, C h* be the positive root system dn Fora, 8 € Ry,
we denote by, 8) the inner product induced by the Killing form ¢h We may identify
the vector spack* with its dualh through the inner product as follows:

o Cc h* - h, €h,
such thatw, u) = u(h,) for anyu € h*.
Let X be then-dimensional coweight lattice&2Z" in h consisting ofh € h such that

a(h) € Z. We take a suitable basjg, ..., xn, SO that an arbitrary elemeptof X can be
described as a linear combination

n
X =) _vix
=1

for (vy,...,vn) € Z". handH are isomorphic to the tensor produtsg C, and X ® C*,
respectively.X can also be embedded in timedimensional algebraic torusl (Cartan
subgroup) isomorphic teC*)". We denote this identification by

xeX—=gX=(",...,q"M) e (CH".
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Lety1, y2, y3, . .. be arbitrary complex numbers. Eaghe h* defines a monomidl* =
g0 th 0 fort = (t,...,1,) € H. We denote the two linear functionsand .’ as
A=3per (1= o) and’ =1 — 3 Y ucr, @ respectively.

We denote byQ* f (t) = f(g*t) the g-shift by x € X for a function f (t) on H. We
consider they-multiplicative function® (t) and®q(t) on H as

P T @ )
() =t a];[+ G T (1.1)
Do(t) = (1) [ /2 -t (1.2)
aeRy

Here(X)o = (X; ) denotes the infinite produ;”,(1 — xg"). It is known that there
are at most 2 different , which appear in the RHS of (1.1).

Thend(t), () have the quasi-symmetry with respect to the Weyl grdtiassociated
with the root systenir, .

o®d(t) = Do H(t) = U, ()P (1), (1.3)
o Do(t) = Po(o (1)) = sgno)U, (1) D(), (1.4)
where{U, (1)}, cw defines one cocycle aiv with values in pseudo-constants iggperiodic

functions with respect tb.
IndeedU, (t) satisfies the properties

Uy (1) = U, (1) - oU, (1) foro,t e W,Ug(t) =1 (e= theidentity

andQ*U, (t) = U, (t) forany x € X.
Itis given in an explicit form as

0 (qYest
U= [] {t‘zy‘“"”‘”“ =) o } (1.5)
aeRy,0()<0 (q ot )

wheref (x) denotes the Jacobi elliptic theta functi®x) = (X)oo - (4/X) 00 * (@) co-
We now consider the following Jackson integral

dgt Aot
J(€)=/ ®o(t), (wzq_lA...Aﬂ)
[0.600]q ty th

=1-q" ) ®o(@*4). (1.6)

xeX

where¢ denotes an arbitrary point ¢f.
Assume now that(x) + % Zae& a(x) > 0 forall x # 0 of the fundamental domain
A in h defined by the inequalities(x) > 0 fora € R,.
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Then (1.6) issummable odN A becausq!f[m€R+ (Y Vet /(Q7=1*) } iS bound-
ed onA.. Hence, (1.6) is also summable, in view of the quasi-symmetry (1.#ydf). It
is important to note that this property does not depend on the cholgendfences —* J (£)
becomes a meromorphic functionguk (C*)".

Then by definitionJ (¢) is aq-periodic function of on H:

Q*J(E)=J(¢E) foryx e X
The formula which we want to propose is the following.

Proposition 1 J(¢) can be described as

: 6(d5")
IE) = Cag 11 ST E (L.7)

(we shall denote by, (£) the term in the RHS divided by @ the sequélor equivalently

JE =Cr ) sgno - U, (&) - oy (&), (1.8)

oeW

where G and G are constants with respect o Let (¢) be a pseudo-constant defined as

, 0 Cj+Vwj.0p gwj

Y(E) = e

(1.9)

where{c; }T=1 are uniquely determined by the expression= Z?lej wj with respect to
the positive simple rootgy; }T=1 such that the corresponding positive roots are exactly R

Remark 1 Since the symmetrin-dimensional cohomology associated with the Jackson
integrals (1.6) is one dimensional, it may be conjectured@andC, can be written in
product form by using|-gamma functions of, ). The explicit forms are presented in [13]

but not yet proved except in the two-dimensional cases. In [17], Macdonald has given &
formal proof of Ito’s formula in an entirely different way. In [10, 11] Gustafson obtains
various product formulas under a slightly different situation from ours. In [7], van Diejen
obtains a similar product formula for BQype, by using Gustafson’s result.

Proof 1. J(¢) satisfies the same quasi-symmetrydgst):
0J(E) =sgno -Us(§) - I(E), oeW (1.10)

SinceJ (&)&~* is ameromorphic function oH with poles lying in the setﬂae&e(q”mw
£y =0, J(&) can be written as

)
[lucr, 0(@F7enge)’

JE) =& (1.11)
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where f (¢§) denotes a quasi-periodic function &fin the sense tha@Q*f (¢§)/f (&) is a
monomial ing for any y € X, and satisfies the skew-symmetryf (§) = sgno f (¢) for
o € W. This implies f (¢) vanishes it* = 1, g*1, q*2, . .. Hence,f (¢) is divided out by
the produc{ [, g, 6(d¢“) and also by the produét” [acr, 0(@&Y):

6(qg*)

— &V
10 =590 [ jommge

acRy

(1.12)

whereg(¢) denotes a holomorphic function di. Sinceg(¢) is g-periodic, it must be
constant. And the formula (1.7) follows.

To prove (1.8), we denote by (¢) the sumy_ . ow sgno U L&) - oy (£). SinceU, (t)
has the expression (1.5), the poleg/df) lie in the set& € H; [],.g, 6(q* "0 &%) = 0}.
Moreover, it satisfies the same quasi-symmetry as in (1.10). Hence, it can be expressed
in the RHS of (1.8). It is sufficient to prove that it does not vanish identically. We evaluate
the residues of/ (£) at the points of the equatiodgqg”i“’£“1) = 0, say, of the equations

g’eing®r =1 forl<j <n. (1.13)

These points appear only for the residues of the summya@d itself in the sumy (&).

In fact, o (wj) = wj, 1 < j < nifand only if o =the identity Since they do not vanish
identically, v/ (¢) does not vanish identically. Lét= ¢ be a point satisfying this system of
equations. Then

0@

Res—c¥/(§) = Res—y(§) = ¢ — ar

Equation (1.8) is thus proved. ]

2. A-type root system

In the sequely, vy, v, ... will denote integers.
At first we can takeb (1) in a slightly more general way than (1.1), namely we téke)
as

o w Ty oo @7t /t)oo
O(t) =t ...t e H i ke 2.1
L=tk ,Ul (@)oo 1 gn @/ 1)
foraj, B, y € Csuchthaty; = a1 + (j — (1 —2y), and
Po(t) = d(MD(t), for D)= [ & —t). (2.2)

1<i<j<n
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X consists of the lattice pointis= (vy, ..., v;) € Z". Inthis case, by the same argument
as in the preceding section, the sum (1.6) is summable provided
—B>a1+n—-1>0, —-B>a1+(N—1)(2—-2y)>0.

The Weyl groupW is isomorphic to the symmetric grouf, of nth degree and the
one-cocycldU, (1)} is given as

i\t 0@/t
Uy (t) = I1 <_J> M 23)
i<j,o i)>0"1(j) b o7t /t)
for any permutationr among then letters{1, 2, ..., n}.

As a special case of Jackson integrals, we take&g for

gl = q’ 52 = q1+y7 cec Sn = ql+(n_1)y'

The integrald over [Q &roc0]q is done only over the sékr) consisting of the pointssuch
thatt; = g™, to/ty = 9”72, ..., th/th_1 = Q"™ for eachv; € Z.o. (&) is clearly a
subset of [0&ro0]q. We call it “a-stable cycle”, since the absolute vali®| is maximal
at&r and smaller elsewhere i§r) than the value af¢. (Here the terminology “stable” is
used as a discrete analog of the one in case of ordinary integrals.)

Hence, the substitution of the poigt into ®g(t) gives the asymptotic behavior of
J = J(ay) foray — +o0 as

(14 0@™) (2.4)

AT DB+ 1+ (= Dy)Tg(iy)
. 11:[1 Tq(y)

for A, = Z’j‘:l(aj +n— D[1+ (j —Dy], whereT'q(u) denotes the-gamma function

(1= D" @Doo/(Q") o
On the other hand, we can take= ng for

E1=q7F &=qf7, .. &=qf "D

The Jackson integral over [0, nroolq is meaningless, sinc®q(t) has poles there. We
denote by(ng) the set of point$ such that

=07 t/t=q77" . ta/tia=q7 "

for vj € Zso. (nr) is a subset of [OnFoc]q. Then we can replace the sum (1.6) by the
following regularization (see [1] or [4] for details):

reg DPo(t) - <also denoted by Dop(t) - w)
[0,7Fc]q reg(ne)
0 dt dt,
= > [1Res [q)o(t)—l Acen —}, 2.5)
v;>0j=1 b tn
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Where]_[’j‘:l Res denotes the residue at each pointef). Here we have put = q=#+7.
Equation (2.5) is well defined becaudg(t) has simple poles at each point(@f).
We define the quotient of theta functions

i 1y ye (D3O@H ety g Jg )
nEnp)=01-q)" gft-Drye Moo 17°)
W (E T]F) ( q) Jl:[L(SJq ) e(qa1+...+an+1)9(qy+1§j /E]*l)

(2.6)

for £ = q~#*7. Itis a pseudo constant. The connection coefficient (or ratio) between the
Jacksonintegrals over the cycles§@o], and rednr) is denoted by[0, £oolq : reg(ne ) a,-
Then we can give the following formula (see [4]):

([0, £oclq : reginea, = ) o¥n(€, ne) - sgno - Uy (§) 71, 2.7)

o€y

whereo ¢(£) denotesp (o ~1(£)).
We evaluate the RHS of (2.7) in case whgranishes. We denote By, (&) = Fn (€, a1, ¥)
the sum

T Qe g g )
sgno - U, (&) o [ (2.8)
a;sn 11:[1 . 0(qr+i&;/&j-1)
for &, = q”. Then we have the product formula (see [2]):
Fn(év alv J/) = fn(alv J/) . gn(é: als V), (29)
where
n(n_1)/2 n -1y e(qaj+---+01n+l)
fa(a1, y) = (=1) []a et (2.10)
j=1
T a2y 0@ DY) §6(5 /)
Eary) =[] 2 — 21 SUSISU 21
(S ey ,Ufj 0(qé) 1ﬂfne<qv+lsj/a> (1)

Henceg;(j > 1) being replaced by;g” in (2.9),

([0, §0]q : regne)) o,

n 3 qejv(j—-1
-] % Anen, ) - (@8, a1, ). (2.12)
j=1

Itis also possible to evaluate expliciy”)/éF> Dy (t) - itself. In fact, the following formula
is known (see [16]).
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Proposition 2

/ Qo(t) o
(&F)

s 1—[ Fq(B+1+(j —Dy)lgles+n—1— M+ j —2y)l4(jy)
j=1 L) lqler+B+n—(n—])y) '

In particular, we have

((&F) : reg (nF)) e,

n g(qa1+ﬁ+27(nfj)y)9(qr)
_ _ n 3n | ~Kn
=(1-9"@X-q J]:[1 ST e ey (219
whereK,, denotes
2 , nh(n-1)
Kn = —3n(—D@n - Dy? = ==y +nBlos — (0 = 1y}
+nai{l+ (n— 1)y} (2.14)
Next, we take a9 (t) theg-multiplicative function
1-vt. /t.
d(t) = tfl ..o (ty th)eo (CI tJ/tl)oo (215)

@t g (@16

foraj = a1+ (j — D(1 — 2y). Let Oy(t) be as in (2.2). As in case of (2.1),§) is
summable, provided

—B>a1+nN—-1>0, —B>a1+(—-1)2-2y)>0.

X consists of the points = (v, ..., vn) € Z". Then by the argument in Section 1, we
have the formula (1.7) for

A T em-2-1y O(QE1---&n) 6(as; /&)
16 =G jl:[fi 0(Q*Pgy - - - &n) 151:,[@ 0@ /&) (2.16)

3. Bn,Ch,Dn, Gy, F4and Eg ~ Eg type root systems

For B,-type, we take a® (t) the multiplicative function

d(t) = 1oL gen ﬁ (tqu_ﬁ)oo (ql_ytj/ti)oo ' (ql_ytitj)oo
PO G0 1, @/ @tit)e

(3.1)
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foraj =a1+(j —DA—-2y), a1 = % — B. This is exactly the one obtained from (1.1)
for the root systenB,, when an explicit realization of positive roots is properly chosen for
B = y1, ¥ = y2. The Weyl groupW is isomorphic to the semi-direct produg§ x S.
dy(t) is given by

Do(t) = q>(t)A(t1—(1/2)+nt2—(3/2)+n B -trﬁl/z))

— (_1)n(n+1>/2q>(t)(t1 .. .tn)—n+(1/2) 1_[(1 — 1
j=1
[ @& -tpa-ut, (3.2)

1<i<j<n

where.A denotes the alternating sum with respect to the Weyl gkup
X cqnsists of the points = (vy, ..., v) € Z". N
Let v, (¢) denote the product [],.n. —a%)__ in the RHS of (1.7). Theny, (¢) is

aeRy 0(q1+7(u.a)gu)
represented more concretely as

i -t 6(E) 0(qE;/6)0 (G &)
* e . 3.3
V&)= HS s, L @ meaes) (33)

The explicit formula forC, has given by Ito [13] in case = 2.
Similarly for C,-type, we take a® (t) the function

n (ql_ﬁt-z) @7t /t) oo - (@71 E))
ot ztal...t:tn 1 /o0 j/ti)oo ilj)oo 3.4
O=h ,1:[1 (q’gtf)oo J:Ln @7t /t)eo - (A7t oo (34)

fora;=1-28,aj =a1+ (j —1)(1—2y). This corresponds to (1.1) for=y», = ya.
The Weyl groupV isisomorphic to the one d@,-type.®q(t) isequal totb(t)A(tftgfl- < th).

X consists of the pointe = (v1, ..., vp) € Z"Or (V1 +3, ..., vn+3) € Z"+(3, ..., D).
V(&) is then given as

’ ) 6(qEj/5)0 (05 E}) s
V= Hg 0(al+E] )1<.1:,[<nO(q”yéj/é.)e(q”yé.s,)' (2:5)

For D,-type we take a® (t) the function

T o T /600 - (@bt oo
o) =[]t @%, ' 3.6
© 111 ) 151:][81 (qytj/ti)oo . (qytitj)oo ( )

for oy = 0andej = a1+ (j —1)(1— 2y). This corresponds to (1.1) for = y». $o(t) is
equal tod (1) At~ 1. .t)). The Weyl groupW is isomorphic to the semi-direct product
of Z5 andS,. X is the same as in case Gf type. V.. (£) is then equal to

7 aj—(j—1) 0(9&;/5)0(0&i§))
* . 3.7
V&)= 1‘[5 Killn9<q1+ys;/si>e<ql+yasj> S
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For Eg-type we can choose an orthonormal basjss?:l in h* = R8 such that the positive
simple roots are

1
w1 = §(€1+58_€2_€3_64_65_66_67)9
W2 = €1+ €, W3=€r— €1, W4=€3— €, ©5=€4—€3 Ws=€s5— €y,
w7 = €g — €5, wg = €7 — €.
. . . 7 .
The positive roots arere; +¢;(1 <i < j < 8) and%(es + > v(i)e) where{u(k)}z=l

moves over the set1 such that the number ofk) which are equal te-1 is even. Then
@ (t) has the quasi-symmetry when and only when

aj=(-DA-2)A=j=7, ag=231-2).

8 1— 1—
o @ ytj/ti)oo(q ytitj)oo
o) = t;
( ) 11:[[ ) l§i1:1[58 (qytj/tl)oo(qytlt])oo

(qlfyti}(l)/z . .t;(7)/2t§/2)

(qyt]l_}(l)/z . t;(Y)/2t§/2)

% (3.8)

v(K)==1 .

The pairing betweep = Z?zlﬂjéj e h* andx = (g, ..., Xg) € h(=R?®) is given by

8
M, X — Z,LLJ'XJ'.
j=1

X is the eight-dimensional lattice imconsisiting of the pointg = (xq, ..., Xg, X7, Xg)
€ h such thatx(x) = 0(2) for ¢ € R,. In other wordsx € X consists of the points such
thatx; =v;, (1< j <8)orx; =vj + % (1 < j < 8) satisfying the equality

v+ -+ vg = 0(2).

V.(€) is then equal to

7
~ _ ~2j-yy | .46y 6(08;/5)0(a&i&j)
v {jl_[lsl }58 15[1158 0¥ /E)0 QMY &&))

1)/2 7/2.1/2
1)/2 7)/2.1/2\ "
qy+1§-;( )/ E;( )/ 58/ )

) (3.9
v(K)==1 9(

For E7-type, in terms of the above bagis }?:1, the positive simple roots are
w1 = 5(61+68—62—63—64—65—ee—67),

W2 = €1+ €, W3=€2— €1, W4=¢€3—€, ©5=€4 —€3 ©Ws=€5— €y,

w7 = € — €5.
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The posmve roots argce; +€;(1 <i < j <6), —€7+€sg andi 5(— 67+68+Z, 1 v(i)e)
Where{v(k)}k , moves over the set1 such that the number o{k) which are equal te-1

is odd. Therd () has the quasi-symmetry when and only when

. . 17
aj=((—-DA-2y)(1<]<6), —ar=oag= 7(1—23/)-

D(t) = ﬁt‘?‘j toe . 1‘[ @57 /)00 (@77t ) oo .(ql_”tg)oo
EAN 1<icj<s @'/ 1)o@V Eit))oo (97t8)oo
' (ql—ytv(l)/Z “,[g(G)/Ztl/z)oo (3 10)
o (@ry @2 tg(e)/zté/z)oo

X consists of the pointx suchthateithex; = vj(1 < j <8), x7 OwhereZJ 1V +
=0(2), orxj = v; + (1 <j<6),X7=0,xg= vgwherezJ _1vj +vg=1(2).

We normalizet asé; = 1. ¥, (£) is then equal to

~ . —2(j—1) P 0(q&;/&)0(déi&)) 0(dés)
V= :H§ : V} ' V l_[ 0(QL7E /607 EE)  6(qr+iEs)

1<i<j<6

v 2 v(6)/2 2
56\1(6)/2&;1/2)' )

’ @/2
=r1 0(q7+LE] 2.

For E¢-type, inR8 the positive simple roots are

1
w1 = (€1+€g—€x—€3—€4— €5 — €5 — €7),

Wy =¢€1+€, wW3=€—€, W4=€3—€, ©5=E€E4—€3, W§=E€5— €4

The posmve roots arece; +€;(1 <i < j < 5) and 2(68 — € — €7+ Z. Lv(i)e)
where{v(k)}k 1 moves over the set1 such that the number ofk) which are equal te-1

is even. Thenb (t) has the quasi-symmetry when and only when

aj=(J-DA-2)A=]j=<9H, -ag=-ar=ag=41-2y).

> vt /t; 1yt t.
<I>(t)={]_[tfi}tgs.{ 1—[ (@77t /)0 (@it oo

1<icj<s  (@7/1)eo(@71it)oo

1- ytv(l)/Z . tu(5)/2t1/2
@ g ) (3.12)

’ /2 (5)/2,1/2
v (P2 g0

of the points such that eithex; = v; (1 < j < 8), x¢ = X7 = 0 where
0(2), orXj = vj +3(1 < j <5),% = X7 = 0,Xg = vg — 5 Where

[ee]

X consists
Z?:l vj +vg =
Z?:l vj +vg = 1(2).
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We normalizet aség = &7 = 1. ¥, (£) is then equal to

5
7 _ —2-ny | .8 0(0%;/5i)0 Q&)
Ve (€) !J]:[lé, } £ lggsse(qm& PG EE)

1 2 5 2,12
@2 B2, 12
(K)=+1 9(qy+1é§v /2. ESV /58/)

(3.13)

For F4-type we can choose an orthonormal baséq;)}“ , such that the positive simple
roots arew; = €2 — €3, Wy = €3 — €4, W3 = €4, W4 = %(61 — €2 — €3 — €4). The positive
roots aresj, € £¢; (L <i < j <4) and (e1 £ €2+ €3+ €4). We put

Bt
o) = —5p— Gﬂtz B- 4y32 B- Zytz B l—[ ?q t;)oo
o0
_ _ _B84+1/2,v(2)/2,v(3)/2,v(4)/2
(ql yti/tj)oo(ql ytitj)oo (ql ﬁt / tv )/ tV( )/ t\J( )/ )OO

1cicjea AE/oo@tit)oo 450 (qﬂtl/z u(z)/ztu(s)/z,[:(4)/2) ’

o0

(3.14)

wherev (k) moves over the set-1}.

X consists of the points = (X1, X2, X3, Xa) such thaik; = v; wherevy +vo+v3+vs =
0(2).

V. (&) is then equal to

4
0(gé
e = e e e ] s (Gs)

10 PE)
- 1_[ 0(qé /%_J )G(QSiEj) | (qgl/z v(2)/2€:v(3)/2§_u(4)/2)
1i<j<a 9(q1+yé§i /";:J )«9(q1+V§iS,-) WOkl 9(q1+/3%.11/25;(2)/2§;(3)/25:(4)/2) .
(3.15)

For G,-type we can choose an orthonormal basis-,, €3 such that the positive simple
roots arec; — €2, —2¢1 + €2 + €3 and that the positive roots ate — €5, —€ + €3, —€1 +
€3, €1 + €3 — 2¢3, €2 + €3 — 2¢€1, 263 — €1 — €. D (1) is given by

3-2p—4y (APt oo (A1 Pt3) o0 (O P/t
(qﬂtl)oo(qﬂtfi)oo(qﬂtii/tl)oo

(9 7ts/t7)  (@F 7t /t1) (A " tata)o

(9rts/t2)  (a7t5/t1) (@7 tita)oo

() =t

(3.16)
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X consists of the points = (X1, X2, X3) such thai; = vy, X3 = v3, X, = 0. We normalize
& as& = 1. ¢, (&) is then equal to

0(051)0 (0&3)0 (03 /61)
0(qP*+1£1)0(qP+1E3)0 (qP+1E380)
5 0(a&s/£2)0 (a2 /£1)0(qé1£3)

0(qr+ies/£2)0(qr+1€2 /&1)0(qr H1E1ks)

V.(6) = £ e

(3.17)
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