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Abstract. In this note, we state certain product formulae for Jackson integrals associated with any root systems,
involved in elliptic theta functions which appear as connection coefficients. The fomulae arise naturally in case of
arbitrary root systems by extending the connection problem which has been investigated in [1, 4] in case ofA type
root system. This is also connected with the Macdonald-Morris constant term identity investigated by I. Cherednik
[6], and K. Kadell [15] on the one hand, and of the Askey-Habsieger-Kadell’sq-Selberg integral formula and its
extensions [4, 8, 12, 14, 15] on the other. This is also related with some of the results due to R.A. Gustafson [10,
11], although our integrands are different from his.
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1. The product formula

Let q be the elliptic modulus satisfying|q| < 1. Leth andH be then-dimensional Cartan
subalgebra and its Cartan subgroup, associated with a simple Lie algebraG of rankn over
C. Let h∗ be the dual ofh. Let R+ ⊂ h∗ be the positive root system onh. Forα, β ∈ R+,
we denote by(α, β) the inner product induced by the Killing form onG. We may identify
the vector spaceh∗ with its dualh through the inner product as follows:

α ⊂ h∗ → hα ∈ h,

such that(α, µ) = µ(hα) for anyµ ∈ h∗.
Let X be then-dimensional coweight lattice∼=Zn in h consisting ofh ∈ h such that

α(h) ∈ Z. We take a suitable basisχ1, . . . , χn, so that an arbitrary elementχ of X can be
described as a linear combination

χ =
n∑

j=1

ν jχ j

for (ν1, . . . , νn) ∈ Zn. h andH are isomorphic to the tensor productsX ⊗C, andX ⊗C∗,
respectively.X can also be embedded in then-dimensional algebraic torusH (Cartan
subgroup) isomorphic to(C∗)n. We denote this identification by

χ ∈ X→ qχ = (qν1, . . . ,qνn) ∈ (C∗)n.
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Let γ1, γ2, γ3, . . . be arbitrary complex numbers. Eachµ ∈ h∗ defines a monomialtµ =
tµ(χ1)

1 · · · tµ(χn)
n for t = (t1, . . . , tn) ∈ H. We denote the two linear functionsλ andλ′ as

λ = 1
2

∑
α∈R+(1− 2γ(α,α))α andλ′ = λ− 1

2

∑
α∈R+ α, respectively.

We denote byQχ f (t) = f (qχ t) the q-shift by χ ∈ X for a function f (t) on H. We
consider theq-multiplicative function8(t) and80(t) on H as

8(t) = tλ
∏
α∈R+

(q1−γ(α,α) · tα)∞
(qγ(α,α) · tα)∞ , (1.1)

80(t) = 8(t)
∏
α∈R+

(tα/2− t−α/2). (1.2)

Here(x)∞ = (x;q)∞ denotes the infinite product
∏∞
ν=0(1− xqν). It is known that there

are at most 2 differentγ(α,α) which appear in the RHS of (1.1).
Then8(t),80(t) have the quasi-symmetry with respect to the Weyl groupW associated

with the root systemR+.

σ8(t) = 8(σ−1(t)) = Uσ (t)8(t), (1.3)

σ80(t) = 80(σ
−1(t)) = sgn(σ )Uσ (t)8(t), (1.4)

where{Uσ (t)}σ∈W defines one cocycle onW with values in pseudo-constants i.e.,q-periodic
functions with respect tot .

IndeedUσ (t) satisfies the properties

Uστ (t) = Uσ (t) · σUτ (t) for σ, τ ∈ W,Ue(t) = 1 (e= the identity)

andQχUσ (t) = Uσ (t) for anyχ ∈ X.
It is given in an explicit form as

Uσ (t) =
∏

α∈R+,σ (α)<0

{
t (2γ(α,α)−1)α θ(qγ(α,α) tα)

θ(q1−γ(α,α) tα)

}
, (1.5)

whereθ(x) denotes the Jacobi elliptic theta functionθ(x) = (x)∞ · (q/x)∞ · (q)∞.
We now consider the following Jackson integral

J(ξ) =
∫

[0,ξ∞]q

80(t)$,

(
$ = dqt1

t1
∧ · · · ∧ dqtn

tn

)
= (1− q)n

∑
χ∈X

80(q
χξ), (1.6)

whereξ denotes an arbitrary point ofH.
Assume now thatλ(χ) + 1

2

∑
α∈R+ α(χ) > 0 for all χ 6= 0 of the fundamental domain

1+ in h defined by the inequalitiesα(χ) ≥ 0 for α ∈ R+.
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Then (1.6) is summable onX ∩1+ because
∏
α∈R+{(q1−γ(α,α) tα)∞/(qγ(α,α) tα)∞} is bound-

ed on1+. Hence, (1.6) is also summable, in view of the quasi-symmetry (1.4) of80(t). It
is important to note that this property does not depend on the choice ofξ , whenceξ−λJ(ξ)
becomes a meromorphic function ofξ ∈ (C∗)n.

Then by definitionJ(ξ) is aq-periodic function ofξ on H :

Qχ J(ξ) = J(ξ) for χ ∈ X.

The formula which we want to propose is the following.

Proposition 1 J(ξ) can be described as

J(ξ) = C1ξ
λ′
∏
α∈R+

θ(qξα)

θ(q1+γ(α,α) ξ α)
, (1.7)

(we shall denote bỹψ∗(ξ) the term in the RHS divided by C1 in the sequel) or equivalently

J(ξ) = C2

∑
σ∈W

sgnσ ·Uσ (ξ)
−1 · σψ(ξ), (1.8)

where C1 and C2 are constants with respect toξ. Letψ(ξ) be a pseudo-constant defined as

ψ(ξ) = ξλ′
n∏

j=1

θ(qcj+γ(ω j ,ω j ) ξω j )

θ(qγ(ω j ,ω j ) ξω j )
, (1.9)

where{cj }nj=1 are uniquely determined by the expressionω = ∑n
j=1cjω j with respect to

the positive simple roots{ω j }nj=1 such that the corresponding positive roots are exactly R+.

Remark 1 Since the symmetricn-dimensional cohomology associated with the Jackson
integrals (1.6) is one dimensional, it may be conjectured thatC1 andC2 can be written in
product form by usingq-gamma functions ofγ(α,α). The explicit forms are presented in [13]
but not yet proved except in the two-dimensional cases. In [17], Macdonald has given a
formal proof of Ito’s formula in an entirely different way. In [10, 11] Gustafson obtains
various product formulas under a slightly different situation from ours. In [7], van Diejen
obtains a similar product formula for BCn type, by using Gustafson’s result.

Proof 1: J(ξ) satisfies the same quasi-symmetry as80(t):

σ J(ξ) = sgnσ ·Uσ (ξ) · J(ξ), σ ∈ W (1.10)

SinceJ(ξ)ξ−λ is a meromorphic function onH with poles lying in the set:
∏
α∈R+θ(q

1+γ(α,α)
ξ α) = 0, J(ξ) can be written as

J(ξ) = ξλ f (ξ)∏
α∈R+ θ(q

1+γ(α,α) ξ α)
, (1.11)
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where f (ξ) denotes a quasi-periodic function ofξ in the sense thatQχ f (ξ)/ f (ξ) is a
monomial inξ for anyχ ∈ X, and satisfies the skew-symmetry:σ f (ξ) = sgnσ f (ξ) for
σ ∈ W. This implies f (ξ) vanishes ifξα = 1,q±1,q±2, . . . Hence, f (ξ) is divided out by
the product

∏
α∈R+θ(qξ

α) and also by the productξλ
′∏

α∈R+θ(qξ
α):

J(ξ) = ξλ′g(ξ)
∏
α∈R+

θ(qξα)

θ(q1+γ(α,α) ξ α)
, (1.12)

whereg(ξ) denotes a holomorphic function onH. Sinceg(ξ) is q-periodic, it must be
constant. And the formula (1.7) follows.

To prove (1.8), we denote bỹψ(ξ) the sum
∑

σ∈W sgnσU−1
σ (ξ) · σψ(ξ). SinceUσ (t)

has the expression (1.5), the poles ofψ̃(ξ) lie in the set{ξ ∈ H ;∏α∈R+θ(q
1+γ(α,α) ξ α) = 0}.

Moreover, it satisfies the same quasi-symmetry as in (1.10). Hence, it can be expressed as
in the RHS of (1.8). It is sufficient to prove that it does not vanish identically. We evaluate
the residues of̃ψ(ξ) at the points of the equationsθ(qγ(ω j ,ω j ) ξω j ) = 0, say, of the equations

qγ(ω j ,ω j ) ξω j = 1 for 1≤ j ≤ n. (1.13)

These points appear only for the residues of the summandψ(ξ) itself in the sumψ̃(ξ).
In fact, σ(ω j ) = ω j , 1 ≤ j ≤ n if and only if σ = the identity. Since they do not vanish
identically,ψ̃(ξ) does not vanish identically. Letξ = ζ be a point satisfying this system of
equations. Then

Resξ=ζ ψ̃(ξ) = Resξ=ζψ(ξ) = ζ λ′
∏n

j=1 θ(q
cj )

θ ′(1)n
.

Equation (1.8) is thus proved. 2

2. A-type root system

In the sequelν1, ν2, ν3, . . . will denote integers.
At first we can take8(t) in a slightly more general way than (1.1), namely we take8(t)

as

8(t) = tα1
1 · · · tαn

n

n∏
j=1

(t j )∞
(qβ t j )∞

∏
1≤i< j≤n

(q1−γ t j /ti )∞
(qγ t j /ti )∞

(2.1)

for α j , β, γ ∈ C such thatα j = α1+ ( j − 1)(1− 2γ ), and

80(t) = 8(t)D(t), for D(t) =
∏

1≤i< j≤n

(ti − t j ). (2.2)
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X consists of the lattice pointsx = (ν1, . . . , νn) ∈ Zn. In this case, by the same argument
as in the preceding section, the sum (1.6) is summable provided

−β > α1+ n− 1> 0, −β > α1+ (n− 1)(2− 2γ ) > 0.

The Weyl groupW is isomorphic to the symmetric groupSn of nth degree and the
one-cocycle{Uσ (t)} is given as

Uσ (t) =
∏

i< j,σ−1(i )>σ−1( j )

(
t j

ti

)2γ−1
θ(qγ t j /ti )

θ(q1−γ t j /ti )
(2.3)

for any permutationσ among then letters{1, 2, . . . ,n}.
As a special case of Jackson integrals, we takeξ = ξF for

ξ1 = q, ξ2 = q1+γ , . . . , ξn = q1+(n−1)γ .

The integralJ over [0, ξF∞]q is done only over the set〈ξF 〉 consisting of the pointst such
that t1 = q1+ν1, t2/t1 = qγ+ν2, . . . , tn/tn−1 = qγ+νn for eachν j ∈ Z≥0. 〈ξF 〉 is clearly a
subset of [0, ξF∞]q. We call it “α-stable cycle”, since the absolute value|tα| is maximal
at ξF and smaller elsewhere in〈ξF 〉 than the value atξF . (Here the terminology “stable” is
used as a discrete analog of the one in case of ordinary integrals.)

Hence, the substitution of the pointξF into 80(t) gives the asymptotic behavior of
J = J(α1) for α1→+∞ as

J = qAn

n∏
j=1

0q(β + 1+ ( j − 1)γ )0q( j γ )

0q(γ )
(1+ O(qα1)) (2.4)

for An =
∑n

j=1(α j + n− j )[1 + ( j − 1)γ ], where0q(u) denotes theq-gamma function
(1− q)1−u(q)∞/(qu)∞.

On the other hand, we can takeξ = ηF for

ξ1 = q−β, ξ2 = q−β−γ , . . . , ξn = q−β−(n−1)γ .

The Jackson integralJ over [0, ηF∞]q is meaningless, since80(t) has poles there. We
denote by〈ηF 〉 the set of pointst such that

t1 = q−β−ν1, t2/t1 = q−γ−ν2, . . . , tn/tn−1 = q−γ−νn

for ν j ∈ Z≥0. 〈ηF 〉 is a subset of [0, ηF∞]q. Then we can replace the sum (1.6) by the
following regularization (see [1] or [4] for details):

reg
∫

[0,ηF∞]q

80(t) ·$
(

also denoted by
∫

reg〈ηF〉
80(t) ·$

)
=
∑
ν j≥0

n∏
j=1

Rest j /t j−1=q−γ−ν j

[
80(t)

dt1
t1
∧ · · · ∧ dtn

tn

]
, (2.5)
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where
∏n

j=1 Res denotes the residue at each point of〈ηF 〉. Here we have putt0 = q−β+γ .
Equation (2.5) is well defined because80(t) has simple poles at each point of〈ηF 〉.

We define the quotient of theta functions

ψn(ξ, ηF ) = (1− q)n
n∏

j=1

(
ξ j q

β+( j−1)γ
)α j (q)

3
∞θ(q

α j+···+αn+γ+1ξ j /ξ j−1)

θ(qα j+···+αn+1)θ(qγ+1ξ j /ξ j−1)
(2.6)

for ξ0 = q−β+γ . It is a pseudo constant. The connection coefficient (or ratio) between the
Jackson integrals over the cycles [0, ξ∞]q and reg〈ηF 〉 is denoted by([0, ξ∞]q : reg〈ηF 〉)80.

Then we can give the following formula (see [4]):

([0, ξ∞]q : reg〈ηF 〉)80 =
∑
σ∈Sn

σψn(ξ, ηF ) · sgnσ ·Uσ (ξ)
−1, (2.7)

whereσϕ(ξ) denotesϕ(σ−1(ξ)).

We evaluate the RHS of (2.7) in case whereβ vanishes. We denote byFn(ξ)= Fn(ξ, α1, γ )

the sum

∑
σ∈Sn

sgnσ ·Uσ (ξ)
−1 · σ

{
n∏

j=1

ξ
α j

j

θ(qα j+···+αn+γ+1ξ j /ξ j−1)

θ(qγ+1ξ j /ξ j−1)

}
(2.8)

for ξ0 = qγ . Then we have the product formula (see [2]):

Fn(ξ, α1, γ ) = fn(α1, γ ) · gn(ξ, α1, γ ), (2.9)

where

fn(α1, γ ) = (−1)n(n−1)/2
n∏

j=1

q−( j−1)2γ θ(qα j+···+αn+1)

θ(q1+α1−(n+ j−2)γ )
, (2.10)

gn(ξ, α1, γ ) =
n∏

j=1

ξ
α1−2( j−1)γ
j

θ(qα1+1−(n−1)γ ξ j )

θ(qξ j )
·
∏

1≤i< j≤n

ξi θ(ξ j /ξi )

θ(qγ+1ξ j /ξi )
. (2.11)

Hence,ξ j ( j ≥ 1) being replaced byξ j qβ in (2.9),

([0, ξ∞]q : reg〈ηF 〉)80

= (1− q)n
n∏

j=1

(q)3∞qα j γ ( j−1)

θ(qα j+···+αn+1)
· fn(α1, γ ) · gn(q

βξ, α1, γ ). (2.12)

It is also possible to evaluate explicitly
∫
〈ξF 〉80(t)·$ itself. In fact, the following formula

is known (see [16]).
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Proposition 2∫
〈ξF 〉

80(t) ·$

= qAn

n∏
j=1

0q(β + 1+ ( j − 1)γ )0q(α1+ n− 1− (n+ j − 2)γ )0q( j γ )

0q(γ )0q(α1+ β + n− (n− j )γ )
.

In particular, we have

(〈ξF 〉 : reg〈ηF 〉)80

= (1− q)n(q)3n
∞ · qKn ·

n∏
j=1

θ(qα1+β+2−(n− j )γ )θ(qγ )

θ(qα1+1−(n+ j−2)γ )θ(qβ+2+( j−1)γ )θ(q j γ )
, (2.13)

whereKn denotes

Kn = −2

3
n(n− 1)(2n− 1)γ 2− n(n− 1)

2
γ + nβ{α1− (n− 1)γ }

+ nα1{1+ (n− 1)γ }. (2.14)

Next, we take as8(t) theq-multiplicative function

8(t) = tα1
1 · · · tαn

n

(t1 · · · tn)∞
(qβ t1 · · · tn)∞

∏
1≤i< j≤n

(q1−γ t j /ti )∞
(qγ t j /ti )∞

(2.15)

for α j = α1 + ( j − 1)(1− 2γ ). Let 80(t) be as in (2.2). As in case of (2.1),J(ξ) is
summable, provided

−β > α1+ n− 1> 0, −β > α1+ (n− 1)(2− 2γ ) > 0.

X consists of the pointsx = (ν1, . . . , νn) ∈ Zn. Then by the argument in Section 1, we
have the formula (1.7) for

J(ξ) = C1

n∏
j=1

ξ
α1−2( j−1)γ
j

θ(qξ1 · · · ξn)

θ(q1+βξ1 · · · ξn)

∏
1≤i< j≤n

θ(qξ j /ξi )

θ(q1+γ ξ j /ξi )
. (2.16)

3. Bn,Cn,Dn,G2, F4 and E6 ∼ E8 type root systems

For Bn-type, we take as8(t) the multiplicative function

8(t) = tα1
1 · · · tαn

n

n∏
j=1

(t j q1−β)∞
(t j qβ)∞

∏
1≤i< j≤n

(q1−γ t j /ti )∞ · (q1−γ ti t j )∞
(qγ t j /ti )∞ · (qγ ti t j )∞

(3.1)



P1: ABL

Journal of Algebraic Combinatorics KL600-01-Aomoto June 30, 1998 9:29

122 AOMOTO

for α j = α1 + ( j − 1)(1− 2γ ), α1 = 1
2 − β. This is exactly the one obtained from (1.1)

for the root systemBn when an explicit realization of positive roots is properly chosen for
β = γ1, γ = γ2. The Weyl groupW is isomorphic to the semi-direct productZn

2 × Sn.

80(t) is given by

80(t) = 8(t)A
(
t−(1/2)+n
1 t−(3/2)+n

2 · · · t (1/2)n

)
= (−1)n(n+1)/28(t)(t1 · · · tn)−n+(1/2)

n∏
j=1

(1− t j )

·
∏

1≤i< j≤n

(ti − t j )(1− ti t j ), (3.2)

whereA denotes the alternating sum with respect to the Weyl groupW.
X consists of the pointsx = (ν1, . . . , νn) ∈ Zn.

Let ψ̃∗(ξ) denote the productξλ
′∏

α∈R+
θ(qξα)

θ(q1+γ(α,α) ξα)
in the RHS of (1.7). Theñψ∗(ξ) is

represented more concretely as

ψ̃∗(ξ) =
n∏

j=1

ξ
α j−( j− 1

2 )

j

θ(qξ j )

θ(qβ+1ξ j )

∏
1≤i< j≤n

θ(qξ j /ξi )θ(qξi ξ j )

θ(q1+γ ξ j /ξi )θ(q1+γ ξi ξ j )
. (3.3)

The explicit formula forC1 has given by Ito [13] in casen = 2.
Similarly for Cn-type, we take as8(t) the function

8(t) = tα1
1 · · · tαn

n

n∏
j=1

(
q1−β t2

j

)
∞(

qβ t2
j

)
∞

∏
1≤i< j≤n

(q1−γ t j /ti )∞ · (q1−γ ti t j )∞
(qγ t j /ti )∞ · (qγ ti t j )∞

(3.4)

for α1= 1− 2β, α j =α1+ ( j − 1)(1− 2γ ). This corresponds to (1.1) forγ = γ2, β = γ4.

The Weyl groupW is isomorphic to the one ofBn-type.80(t) is equal to8(t)A(tn
1 tn−1

2 · · · tn).
X consists of the pointsx = (ν1, . . . , νn) ∈ Zn or(ν1+ 1

2, . . . , νn+ 1
2) ∈ Zn+( 1

2, . . . ,
1
2).

ψ̃∗(ξ) is then given as

ψ̃∗(ξ) =
n∏

j=1

ξ
α j− j
j

θ
(
qξ2

j

)
θ
(
qβ+1ξ2

j

) ∏
1≤i< j≤n

θ(qξ j /ξi )θ(qξi ξ j )

θ(q1+γ ξ j /ξi )θ(q1+γ ξi ξ j )
. (3.5)

For Dn-type we take as8(t) the function

8(t) =
n∏

j=1

t
α j− j+1
j

∏
1≤i< j≤n

(q1−γ t j /ti )∞ · (q1−γ ti t j )∞
(qγ t j /ti )∞ · (qγ ti t j )∞

(3.6)

for α1 = 0 andα j = α1+ ( j − 1)(1− 2γ ). This corresponds to (1.1) forγ = γ2. 80(t) is
equal to8(t)A(tn

1 tn−1
2 · · · tn). The Weyl groupW is isomorphic to the semi-direct product

of Zn
2 andSn. X is the same as in case ofCn type. ψ̃∗(ξ) is then equal to

ψ̃∗(ξ) =
n∏

j=1

ξ
α j−( j−1)
j

∏
1≤i< j≤n

θ(qξ j /ξi )θ(qξi ξ j )

θ(q1+γ ξ j /ξi )θ(q1+γ ξi ξ j )
. (3.7)
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ForE8-type we can choose an orthonormal basis{ε j }8j=1 in h∗ ∼= R8 such that the positive
simple roots are

ω1 = 1

2
(ε1+ ε8− ε2− ε3− ε4− ε5− ε6− ε7),

ω2 = ε1+ ε2, ω3 = ε2− ε1, ω4 = ε3− ε2, ω5 = ε4− ε3, ω6 = ε5− ε4,

ω7 = ε6− ε5, ω8 = ε7− ε6.

The positive roots are±εi + ε j (1 ≤ i < j ≤ 8) and 1
2(ε8 +

∑7
i=1 ν(i )εi ) where{ν(k)}7k=1

moves over the set±1 such that the number ofν(k) which are equal to−1 is even. Then
8(t) has the quasi-symmetry when and only when

α j = ( j − 1)(1− 2γ )(1≤ j ≤ 7), α8 = 23(1− 2γ ).

8(t) =
8∏

j=1

t
α j

j

∏
1≤i< j≤8

(q1−γ t j /ti )∞(q1−γ ti t j )∞
(qγ t j /ti )∞(qγ ti t j )∞

·
∏

ν(k)=±1

(
q1−γ tν(1)/21 · · · tν(7)/27 t1/2

8

)
∞(

qγ tν(1)/21 · · · tν(7)/27 t1/2
8

)
∞
. (3.8)

The pairing betweenµ =∑8
j=1µ j ε j ∈ h∗ andx = (x1, . . . , x8) ∈ h(∼=R8) is given by

µ, x→
8∑

j=1

µ j x j .

X is the eight-dimensional lattice inh consisiting of the pointsx = (x1, . . . , x6, x7, x8)

∈ h such thatα(x) ≡ 0(Z) for α ∈ R+. In other words,x ∈ X consists of the pointsx such
thatxj = ν j , (1≤ j ≤ 8) or xj = ν j + 1

2, (1≤ j ≤ 8) satisfying the equality

ν1+ · · · + ν8 ≡ 0(2).

ψ̃∗(ξ) is then equal to

ψ̃∗(ξ) =
{

7∏
j=1

ξ
−2( j−1)γ
j

}
ξ
−46γ
8

∏
1≤i< j≤8

θ(qξ j /ξi )θ(qξi ξ j )

θ(q1+γ ξ j /ξi )θ(q1+γ ξi ξ j )

·
∏

ν(k)=±1

θ
(
qξν(1)/21 · · · ξν(7)/27 ξ

1/2
8

)
θ
(
qγ+1ξ

ν(1)/2
1 · · · ξν(7)/27 ξ

1/2
8

) . (3.9)

For E7-type, in terms of the above basis{ε j }8j=1, the positive simple roots are

ω1 = 1

2
(ε1+ ε8− ε2− ε3− ε4− ε5− ε6− ε7),

ω2 = ε1+ ε2, ω3 = ε2− ε1, ω4 = ε3− ε2, ω5 = ε4− ε3, ω6 = ε5− ε4,

ω7 = ε6− ε5.
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The positive roots are±εi +ε j (1≤ i < j ≤ 6),−ε7+ε8 and1
2(−ε7+ε8+

∑6
i=1 ν(i )εi )

where{ν(k)}6k=1 moves over the set±1 such that the number ofν(k)which are equal to−1
is odd. Then8(t) has the quasi-symmetry when and only when

α j = ( j − 1)(1− 2γ )(1≤ j ≤ 6), −α7 = α8 = 17

2
(1− 2γ ).

8(t) =
{

6∏
j=1

t
α j

j

}
tα8
8 ·

{ ∏
1≤i< j≤6

(q1−γ t j /ti )∞(q1−γ ti t j )∞
(qγ t j /ti )∞(qγ ti t j )∞

}
· (q

1−γ t8)∞
(qγ t8)∞

·
∏

ν(k)=±1

(
q1−γ tν(1)/21 · · · tν(6)/26 t1/2

8

)
∞(

qγ tν(1)/21 · · · tν(6)/26 t1/2
8

)
∞
. (3.10)

X consists of the pointsx such that eitherxj = ν j (1≤ j ≤ 8), x7 = 0 where
∑6

j=1 ν j +
ν8 ≡ 0(2), or xj = ν j + 1

2(1≤ j ≤ 6), x7 = 0, x8 = ν8 where
∑6

j=1 ν j + ν8 ≡ 1(2).
We normalizeξ asξ7 = 1. ψ̃∗(ξ) is then equal to

ψ̃∗(ξ) =
{

6∏
j=1

ξ
−2( j−1)γ
j

}
· ξ−17γ

8

∏
1≤i< j≤6

θ(qξ j /ξi )θ(qξi ξ j )

θ(q1+γ ξ j /ξi )θ(q1+γ ξi ξ j )
· θ(qξ8)

θ(qγ+1ξ8)

·
∏

ν(k)=±1

θ
(
qξν(1)/21 · · · ξν(6)/26 ξ

1/2
8

)
θ
(
qγ+1ξ

ν(1)/2
1 · · · ξν(6)/26 ξ

1/2
8

) . (3.11)

For E6-type, inR8 the positive simple roots are

ω1 = 1

2
(ε1+ ε8− ε2− ε3− ε4− ε5− ε6− ε7),

ω2 = ε1+ ε2, ω3 = ε2− ε1, ω4 = ε3− ε2, ω5 = ε4− ε3, ω6 = ε5− ε4.

The positive roots are±εi + ε j (1 ≤ i < j ≤ 5) and 1
2(ε8 − ε6 − ε7 +

∑5
i=1 ν(i )εi )

where{ν(k)}6k=1 moves over the set±1 such that the number ofν(k)which are equal to−1
is even. Then8(t) has the quasi-symmetry when and only when

α j = ( j − 1)(1− 2γ )(1≤ j ≤ 5), −α6 = −α7 = α8 = 4(1− 2γ ).

8(t) =
{

5∏
j=1

t
α j

j

}
tα8
8 ·

{ ∏
1≤i< j≤5

(q1−γ t j /ti )∞(q1−γ ti t j )∞
(qγ t j /ti )∞(qγ ti t j )∞

}

·
∏

ν(k)=±1

(
q1−γ tν(1)/21 · · · tν(5)/25 t1/2

8

)
∞(

qγ tν(1)/21 · · · tν(5)/25 t1/2
8

)
∞
. (3.12)

X consists of the pointsx such that eitherxj = ν j (1 ≤ j ≤ 8), x6 = x7 = 0 where∑5
j=1 ν j + ν8 ≡ 0(2), or xj = ν j + 1

2 (1 ≤ j ≤ 5), x6 = x7 = 0, x8 = ν8 − 1
2 where∑5

j=1 ν j + ν8 ≡ 1(2).
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We normalizeξ asξ6 = ξ7 = 1. ψ̃∗(ξ) is then equal to

ψ̃∗(ξ) =
{

5∏
j=1

ξ
−2( j−1)γ
j

}
· ξ−8γ

8

∏
1≤i< j≤5

θ(qξ j /ξi )θ(qξi ξ j )

θ(q1+γ ξ j /ξi )θ(q1+γ ξi ξ j )

·
∏

ν(k)=±1

θ
(
qξν(1)/21 · · · ξν(5)/25 ξ

1/2
8

)
θ
(
qγ+1ξ

ν(1)/2
1 · · · ξν(5)/25 ξ

1/2
8

) . (3.13)

For F4-type we can choose an orthonormal basis{(ε j )}4j=1 such that the positive simple
roots areω1 = ε2 − ε3, ω2 = ε3 − ε4, ω3 = ε4, ω4 = 1

2(ε1 − ε2 − ε3 − ε4). The positive
roots areε j , εi ± ε j (1≤ i < j ≤ 4) and 1

2 (ε1± ε2± ε3± ε4). We put

8(t) = t
11
2 −5β−6β

1 t
5
2−β−4γ

2 t
3
2−β−2γ

3 t
1
2−β

4 ·
4∏

j=1

(q1−β t j )∞
(qβ t j )∞

·
∏

1≤i< j≤4

(q1−γ ti /t j )∞(q1−γ ti t j )∞
(qγ ti /t j )∞(qγ ti t j )∞

·
∏

ν(k)=±1

(
q1−β t1/2

1 tν(2)/22 tν(3)/23 tν(4)/24

)
∞(

qβ t1/2
1 tν(2)/22 tν(3)/23 tν(4)/24

)
∞
,

(3.14)

whereν(k) moves over the set{±1}.
X consists of the pointsx = (x1, x2, x3, x4) such thatxj = ν j whereν1+ ν2+ ν3+ ν4 ≡

0(2).
ψ̃∗(ξ) is then equal to

ψ̃∗(ξ) = ξ−5β−6γ
1 ξ

−β−4γ
2 ξ

−β−2γ
3 ξ

−β
4

4∏
j=1

θ(qξi )

θ(q1+βξi )

·
∏

1≤i< j≤4

θ(qξi /ξ j )θ(qξi ξ j )

θ(q1+γ ξi /ξ j )θ(q1+γ ξi ξ j )
·
∏

ν(k)=±1

θ
(
qξ1/2

1 ξ
ν(2)/2
2 ξ

ν(3)/2
3 ξ

ν(4)/2
4

)
θ
(
q1+βξ1/2

1 ξ
ν(2)/2
2 ξ

ν(3)/2
3 ξ

ν(4)/2
4

) .
(3.15)

For G2-type we can choose an orthonormal basisε1, ε2, ε3 such that the positive simple
roots areε1 − ε2,−2ε1 + ε2 + ε3 and that the positive roots areε1 − ε2,−ε2 + ε3,−ε1 +
ε3, ε1+ e3− 2ε2, ε2+ ε3− 2ε1, 2ε3− ε1− ε2. 8(t) is given by

8(t) = t2γ−1
1 t3−2β−4γ

3

(q1−β t1)∞(q1−β t3)∞(q1−β t3/t1)∞
(qβ t1)∞(qβ t3)∞(qβ t3/t1)∞

×
(
q1−γ t3

/
t2
1

)
∞
(
q1−γ t2

3

/
t1
)
∞(q

1−γ t1t3)∞(
qγ t3

/
t2
1

)
∞
(
qγ t2

3

/
t1
)
∞(q

γ t1t3)∞
. (3.16)
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X consists of the pointsx = (x1, x2, x3) such thatx1 = ν1, x3 = ν3, x2 = 0. We normalize
ξ asξ2 = 1. ψ̃∗(ξ) is then equal to

ψ̃∗(ξ) = ξ2γ
1 ξ
−2β−4γ
3

θ(qξ1)θ(qξ3)θ(qξ3
/
ξ1)

θ(qβ+1ξ1)θ(qβ+1ξ3)θ(qβ+1ξ3ξ1)

× θ
(
qξ3

/
ξ2

1

)
θ
(
qξ2

3

/
ξ1
)
θ(qξ1ξ3)

θ
(
qγ+1ξ3

/
ξ2

1

)
θ
(
qγ+1ξ2

3

/
ξ1
)
θ(qγ+1ξ1ξ3)

. (3.17)
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