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In a recent paper P. Diamond, P. Kloeden, A. Rubinov and A. Vladimirov [3] investigated comperative
properties of three different metrics in the space of pairs of compact convex sets. These metrics describe
invariant properties of the Radstrom-Hoérmander lattice [5] i.e. the space of equivalence classes of pairs
of nonempty compact convex sets. In this paper we consider invariants of a class of equivalent pairs of
nonempty compact convex sets. We show that the affine dimension of the minimal representant of an
equivalence class is invariant and that each equivalence class has invariant convexificators.
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1. Introduction

In this paper we consider invariants of inclusion minimal representants of elements of the
Radstrom-Hormander [5] lattice. This lattice consists of equivalence classes of pairs of
nonempty compact convex sets which have been investigated in a series of papers (see for
instance [4], [6], [7], [8], [9], [12], [14]). The present paper extends a previous result on
the characterization of flat inclusion minimal pairs (see Theorem 3.1 of [7]) to arbitrary
minimal pairs and refines the characterization of C-minimal equivalence classes which was
given in [14]. The major results of this work are the invariance of the affine dimension of
inclusion minimal representants and the existence of an invariant convexificator for each
equivalence class.

As in [6] we denote the set of all nonempty compact convex subsets for a real topological
vector space X by K(X) and the set of all pairs of nonempty compact convex subsets by
K%(X),ie. K2(X) = K(X) x K(X). The equivalence relation between pairs of compact
convex sets is given by: (A, B) ~ (C,D) if and only if A + D = B + C using the
Minkowski-sum. A partial order on X?(X) is given by the relation: (A, B) < (C, D) if and
only if A C C and B C D. Pairs of compact convex sets arise in quasidifferential calculus
as the sub- and superdifferentials of the directional derivative of a quasidifferentiable
function and in formulas for the numerical evaluation of the Aumann-Integral (see [2] and

[1])-

Let X be a real topological vector space, and X* be the space of all continuous real valued
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linear functional. For two compact convex sets A, B € X(X) we will use the notation
AV B :=conv(AU B),

where the operation ”conv” denotes the convex hull. During the proofs, an easy identity
for compact convex sets, which was first observed by A. Pinsker [11] will be used frequently,
namely: For A, B,C € X(X) we have:

(A+ C)v(B + C)=C + (AVB).

We will use the abbreviation A+ BV C for A+ (BVC) and C+d for C +{d} for compact
convex sets A, B,C and a point d. Moreover we will write [a, b] instead of {a} V {b}.
By

Hi(K):={2€ K| f(z) = maxf(y)}

yeK

we denote the face of K € X(X) with respect to f € X*. For the faces of two nonempty
compact convex sets A, B C X with respect to f € X* the following identity holds:

H;(A + B) = H;(A) + H(B).

Finally we explicitly state the order cancellation law (see [5], [13]):

Let X be a real topological vector space and A, B,C C X nonempty compact convex
subsets.

Then the inclusion
A+ BCA+ C

implies
B CC.

For A, B,S € X(X), we say that S separates the sets A and B if and only if for every
a € Aand b€ B we have [a,b] NS # (.

The following characterization of convex pairs of compact convex sets by a decomposition
of the Minkowski sum, which was proved in [14], is of crucial importance for the remainder
of this work.

Theorem 1.1. Let X be a real topological vector space and A, B € X(X).
Then the following statements are equivalent:

(i)  the set AU B is convex

(ii) the set AN B separates the sets A and B

(iii) the set AV B is a summand of the set A+ B
(

iv) A+ B = AVB + ANB and ANB #0.

Note that property (iv) states the basic relationship between Minkowski-sum, convex hull
and intersection.

In connection with the above theorem, we recall the following notations: a pair (A, B) €
K?%(X) is called conver (see [14]) if and only if AU B is a convex set. Furthermore a pair
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(A, B) € X*(X) is called minimal if and only if for every equivalent pair (C, D) € X?(X)
the relation (C, D) < (A, B) implies C = A and B = D and analogously we say that a
convex pair (A, B) € X?(X) is minimal convez if and only if for every equivalent, convex
pair (C, D) € X?(X) the relation (C, D) < (A, B) implies C = A and B = D.

The definition of convex minimality can be considered as a definition of minimality under
a constraint. The following more general definition of minimality under constraints was
investigated in [10].

Let X be a real topological vector space and C € X(X). Then the pair (4, B) € X?(X)
is called C-minimal if and only if the pair (A + C, B + C) is convex, and if for every
C' € X(X) with C' C C and (A+ C', B+ (') is a convex pair follows that C' = C.

It is shown in section 3 of [10], that the above definition of C'-minimality can be extended
to the whole equivalence class [A4, B]. In the proof of this statement the following definition
of C-convexity plays a central role.

Let A, B,C € X(X) be given, then the class [4,B] = {(A",B) € X*(X) | (4", B)
~ (A, B)} is called C-convez if and only if for every representant (A’, B') € [A, B] the
pair (A" + C,B' + C) is convex. The set C' € K(X) is called a convezificator of [A, B].
Below the above mentioned results of section 3 in [10] are refined by showing that for
every equivalence class [A, B] the set C' = AV B is an invariant convexificator.

2. Pairs of Polar Polyhedra are Minimal

In the case of a locally convex vector space X we proved in [7], Theorem 2.1, a sufficient
criterion for minimality of a pair (A, B) € X(X) of compact convex sets for which the
sets A and B are in general position relative to another. This intuitive meaning of general
position relative to another was described in term of a shape for the set A, that is a set
of continuous linear functionals § C X* \ {0} with

conv(U Hi(A)) = A
fes

In the case where one of the compact convex sets is a polytope, this criterion can be
strenghtend as follows:

Theorem 2.1. Let (X, 7) be a topological vector space and A C X a polytope and B €
K(X). Furthermore let us assume that A has k faces S; = Hp,(A),...,Sx = Hy (A) of
mazimal dimension and that for every i € {1,...,k} we have Hy,(B) = {b;}.

Then the pair (A, B) € X*(X) is minimal.
Proof. Let us assume that there exists a pair (4’, B') € X*(X) with (A', B') ~ (A, B)

and A’ Cx A and B’ C B. By virtue of the formula on the addition of faces we deduce
from A+ B'= B+ A', that for all i € {1, ..., k}

Si-f—Hfi(Bl) = bi-{—Hfi(A’)

holds. Now let us choose elements b, € Hy,(B'), i€ {1,...,k}. Then for each i € {1, ..., k}
holds S; + b; C b; + Hy,(A"). By defining z; = b; — b; the inclusion

Si+x; C H(A) C A" C. A. (2.1)
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is satisfied for each i € {1, ..., k}.

Since the polytope A € X(X) has k faces S; = Hy, (A),..., S = Hj, (A) of maximal
dimension it can be described in terms of inequalities as

A={ze X | filx)<a;,i€e{l,.. .k} }

for some aj,...,ap € R. Hence from equation (2.1) follows, that there exist numbers
B4, ..., Br € R such that

A={zeX | filx)<B;,i€{l,..,k} }C, A
and that for each 7 € {1, ..., k} we have
Si+x; = Hfl(A) +x; C Hfl(A) (2.2)

Since A C A, the inequality 3; < «a; holds for each i € {1,...,k} holds. Combining
equation (2.2) with the fact that each functional f;, i € {1,...,k} determines a face

of maximal dimension of A results in the validity of the inequality a; < (3; for each
i € {1,...,k} which in turn means that A = A. Hence the pair (A, B) € X*(X) is
minimal. U

Now let X = R" and P € X(X) be a polytope. Then the polar polytope is defined by:

P’ ={ueR" | sup(u,z) <1},
zeP

where (.,.) denotes the inner product of R".

From the well known correspondence between extremal points of P and faces of maximal
dimension of P? follows:

Corollary 2.2. Let X = R" be a finite dimensional topological vector space and P €
K(X) be a polytope.

Then the pair
(P, P°) € X*(R™)

18 minimal.

Remark 2.3. A similar minimality criterium has been stated in [7], Theorem 2.1. To
explain the difference between the above Theorem 2.1 and the corresponding result of [7]
we present the following example: Let us consider in X = R2 three polyhedra A, B, C €
K(X), as indicated in the following figure.
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These sets are contructed as follows: Let I = [u,v] and J = [r, s] be two orthogonally
intersecting intervals such that [p, ¢] is properly contained in J as indicated in Fig. 1.
Now put A=1+J, C =1V [p,q] and B = C + J. Then the rectangle A has two
faces S; and Sy which are parallel to I. Now we choose a shape § = {fi, fo} for A with
Hf(A) = S;, i € {1,2}. Then we have:

Hfl (A) =5 ’ Hfz(A) = 5
A = S V5 and
Hfl(B) = {bl} ) Hf2(B) = {bZ}

On the other side we have:

A =1 + J
= A+C=B+1
B = C + J

which implies that the pair (A, B) is not minimal since (4, B) ~ (I,C).

3. The Dimension-Invariance of Minimal Pairs

In this section we will show, that the affine dimension and codimension of the union a
minimal pair of compact convex sets is invariant. We begin with the following proposition:

Proposition 3.1. Let (X, 7) be a topological vector space and (A, B), (C, D) € K*(X) be
equivalent pairs. Furthermore let us assume, that the pair (C, D) € X?(X) is minimal.

If AUB C X C X, where Xy is a closed subspace of X, then there exists a point xqg € X
such that C U D C Xy + xg.
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Proof. By assumption the pairs (A, B), (C, D) € X?(X) are equivalent, i.e.
A+D = B+C (3.1)

holds. Hence for every ag € A and dy € D there exist points by € B and ¢y € C' with
ag +dy = by + cg. Therefore we have:

(A—(J,()) + (D—do) = (B—b()) + (C—Co).

If we put Ag = A—ag, By=B—by, Cy =C—cy and Dy = D —d,, then we can rewrite
equation (3.1) as

A0+D0 = By + Cy, with OEA()ﬂBoﬂC()ﬂD(). (31’)

Now we consider the sets C' = Cy N Xy and D' = Dy N Xy. By equation (3.17) there exist
for every x € Ag and y € D' elements b € B and ¢ € C such that the equation

z+y = (b—"bo)+ (c— o)
holds. Since
c—co = (x+y) — (b—1b) € Xo+ Xo+ Xo+ Xo = Xo,
we obtain ¢ — ¢y € Cy N Xy = C’, and hence that
Ag+D" C By+C".

Analogously follows
By+C" c Ay+ D

and hence we have:

(Ag, By) ~ (Cy, Dy) ~ (C', D).
Since the pair (Cy, Dy) is minimal (see [6]), it follows that
C—c=C" and D—-dy=D".
Hence we have that C' — ¢y C Xy and D — dy C Xj. These inclusions imply that
CC Xo+cop=(Xo—bo)+by+co=Xo+ (bo+ co)

and
DCX0+d0:(X0—a0)+CL0+d0=X0+(a0+d0).

Hence
C CXo+xy9, DC Xg+ 29 with zy = (b0+00).

O

Remark 3.2. Now let (X,7) be a locally convex vector space and C' be a nonempty
compact convex subset. Then for every y € C the set

C, =span(C-y) =cl{ze€ X |z = Ailci—y), c¢1,eyen €C, A, A\ € R, n € N}
y

=1
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is the smallest closed linear subspace containing C' — y or equivalently the intersection of
all closed linear subspace containing C' — y. The affine hull of C' is given by

aff hull(C) =Cy, +y

and is independent of the special choice of y € C. The affine dimension and codimension
is defined by:
dim aff(C) = dim(C,)

and
codim aff(C) = codim(Cy) = dim(X/C, )
y

As a generalization of [7], Theorem 3.1 we get:

Corollary 3.3. Let (X,7) be a topological vector space and and (A, B), (C, D) € X*(X)
be equivalent minimal pairs.

Then
dim aff(AU B) = dim aff(C U D)

and
codim aff(A U B) = codim aff(C' U D)

4. Invariant Convexificators

We begin with the following observation:

Proposition 4.1. Let (X, 7) be a topological vector space and (A, B), (C, D) € X*(X) be
equivalent pairs, i.e. (C,D) € [A, B]. Then C U D is convez if and only if AV B is a
summand of A+ D.

Proof. Necessity. If CUD is a convex set, then from Lemma 3.3 in [14] it follows that
A+D = B+C = AVB+CnD.

Hence AV B is a summand of A + D.

Sufficiency.  Let us assume that A+ D = B4+ C = AV B+ S, for some S € X(X).
Then
B+C>B+S and A+DD>A4+S

and hence from the cancellation law we have S C C'N D. Now observe that
A+CNDCA+D and B+CnDcCB+C.
Hence from the Pinsker rule follows that
AVB+CNDCA+DCAVB+CnND.

Therefore we have:
A+D = B+C = AvB+CnD.
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But
C +A+D=C+AVvB+CnND
=(A+C)v(B+C)+CnND
=(A+C)V(A+D)+CNnD
=A+(CvD)+CnND.

Hence the law of cancellation gives
C+D =CvD+CnND

and therefore from Theorem 1.1 follows that C U D is convex. O

Proposition 4.2. Let (X, 7) be a topological vector space and (A, B), (C, D) € X*(X) be
equivalent pairs, i.e. (C,D) € [A, B]. Then (C+ AV B)U (D + AV B) is convez.

Proof. We have

(C+AvB)+(D+AVB)=(A+C)vV(B+C)+D+AVB
=(A+C)V(A+ D)+ D+AVB (since A+ D=B+0C)
=A+(CVvD)+ D+ AV B (by the Pinsker rule)
=(CVD)+AVB+A+D
=(C+AVB)V(D+AVB)+A+D,

since

(C+AVB)V(D+AvVB)=(CVD)+ AV B.
Hence by Proposition 4.1 the set (C'+ AV B) U (D + AV B) is convex. O

Corollary 4.3. Let (X, 7) be a topological vector space and (A, B) € X*(X). Then C =
AV B is a convezificator for the class [A, B.

5. Examples

Let X be a normed vector space and X* its topological dual space, endowed with the
weak-*-topology. For every A € K(X) let us denote by

pa: X" — R with pa(v) =sup(v, )
z€EA

its support function, where (.,.) denotes the dual pairing.

In this notation, P. Diamond, P. Kloeden, A. Rubinov and A. Vladimirov studied in [3]
the following norm for the Radstrém-Hormander lattice [5] of equivalence classes of pairs
of compact convex sets which is given by:

IA, Bll| = inf = (sup{ sup pc(z), sup pp(z)}),
(C,D)E[A,B] zeB(0,1) z€B(0,1)

where B(0,1) C X* denotes the unit ball of X*.

In the following two examples we will show that this norm does not characterize the
minimal representants of an equivalence class.
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Example 5.1. Let X := R? and 4, B, A', B’ € X(X) the following compact convex sets:

A =dconv{(1,4), (4,1)} B = conv{(—4,-1),(—1,-1),(-1,-4)}
A" =conv{(1,4),(4,1),(1 — o, 4= 5)} B' = conv{(-4,-1),(-1,-1),(-1,—-4),
(_4 —a,—1- ﬂ)}

with o + 8 <5 and o? + 3% — 8a — 28 < 0 (see Figure 2).

Now for every choice of the parameters o and [ we have (A', B') € [A, B] (see [8]) and

SUDge B(0,1) PA! () = SUDzeB(0,1) pa(z) and SUDgeB(0,1) PB' (x) = SUD4e B(0,1) pg(z). Since only
the pair (A, B) is minimal, the above norm does not characterize this element within its
equivalence class (see [4],[12]).

Figure 2

Example 5.2. For X := R3? the following continuum (A,, B,) € X?(X), «a > 0 of
equivalent minimal pairs of compact convex sets was constructed [9] namely:

A,= E,VF, and B, = U,V V,,

with
E, = COHV{(0,0,0), (LLO)’ (1-}-05,0,0)}
Fy:= conv{(0,1,1), (,0,1), (1+a,1,1)}
Us = conv{(0,0,0), (0,1,0), (1,1,0), (1 +e,0,0)}
Va = Conv{(o’l’l), (04,0,1), (1+a70, 1)7 (1+a, 130)}

Now for every o > 0 we have

sup pa,(z) = sup pg,(z) = V3+2a+a?

z€B(0,1) z€B(0,1)
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which shows, that the function

(A, B) —sup{ sup pa(z), sup pg(z)},
z€B(0,1) z€B(0,1)

is not constant on the minimal elements of the equivalence class [A, B].

Let us remark, that the Hausdorff metric is constant on the elements of the class [A, B].
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