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This paper is concerned with the solvability of a class of nonlinear variational inequalities involving
pointwise unilateral constraints on the laplacian. We describe the set of the pairs (1, h) of the right hand
sides h and the obstacles 9 for which the problem has solutions and study the structure of the set of
solutions. The existence and multiplicity results we obtain point out that the presence of the obstacle
gives rise to some phenomena which are typical of the semilinear elliptic equations with “jumping”
nonlinearities.
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1. Introduction

Let 2 be a bounded domain of R*, ¢ € H}(Q), h € L?(Q) and g : @ X R — R be a given
Carathéodory function.

Let us set
Ky ={u€ Hy(Q) | Au < Ay (in weak sense)}

and consider the following problem: find u € K such that
/Q[DuD(v —u) —g(z,u)(v—u)+ h(v—u)lde >0 Vv e K.

The solutions of this variational inequality (whose pointwise meaning is discussed in Re-
mark 2.2) correspond to the critical points of the functional

1 u
fn(u) = —/ |Du\2dac—/dx/ g(x,t)dt+/hu dz,
2 Ja o Jo Q

constrained on the convex cone K.

Several papers have been devoted to variational inequalities involving unilateral pointwise
constraints on the function u (see, for example, [8, 11, 12, 13, 14, 15]). A constraint on the
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laplacian of u, as Ky, has been considered by Brezis and Stampacchia in [4] for variational
inequalities involving the biharmonic operator. Also, unilateral pointwise constraints on
the gradient arise, for example, in the problem of the elastic-plastic torsion of a bar (see
[3, 7))

The aim of this paper is to study the solvability and the multiplicity of solutions of our
problem for a generic pair (1, h), under suitable assumptions on the asymptotic behaviour
of the function g(z,-) with respect to the eigenvalues ()\;); of the Laplace operator in
H; (). The results we obtain show that the presence of the obstacle ¢ produces some
phenomena which make evident a deep analogy with well known results, firstly stated
by Ambrosetti and Prodi in [1], concerning semilinear elliptic differential equations with
“jumping” nonlinearities (see Remark 5.5 for more details about this analogy).

In [10] this problem has been studied in the particular case g(z,u) = Au, with A <
Ao. In that case the solutions can be obtained as mini-max points of the functional fj,,
constrained on Ky, with respect to a suitable pair of orthogonal subspaces of Hj(£2). On
the contrary, in this paper we consider the general case in which g(x,t) is not necessarily a
linear function; therefore we need to apply general topological methods of the Calculus of
Variations to find critical points of the related functional, which does not satisfy the usual
smoothness conditions (we refer the reader, for example, to [2] and [5], for the general
tools of nonsmooth analysis we shall use in this paper).

Finally, let us mention that a new notion of supersolution (see Definition 3.1), which is
natural when we handle constraints on the laplacian, turns out to be very useful to analyse
the solvability of our problem and the structure of the set of solutions.

The paper is organized as follows: In Section 2 we introduce our problem and, under
suitable assumptions on g, characterize its solutions as lower critical points of a suitable
functional; in Section 3 we define the supersolutions and state their main properties; in
Section 4 we prove the main existence and multiplicity results; in Section 5 we specify
these results under additional assumptions on the function g(z, u).

2. Setting of the problem
Let © be a bounded domain of R* and ¢ a function in Hj(Q); set

K, = {u € Hy(Q) ‘ /Dqu dx > / Dy Dw dz Yw € C5°(Q) w > 0} (2.1)
Q Q

(note that K is a convex cone with vertex in ).
Let g : 2 x R — R be a Carathéodory function such that, for almost all z € €2,

lg(z,t)| < a(z) +blt/P™t VteR, (2.2)
for suitable p,b € R, p > 1, a € LP/?~)(Q), with p < 2* = 2n/(n — 2) if n > 2 (2* is the
critical Sobolev exponent).
Definition 2.1. Assume that the function g satisfies condition (2.2). Then, for all h €
L*(Q) and ¢ € H;(§2), we say that u is a solution of problem P, (k) if:

UEKw

e {fQ[Dqu ) —gle,w)(v—w) + h(v—u)ldr 20 W € K.
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Remark 2.2. Notice that, if we can apply the Gauss-Green formula, the inequality of
problem Py (h) becomes:

/Q[u + A g, u) = W]AW—w)dz <0 Vo € Ky,

whose pointwise meaning would be:

u+ A7 (g(z,u) —h) =0 a.e. where Au < Ay
u+ A7 (g(x,u) —h) >0 a.e. where Au= Ay

or, equivalently,

VIV

—A~Y(g(z,u) — h) a.e. in Q
—A7Yg(z,u) —h) = Au=Ay.

&

This remark is specified in the following lemma, which can be proved arguing as in the
proof of Lemma 1.2 in [10].

Lemma 2.3. Assume @ € H}(Q), k € LP/?*=)(Q), with p > 1 and p < 2n/(n — 2) if
n > 2.

Let us set
K={ueH;(Q) : u>A"kae inQ}.
Then a function u € Hy () solves the problem

Jo DuD(v —u)dz + [, k(v —u)dz >0 VYove Ky '

if and only if it is a solution of the variational inequality:

ue K (2.4)
Jo DuD(w — u)dz — [, DYD(w — u)dz >0 Yw € K. '

Now let us introduce some notions of nonsmooth analysis (see, for example, [2, 5, 6]), we
shall use to describe the variational nature of problem P, (h).

Let H be a Hilbert space with inner product (-,-) and norm || - ||.
For all f: H — RU {400} let us define the domain of f to be the set

D(f) = {u€ H | f(u) < +oc}.

As usual, for all ¢ € R we denote by f€¢ the sublevel of f
fo={ueH| flu) < ch

For all u € D, we define the subdifferential of f at u to be the set 0~ f(u) consisting of
all @ in H such that

o F0) = f0) — (0,0 —w)

> 0.
v [v =l
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If 0~ f(u) # (), then we define the subgradient of f at u, denoted by grad™ f(u), to be the
element of 0~ f(u) having minimal norm (it is easy to check that 0~ f(u) is a closed and
convex subset of H).

We say that u is a lower critical point for f if 0 € 0~ f(u), that is if grad™ f(u) = 0.

Now let us assume that the function g satisfies condition (2.2) and, for all ¢ € H}(2) and
h € L*(), consider the functionals f,, fhy : H3(Q) = RU {+oc} defined as follows:

1

fr(u) = 5/(|Du|2 —G(z,u))dz + / hudz, (2.5)
Q Q

where G(z,t) = fotg(x,s)ds and fpy = fu + Ik, (in this paper we denote by Ip the

indicator function of any given set E, i.e. Ig(u) =0if u € E and Ig(u) = +o0 if u ¢ E).

Notice that condition (2.2) implies that there exist A € L'(Q) and B € R such that, for
almost all z € 2,

|G(z,1)| < A(z) + Blt]’.

Hence, under this condition, f,, is a C* functional and f, is lower semicontinuous (be-
cause Ky is a closed subset of Hj(f2)). Moreover it is easy to verify that a function
u € H} () solves problem Py(h) if and only if 0 € 07 f4 4 (u).

Finally, let us introduce some notations we shall use in this paper:

e We denote by ()\;); the eigenvalues of the Laplace operator with zero boundary
condition on ) and by e; the eigenfunction related to A, positive and satisfying
Joelde =1.

e ForallteR, we set

P, ={u € L*Q) | / uerdr =t} and S; = {u € L*(Q)| / ueydz < t}.
o Q

e  Usually, the Hilbert space we shall consider in this paper will be Hj (). For simplicity
(when this does not give rise to any ambiguity), we shall denote by || - || and || - ||2
the usual norms in H{(f2) and in L?*(2) respectively.

3. Supersolutions and related properties

In this section we give the definition of a new type of supersolution, different from the
classical one, which seems to be appropriate and useful to handle constraints as K, (a
similar notion has been used in [10]). We prove that these supersolutions can be used as
“upper fictitious obstacles” in our problem (see Proposition 3.5). This property allows us
to study the structure of the set of the pairs (¢, h) for which problem P, (h) has solutions
and to describe the main properties of the set of solutions of Py(h).

Definition 3.1. Let h € L*(2) and g : @ x R — R be a Carathéodory function sa-
tisfying condition (2.2). We say that ¢ € H{() is a supersolution for the operator
I+A 1Y (g(z,-)—h)if

/(Dl/_JD’LU — g(z,Y)w + hw)dz >0 VYw € K.
Q
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Remark 3.2. It is evident that every solution of problem P,(h) is a supersolution for
the operator I+A~!(g(z,-) —h). Moreover, it is easy to verify that, if ¢ is a supersolution
for the operator I +A~*(g(x,-) —h) and A’ > h, then ¢ is a supersolution for the operator
I+ A(g(z,-) —I) too.

Proposition 3.3. The function 1 is a supersolution for the operator I +A~'(g(z,-) — h)
if and only if ¥ + A (g(z,v¥) — h) > 0 a.e. in Q.

Proof. If ¢ is a supersolution, then Definition 3.1 (with w = —A~!¢) implies
/[1/7 + AN g(z, ) = h)le >0 Vo € L*(Q) such that ¢ > 0;
Q

s0 ¥ + A7 (g(x,%) — k) > 0 a.e. in (.
Conversely, if ¢ + A7 (g(x, 1) — h) > 0, then it is easily seen that

/(DﬁDw — g(z,Y)w + hw)dx > 0
Q

for every w € H}(Q) such that Aw < 0 in weak sense, i.e. for every w € K. O

Proposition 3.4. Assume that the function g satisfies condition (2.2) and that

g(x,-) is a nondecreasing function for a.a. x € Q. (3.1)

Let 1p1, 1y be supersolutions for the operator I + A~ (g(z,-) — h). Then 1 Aty is a
supersolution too.

Proof. Proposition 3.3 and assumption (3.1) guarantee that

1 > —A7H(g(x,91) — h) > =A(g(z, 1 Atha) — h) a.e. in {2

Yo > =AY g(z, 1) — h) > —A7(g(x, 1 Aha) — h) a.e. in Q.
Therefore
Uy Ahy > —A " g(x, 91 Aihy) — B) a.e. in
that is, again by Proposition 3.3, 1 A ¢, is a supersolution. O

Proposition 3.5. Let g satisfy condition (2.2) and ¢ € K, be a supersolution for the
operator I + A~ (g(z,-) — h). Set K ={u € Ky | u <1 a.e. inQ} and assume that w
s a lower critical point for f, + Ix. If we assume in addition that g satisfies condition
(3.1), then w is a solution of problem Py(h).

Proof. First of all, let us remark that ¢ > —A'(g(z,¢) — h) ae., because ¢ is a
supersolution. Moreover g(z,w) — h < g(z,%) — h, because w € K and (3.1) holds. So
we obtain:

—A(g(z,w) — h) < —A " g(z,9) — h) < ¢ (3-2)
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The function w verifies
/[DwD(v —w) —g(z,w)(v —w) + h(v —w)]dz >0 Yv € K;
Q
therefore, if we put

fu) = %/Q|Du|2dx + /Q[h — g(z, w)]udz,

w is a lower critical point for f + Ix. The functional f + Ix , 18 strictly convex, lower

semicontinuous and coercive; so there exists only one minimum point for f on Ky; let us
call it w.

The function w verifies
/ DwD(v — w)dx — /(g(m,w) —h)(v—w)dz >0 Yve Ky. (3.3)
Q Q

The functional f + Ix admits only one lower critical point (its unique minimum point),
because it is strictly convex; so, if we show that w < ), then we have w = w and (3.3)
gives us the desired conclusion.

Applying Lemma 2.3 with £ = h — g(z,w), we have that w is a lower critical point for
the functional

1
F(u) = §/Q|Du|2dx— /QD¢Dudx

constrained on the set
K={ue H;(Q) |u>A""(h—g(z,w)) ae. in Q}.

The function 1 is in the set K by (3.2) and it verifies Ay < At (in weak sense) by
assumption; then it is a supersolution for the operator F” (in the usual sense: see, for
example, [11, 12]).

Therefore, as it is stated in [11], the functional F'+ Iz has a lower critical point, that we
call w', satisfying w' < ¢; but F' + Iz has only one critical point, because it is strictly
convex, so w = w'. This implies that w < v and so w = w, which completes the proof. [

Proposition 3.6. Let g satisfy conditions (2.2) and (3.1); let 1 € Ky, be a supersolution
for the operator I + A™'(g(z,-) — h). Then problem Py(h) has at least one solution w
such that w < a.e. in Q.

Proof. In this proof we use the notations introduced in Proposition 3.5. Clearly it is
sufficient to find a minimum point w for the functional f, + I'x and then apply Proposition
3.5. In order to prove the existence of such a minimum point, observe that K C {u €
H(Q) | ¥ < u < 9} with ¢ and ¢ in H}(9); taking also into account condition (2.2),
this fact implies that the sublevels of f; + Ix are bounded in Hj () and that fj, + I is
weakly lower semicontinuous (even if p = 2*). It follows that every minimizing sequence
for f, + I is weakly convergent in H; () (up to a subsequence) and the weak limit is a
minimum point for f, + Ik. O
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Proposition 3.7. Under the same assumptions as in Proposition 3.6, we have:

(i)  if problem Py(h) has solution, then there exists a solution for every problem Py (h')
such that h' > h a.e. in Q and Ay’ > A1y in weak sense;

(i) if ur and uy are solutions of problem Py(h), then there exists a solution u such that
u < ui A Us.

The proof follows easily from Propositions 3.6 and 3.4, taking into account Remark 3.2.

In order to prove the existence of a minimal solution of Py(h), we need the following
result.

Lemma 3.8 (see, for example, [5]). Let H be a Hilbert space and f : H — RU{+o0}
a lower semicontinuous function. Suppose that there exists ¢ € R such that

f) > f(u)+ (a,v —u) —cllv—ul* Vu,v € D(f) Va€d f(u).

Let (Um)m and (uy)m be two sequences such that u,, € D(f), any € 07 f(Uny) for every
m €N, lim,,_, U, = u and o, — o weakly in H.

Then u € D(f), limy, 00 f(Um) = f(u) and o € 0~ f(u).

Proposition 3.9. Assume that g satisfies conditions (2.2) and (3.1) and, in addition,
there exists A\ € R such that, for almost all x € €2,

g(xatl) - g(xatQ)
t1 — 19

S A fO’/' tl 7é tg. (34)

If problem Py(h) has solution, then there exists a minimal solution u (that is u < u a.e.
in Q, for every u solution of Py(h)).

Proof. First let us remark that condition (3.4) implies
1 2 A 2
Fuolw) > () + (v — ) + o flo — ull? = 2o — ul}
Vu,v € Ky Va € 0 fry(u).
Therefore, since
lv —ully < c@)llv —ull®  Vu,v € Hy(Q)

for a suitable constant ¢(Q2), we can apply Lemma 3.8 with H = Hj(Q2) and f = fhy.
Let (um)m be a sequence of solutions of Py(h) such that

lim Updr = inf { / udx

(notice that this infimum is finite because there exists at least one solution and K, C
{ue Hy(Q) [ u=9}).

u solution of Py (h)}
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Let us fix v € K. By (3.4) we obtain

A
£o0) 2 fulum) = 510 =l 2 5 [ D -

A
/|g(x,0)||um|da:——/ufnda:—l-/humdx——||v—um||§,
Q 2 Jo Q 2

with g(-,0) € LP/®=1(Q) because of condition (2.2)

(3.5)

We claim that sup,,cy ||uml|]2 < +00. In fact, otherwise, we could assume that, up to a
subsequence, lim,, o ||tm|l2 = +00. Let us set 2z, = U /||tm||2; from (3.5) we deduce
that sup,,cy ||2m|| < +0c and, consequently, (z,,)m, (or a subsequence) converges in L?(2)
and a.e. in Q to a function z € H}(Q) with the properties that ||z]ls = 1 and z > 0,
because u,, > 1. Hence

m—0o0

lim ZmdT = / zdxr > 0.
Q Q
But this is impossible, since

1
lim Zmdr = lim — / Updr <0

m—r00 Q m—00 ||um||2

because limy, o0 [, Umdz < 400 and limy,_,e0 |[tim |2 = +00.

So (tm)m must be bounded in L?(f2) and, from (3.5), it follows that (), is bounded in
H; (€2) too; therefore, up to a subsequence, it converges in L*(©2) and weakly in H;(£2) to
a function @ that, by Lemma 3.8, is a solution for Py(h). Let us remark that

/udxzmin {/ udx
Q Q

Hence we deduce that « is the minimal solution. In fact if, by contradiction, there exists
a solution u such that u A u # 4, then there exists another solution w < @ A u, because
of Proposition 3.7. Therefore [, wdz < [, udz, in contradiction with (3.6). O

u solution of P¢(h)} : (3.6)

Another consequence of the properties of the supersolutions is the following result, that
holds if g(z,-) is a convex function.

Proposition 3.10. Let g satisfy conditions (2.2) and (3.1) and assume, in addition, that
g(x,-) is a convex function for a.a. © € Q. Then the set of the pairs (¢, h) such that
Py(h) has solution is convez.

Proof. It suffices to observe that, if u; is a solution of problem Py, (h;), ¢ = 1,2, then
tuy 4+ (1 —t)ug is in Ky, 11—y, and is a supersolution for the operator I + A~ (g(z,-) —
thy —(1—t)hsy), for all t € [0, 1], because of the convexity of g(z, -). Hence we can complete
the proof using Proposition 3.6. O

Now we shall use the supersolutions to describe some closure properties of the set of data
¢ and h for which P,(h) has solution.



R. Molle, D. Passaseo / Variational problems with pointwise constraints on the derivatives 223

Lemma 3.11. Let g satisfy conditions (2.2) and (3.4) and assume, in addition, that there
exist A\ € R and c € L*(Q) such that, for almost all z € 2,

g(x,t) > Xt —c(z) Vt>0. (3.7)

Then for all uw € Ky and oo € 0~ f 4 (u) we have:
/[(/\1 —Nut — (A = Nu” + ¢+ hlerdz > (o, e).
Q

Proof. Set v =wu +e; (note that v € Ky). Then, for every oo € 07 fj(u), it holds

(o, v —u) < fr(u)o —u] =

3.8
/[DUD61 — g(z,u)er + heyldx = /[Alu — g(z,u) + hleidz. (3.8)
Q 0
Furthermore, if Ot = {z € Q | u(z) > 0}, then
[oweds= [ geweds+ [ g ueds >
0 o+ o\t
/ (Au — c)erdz + / (Au — c)erdr = /()\u+ — Au~ — c)erdz,
o+ o\t Q

which, together with (3.8), completes the proof. O

Lemma 3.12. Let g satisfy conditions (2.2) and (3.4). Moreover, let (3.7) hold with
A > )\ (see also Remark 3.13). Let (V)m and (hm)m be two sequences such that, for all
m €N, ¢y, € H}(Q), hy, € L2(Q) and Py, (hy) has at least one solution u,,. Furthermore
assume that Y, — ¥ in Hy(Q) and h,, — h in L*(Q) as m — oo. Then:

(i)  the sequence (up)m is bounded in H}(Q);

(i) if (um)m (or a subsequence) converges to u in L*(2) and weakly in H}(SY), then u
solves problem Py(h);

(iii) problem Py(h) has at least one solution.

Proof. Taking into account (3.4), we obtain

A
o Wm) 2 i () = 516 = wnly = 5 [ 1D

2 (3.9)

/|g(:c,0)Hum|dx—é/ufndaﬁ—i-/hmumdx—é||1/1—um||§,
Q 2 Ja Q 2

with [,,|g(z,0)||tm|dz < c1]|un||, for a suitable ¢; € R, because of condition (2.2).

Let us prove that the sequence (u,,)., is bounded in L?(f2). In fact, arguing by contradic-
tion, assume that, up to a subsequence, lim,, s ||tm||2 = +00. If we put 2, = Uy /||tm|2,
from (3.9) we deduce that (2,,), is bounded in H{(9); so, up to a subsequence, it con-
verges in L?(Q) and a.e. in ©, to a function z € H}(Q2). The function z verifies:

|zle=1 and z>0in Q (3.10)
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(because Uy, > ¥, a.e. in Q and ¥, — ¥ in Hy(Q)).

By Lemma 3.11 we have

1

([l 2

/ (1 = Vit = (O = Az + ¢ + hlerdz > 0,
Q

from which, as m — oo, we obtain (A = A) fQ zerdr > 0, which is impossible because
A > \; and (3.10) holds. So the sequence ()., has to be bounded in L?(2) and then,
from (3.9), it follows that it is bounded in H;(f2) too. Thus (i) is proved.

Let us prove (ii): for all v € Ky, set v, = v + ¢, —%. Then v,, € K;,, Vm € N and so,
by (3.4),

A
St Vm) 2 frn () — §|Ivm — Upy|2 vm e N;

letting m — oo, since v, — v in H}(Q), we get

o) 2 fulw) = Sl —ul} Woe K,

which gives (ii).
Assertion (iii) is a direct consequence of (i) and (ii). O

Remark 3.13. Notice that in Lemma 3.12 the condition A > ); cannot be removed, as
showed by the following example.

Let g(z,t) = A\it; choose ¥ € H () such that supg(¢/e;) = +oo and set 1, = 1 and
hm = (e1/m) for all m € N. Then Theorem 6.1 of [10] guarantees that Py,  (h,) has
a unique solution wu,, for all m € N, while the limit problem P,(0) has no solution. In
fact, by Theorem 6.1 of [10], every solution of P(0) should be an eigenfunction for the
first eigenvalue A\; (which cannot belong to K, under our assumption). In this case the
sequence of solutions ()., is not bounded in H} ().

4. Existence and multiplicity results

In this section we use the topological methods of Calculus of Variations to study the
existence and multiplicity of solutions for our problem, i.e. we analyse the topological
properties of the sublevels of the functional f, ,; in order to evaluate the number of solu-
tions of Py(h).

Theorem 4.1. Let g satisfy conditions (2.2), (3.1) and (3.4); let 1 € Hj(Q2) and h €
L*(Q). Then there exists 11 € [—00,+00] such that problem Py,(h + Te1) has at least one
solution for every T > 11, while it has no solution if T < 1.

Furthermore, if we assume in addition that condition (3.7) holds with \ > A1, then T >
—00, Py(h+Te1) has solution and there exists 7o > 11 such that problem Py(h+Te1) has
at least two solutions for every T > Ts.

To prove this theorem, we need some preliminary results. In particular Lemma 4.3 gives
us a compactness property for the (nonsmooth) functional fj, ,, analogous to Palais-Smale
condition.
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Lemma 4.2. Let ) € H}(Q), h € L*(Q) and g satisfy conditions (2.2) and (3.4). Then,
for allt € R such that Kyy NS, # 0, the sublevels of the functional f7, , + Is, are bounded
in H}(Q) (see the notations introduced in Section 2).

Proof. Condition (3.4) implies
1 2 A 2 7 1
filu) > = [ |Dul*dz — = | u*dz — [ |g(x,0)uldz+ | hu dx Yu € Hy(Q)  (4.1)
2 Jo 2 Jo Q Q

with [, |g(z,0)uldz < c1fjul| by (2.2).

Let us prove that the sublevels of f; ,, + Is, are bounded in L?(Q). Suppose, contrary
to our claim, that there exists a sequence (), in a sublevel of fj , + Is, such that
limy, o0 ||Um|l2 = +00 and set 2z, = Uy /||tm||2- Inequality (4.1) implies

lim sup/\Dzm\de < +00.
0

m—00

Hence there exists a function z € H}(2) such that (up to a subsequence) z,, — z in L*(Q)
and a.e. in {2. Furthermore

|zl =1 and z>0 (because u, > ). (4.2)

On the other hand we have

1
lim 7/umeld:v = lim [ z,eidx = /zeldfv
Q Q Q

m-00 [z 300

which is not possible, because fﬂumeld:v <t implies

1
lim 7/umeldx =0,
Q

m—=00 [t |5

while [,ze;dz > 0 by (4.2). O

Lemma 4.3. Let g satisfy conditions (2.2) and (3.4); assume that condition (3.7) holds
with A > M. If (upm)m is a sequence in Ky such that 0~ fpy(um) # 0 Ym € N and
SUPen || 8rad™ fhp(um)|| < +00, then (Um)m is bounded in Hg ().

If we assume in addition that lim,, , || grad™ fry(um)|| = 0, then the sequence (Up,)m is

relatively compact in H} (Q).

Proof. Set o, = grad™ fj 4(un) and fix @ € K. Then we have

A 1
(@) > (i) + (@ 1= ) = S =l > 5 [ | D -
“ (4.3)

A A
—/ufndx—/|g(:v,0)um|dx+/humdx+ (i, U — Upy) — = ||T = s ||3-
2 Jq Q Q 2

Let us prove that (u,, ), is bounded in L?(Q). Arguing by contradiction, assume that (up
to a subsequence) limy, o0 ||tum|l2 = +00.
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Set 2z, = U /||Uml||2- From (4.3) it follows that (zy,),, is bounded in H{(f2); so there is
a subsequence (still denoted by (z,),) converging in L?(Q) and a.e. in Q to a function
z € H}(Q). Furthermore

lzlo =1 and z>0 in Q (because u,, > ). (4.4)

On the other hand, from Lemma 3.11 it follows that

(A1 — )\)/zeld:r; >0
Q

which is not possible because A > \; and (4.4) holds.
Hence (U, ), is bounded in L?*(Q) and, by (4.3), in Hy ().

Now assume in addition that a,,, — 0 in H}(Q) and prove that (u,,), is relatively compact
in Hi(2). Since (uy)m is bounded in Hj (), up to a subsequence, we have u,, — u in
L?(2) and weakly in H} () and LP(2), for a suitable u € H}(Q2). Arguing as in (4.3) we
obtain

A
P () Z Fis () + (Ot 0 = ) = Sl = w5

with (@, ¥ — Um) — 0 (as ||am|| = 0 and (||tm]|)m is bounded).

Therefore

lim sup fpy (Um) < i (u).

m— o0

Taking into account (2.2) and (3.4), by Fatou’s Lemma, we infer

limsup/|Dum\2dac < /|Du|2d:c,
0 0

m—0o0
which implies u,,, — u in Hj (). O

Proof of Theorem 4.1. Taking into account Proposition 3.7, we have only to prove
that there exists 7 € R such that problem Py(h + Te;) has solution.

Choose t € R such that ¢ > fgweldx. Since the functional fj, is weakly lower semicon-
tinuous, Lemma 4.2 implies that, for all h € L?(f2), the minimum of f, , constrained on
the subsets S; and P; is achieved. Moreover, for 7 sufficiently large, we have

min{fﬁ+mhw(u) ‘ u € St} < fﬁ+¢e1,w(¢) = fﬁ(¢) + 7'/97/161(133 <

min{ fj, »(v) | v € B} 4+ 7t = min{ fj 1 ¢, () | u € P} (4.5)

Hence a solution of problem P, (h + Te;) can be obtained as minimum point of the func-
tional f; .., , on the open subset S; \ P;.
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Now let us prove the second part of the theorem.

Assume, contrary to our claim, that 71 = —oo. Then problem P, (h —me;) has a solution
Uy, for every m € N.

Let us fix 4 € Ky. By (2.2) and (3.4) we have

falu) — m/Queldx = frme (W) >

Ay 1
i ) = 51 =l 2 5 [ 1Dz = [ (o, 0y~
Q Q
A 2 - A _ 2
— [ uide+ [ (h—me)undr — —||d — Un|3.
2 /g o 2

Therefore there exists a constant co > 0 such that, if we set z,, = u,,/m, we have

/\Dzm|2d3: < (1 + /zidm) Vm € N. (4.6)
Q Q

Now, if (z;m)m is bounded in L?(R2), it follows from (4.6) that it is bounded in H{ () too.
So, up to a subsequence, it converges in L*(Q2) and a.e. in Q to a function z € Hg(Q)
such that z > 0 (because u,, > 1). Then Lemma 3.11 yields

(A1 —/_\)/zeldx—/ef dx >0,
0 Q

which is not possible because A > Ay, z > 0 and [,e? dz = 1.

Hence let us consider the other case, i.e. (2,)m, not bounded in L?(£2); up to a subsequence
we can assume that lim,, .« ||2m||e = +o00.

Set 2. = zm/||2ml|2; from (4.6) it follows that (2],), is bounded in H}(Q); so, up to a
subsequence, it converges in L?*(Q2) and a.e. in 2 to a function 2’ € HJ () such that
Iz'[la =1 and 2z’ > 0. Then Lemma 3.11 yields

(A — /_\)/z'eldaz >0,
Q

which is not possible because A > A; and [,z'e;dz > 0 (since 2’ > 0 and ||2||; = 1).
So it must be 7, > —o0.
The solvability of problem Py(h + Tie;) is a straightforward consequence of Lemma 3.12.

Our next claim is the existence of two distinct solutions, for 7 sufficiently large.

Choose 7, large enough in such a way that (4.5) holds for all 7 > 7, and set h = h + Te;
for a fixed 7 > 7. Let @ be a minimum point for the functional f} , on the set K, N S;.
Since Ae; < 0 on Q, u + se; € Ky, for all s > 0. Let us prove that

lim fh (0 + se) = —oc. (4.7)
§—00



228 R. Molle, D. Passaseo / Variational problems with pointwise constraints on the derivatives

In fact condition (3.7) implies

1 A
Jra(@+ seq) < —/\D(ﬂ—i— 361)|2dac — —/(a+ sel)Qda: +
2Ja 2 Jq

/c(a-l— ser)Tdx + /ah dx + s/helda: +k <
Q Q Q

A A
7132 — 582+/€25+k3 Vs >0,

where k1, ko and k3 are suitable positive numbers, which do not depend on s. Hence (4.7)
follows since A > A;.

Let us set
di = min{f, 4(v) | v € P}; (4.8)

(4.5) implies fp4(u) < di; (4.7) allows us to choose s such that, if we put v = u + Sey,
then

frp (W) < fog(a). (4.9)
Now set
do = sup fry(T+ sep). (4.10)
s€[0,3]

Notice that dp > dy. In fact [veidz >t by (4.9) and [ ue;dz <t by (4.5) (since u is a
minimum point for f,, on S;); hence there exists 5 €]0, 5[ such that [, (u + 5e;)e;dz = ¢.

Let us prove that there exists a lower critical value ¢ € [dy, do] for the functional fj .

Arguing by contradiction, assume that [d;, ds] does not contain any lower critical value.
Taking into account the Palais-Smale type condition given by Lemma 4.3, it follows that,
for all € > 0 small enough, the sublevel f,‘f;f is a deformation retract of f,‘ffw (see, for
example, [5, 6, 7, 9, 12]). Then, if we choose € > 0 small enough in such a way that

Jnw(@) < di — €, we get a contradiction. In fact f,‘ilw_s contains % and v, but does not

contain any continuous path connecting this two points, because f,‘f;ﬁ N P, = (. On the

contrary f,ffw contains the segment {@ + se; | s € [0,5]}. Therefore f,‘f}w_‘g cannot be a

deformation retract of f;fi/,, which is a contradiction.

Summarizing, there exist the local minimum point @ and the lower critical level ¢ such
that fny(@) < di < c. This implies the existence of two distinct lower critical points for
[, hence two distinct solutions for Py(h + Te;) for all 7 > 7. O

Let us remark that, if we take away the assumption (3.7) with A > ); in Theorem 4.1, it
is not possible, in general, to describe an analogous “folding type” behaviour for problem
Py(h). For example, if g(x,t) = At with A < Ay, then it is easily seen that problem Py (h)
has exactly one solution for every h in L?(Q) and ¢ in Hj(Q) (see [10]). When g has such
an asymptotic growth, the following existence result holds.
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Proposition 4.4. Let g satisfy condition (2.2) and assume in addition that there exist
co € L () and X' < Ay such that, for almost all x € €,

!

G(z,t) < co(z) + %tQ fort > 0.

Then problem Py(h) has at least one solution for all h € L*(Q) and ¢ € H} ().

Proof. We have only to show that the sublevels of the functional f,, are bounded in
L*(Q); in this case, in fact, one solution of Py(h) can be found minimizing fp .

For all u € Ky, we have:
frp(W) = fop(@®) + fay(—u) >
1 N
—/|Du+\2dx — —/(u+)2dac — /CQ($)d$+/hu+dl‘+
2/ 2 Ja Q Q
1
—/|Du‘\2dx - /G(:r, —u”)dr — /hu_dx >
2Jq Q Q
1 N +12 + 1 -2 c
—[1-— |\Du™|“dz + [ hudx + < [ |Du™|“dz — ¢
2 A/ Ja Q 2/a

for a suitable constant ¢ independent of u (because v~ < 1~ and (2.2) holds). It follows
that the sublevels of fj,, are bounded in Hg(Q2). Thus f,, has at least one minimum
point (since it is weakly lower semicontinuous), which gives us a solution of Py (h). O

5. Reduction to a finite dimentional problem

In this section we show that, if condition (3.4) holds with A < Ay, then problem Py(h)
is equivalent to find the lower critical points of a suitable function defined in R. This
different approach allows us to specify the previous multiplicity results. In particular we
shall prove that in Theorem 4.1 we have 7, = 7.

Definition 5.1. Let v € H}(Q), h € L*(Q) and g satisfy conditions (2.2) and (3.4).
Taking into account Lemma 4.2, using the notations introduced in section 2, we can
consider the function Sy, : R = R U {400} defined by

Sh (t) = min fh«ﬂ/’ (U)

ueP;

(here we set min () = +00).

Lemma 5.2. Let ¢ € H}(Q), h € L*() and g satisfy conditions (2.2) and (3.4). Let
Sy be the function introduced in Definition 5.1. Then:

(i)  Sh is lower semicontinuous and D(S,) = [ [,veidz, +o0o];
(ii) ifu € Ky is a minimum point for fn,+1Ip, and if k € 0~ Sy(t), then key € 0~ fr4(u);
(iii) if condition (8.4) holds with A < Ay and ke, € 0~ fy 4 (u), then:

(a) u is a minimum point for fpy + Ip, with t = fQueld:v,

(b) k € 0~ Si(?).
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Proof. (i) The lower semicontinuity of S follows easily from Lemma 4.2 and the weakly
lower semicontinuity of fj .

To find D(S),) it suffices to remark that u > ¢ Vu € K, and that ¢ + te; € Ky Vt > 0.
(ii) It is a straightforward consequence of the definition of Sj,.

(iii) To prove (a) it suffices to remark that f, 4 + Ip; is convex if A < Xs.

To prove (b), let us remark that

A
Fulo) > fulw) + Fo(w)lo =l + llo — ulP = Sl —ull} Vo € HY().

Then, if A S )\2,

Fap(0) > fp(u) + k/ﬂ(v —u)erds — 2N (/Q(v _ u)eld:c)Q Vo € H(Q).

Taking into account (a), we obtain

A=\

Sp(t) > Sh(t) + k(t — 1) — (t—1? VteR,

which obviously implies (b). O
Notice that Lemma 5.2 shows in particular that, if condition (3.4) holds with A < Ao,
then problem Py (h) is equivalent to find lower critical points for Sj.

In this way we shall prove the following result.

Theorem 5.3. Let ¢ € Hy(Q), h € L*(Q) and g satisfy condition (2.2). Moreover
assume that (3.4) holds with A < Ay and (3.7) with A > ;.

Then there ezists T € R such that problem Py(h + Te;)

(i)  has no solution for T < T
(ii)  has at least one solution for T =T
(iii) has at least two solutions for all T > T.

To prove Theorem 5.3 we need some properties of the function Sj.

Lemma 5.4. Let ¢, h and g satisfy the same conditions as in Theorem 5.3 and, for
T E€R, set h=h+ 71e;. Let Sy be the function introduced in Definition 5.1. Then:

(1) Sw(t) + 224 is conver;

(ii) Sy is continuous on its domain and 0~ Sy(t) # 0 Vt > [ e dx;

Proof. (i) This assertion follows easily taking into account that the functional fj, ,(u) +

)‘_;‘1 ( fQueldx)Z is convex if condition (3.4) holds with A\ < \,.

(ii) It is a straightforward consequence of (i) and (i) of Lemma 5.2.
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(iii) It suffices to remark that

tlgnoo Thup( + ter) = —o0,

which holds if condition (3.7) is satisfied with A > \;, as it is proved in the proof of
Theorem 4.1. O

Proof of Theorem 5.3. Define

7 =inf{7 | Py(h + Te;) has a solution}
=inf{7 | S5,,., has a lower critical point}.

By Theorem 4.1, 7 > —oc and Py(h + Te;) has at least one solution, i.e. S, has at
least one lower critical point .

This means that

Shires (t) — §ﬁ+fe1 (?)

lim inf > 0;
t—1 t—1
hence, for every [ > 0, there exists ¢; >  such that
Sﬁ—l—fel (tl) - Sﬁ+7"e1 ({) > _l(tl - E) (51)

From (5.1) it follows that
S;H—’T'el (t_-) + l{ < Sf_H-’?_'el (tl) + ltl’

which is equivalent to
Shi(rrtyer (8) < Shy e (t)- (5.2)

Taking into account Lemma 5.4, from (5.2) we infer that Sy, (7., has at least two critical
points: a local minimum point ¢; < ¢; and (because of (iii) of Lemma 5.4) a local maximum
point to > t; (where, indeed, S} (t2) = 0). O

Remark 5.5. The results proved in this paper (in particular Theorems 4.1 and 5.3) point
out a “folding type phenomenon” for the solvability of problem Py (h): the set of the pairs
(¢, h) such that Py(h) has solutions is a region which can be seen as the epigraphic of a
suitable function with values in {te; | t € R} and, for pairs (1, h) lying in the interior of

this region, there exist at least two distinct solutions of Py (k) provided lim;_, @ > AL

This behaviour makes evident a surprising analogy with a well known result stated by
Ambrosetti and Prodi in [1], concerning semilinear elliptic equations of the form

Au+g(u)=h inQ, u=0 on 09,

where the nonlinear term ¢ satisfies a “jumping” condition involving the first eigenvalue
A1, namely

t t
t t— t

t——00 +oo



232 R. Molle, D. Passaseo / Variational problems with pointwise constraints on the derivatives

Comparing the sublevels of the corresponding functionals, one could see that, roughly
speaking, the presence of the obstacle ¢/ in our problem has the same role played in [1]
by the condition

lim < /\1.

g(t)
to—oc0

However, let us remark that, despite the evident analogy of these results, there is a deep
difference between our methods and the ones used in [1], since the latter are based on the

analysis of singularities that could not be applied in our problem.

Notice that an analogous “jumping type behaviour” was shown in [8, 11, 12, 13, 14, 15]
for some elliptic problems with obstacle on the function u, instead of its laplacian, i.e.
with constraints of the form

K,={u€ H;(Q) | u> ¢ ae. in Q}

in place of K.

On the contrary no “jumping type behaviour” arises if we consider unilateral pointwise
constraints on the first derivatives of u.
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