Boundary Homogenization for a Quasi-Linear Elliptic Problem with Dirichlet Boundary Conditions Posed on Small Inclusions Distributed on the Boundary

Mustapha El Jarroudi

Faculté des Sciences et Techniques de Tanger, Département de Mathématiques, B.P. 416, Tanger, Maroc. e-mail: eljar@fstt.ac.ma

Received January 15, 1998 Revised manuscript received February 24, 1999

On décrit le comportement asymptotique de la solution d'un problème elliptique quasi-linéaire posé dans un domaine de \mathbb{R}^n , $n \geq 3$ et comportant des conditions de Dirichlet homogènes sur de petites zones de diamètre inférieur à ε réparties sur la frontière de ce domaine, lorsque le paramètre ε tend vers 0. On utilise les méthodes d'épi-convergence pour décrire ce comportement limite.

We describe the asymptotic behaviour of the solution of a quasi-linear elliptic problem posed in a domain of \mathbb{R}^n , $n \geq 3$ and with homogeneous Dirichlet boundary conditions imposed on small zones of size less than ε distributed on the boundary of this domain when the parameter ε goes to 0. We use epi-convergence arguments in order to establish the limit behaviour.

1. Introduction

Let Ω be a smooth domain of \mathbb{R}^n , $n \geq 3$, the boundary $\partial \Omega$ of which is decomposed into the disjoint union $\Gamma_1 \cup \Gamma_2 \cup \Sigma$ of non empty sets. We suppose that Σ is smooth and we dispose on Σ $2n(\varepsilon)+1$ zones of size less than ε assuming that $2n(\varepsilon)+1$ is equivalent to $1/\varepsilon$ as ε goes to 0. We denote by T_ε^k the k-th zone for k in $\{-n(\varepsilon),...,n(\varepsilon)\}$, see figure 1.1 below. We define T_ε as the union $\bigcup_{k=-n(\varepsilon)}^{n(\varepsilon)} T_\varepsilon^k$ of the zones contained in Σ and we suppose that these zones never touch $\Gamma_1 \cup \Gamma_2$. Finally we define: $\Sigma_\varepsilon = \Sigma \setminus \overline{T_\varepsilon}$, see figure 1.1 below. For p in $]1, +\infty[$ we denote by $W^{1,p}(\Omega)$ the classical Sobolev space:

$$W^{1,p}(\Omega) = \left\{ u \in L^p(\Omega) \mid \frac{\partial u}{\partial x_i} \in L^p(\Omega), \, \forall i \in \{1, ..., n\} \right\}.$$

 $W^{1,p}(\Omega)$ is a Banach space when equipped with the norm:

$$||u||_{1,p}^p = \int_{\Omega} |u|^p dx + \int_{\Omega} |\nabla u|^p dx.$$

 $W^{1/q,p}(\Sigma)$ is the space consisting of the traces on Σ of the functions in $W^{1,p}(\Omega)$, where q is the conjugate exponent of p defined by $1 = \frac{1}{p} + \frac{1}{q}$ and $W^{-1/q,q}(\Sigma)$ is its dual space.

ISSN 0944-6532 / \$ 2.50 © Heldermann Verlag

We consider in Ω the following quasi-linear elliptic problem:

$$\begin{cases}
-\operatorname{div}\left(\left|\nabla u_{\varepsilon}\right|^{p-2}\nabla u_{\varepsilon}\right) &= f \text{ in } \Omega \\
u_{\varepsilon} &= 0 \text{ on } \Gamma_{1} \cup T_{\varepsilon} \\
\left|\nabla u_{\varepsilon}\right|^{p-2} \frac{\partial u_{\varepsilon}}{\partial n} &= 0 \text{ on } \Gamma_{2} \cup \Sigma_{\varepsilon},
\end{cases} (1.1)$$

where f is supposed to belong to $L^q(\Omega)$ and n is the outer normal to Ω .

Figure 1.1: The domain Ω and the zones.

If V_{ε} is the subspace of $W^{1,p}(\Omega)$ defined by:

$$V_{\varepsilon} = \left\{ u \in W^{1,p}(\Omega) \mid u = 0 \text{ on } \Gamma_1 \cup T_{\varepsilon} \right\}, \tag{1.2}$$

the minimization problem associated to (1.1) is:

$$\min_{u \in V_{\varepsilon}} \left\{ \int_{\Omega} |\nabla u|^{p} dx - p \int_{\Omega} f u dx \right\},\,$$

or:

$$\min_{u \in W^{1,p}(\Omega)} \left\{ F_{\varepsilon}(u) - p \int_{\Omega} f u dx \right\}, \tag{1.3}$$

where the functional F_{ε} is defined on $W^{1,p}(\Omega)$ by:

$$F_{\varepsilon}(u) = \begin{cases} \int_{\Omega} |\nabla u|^p dx & \text{if } u \in V_{\varepsilon} \\ +\infty & \text{otherwise.} \end{cases}$$
 (1.4)

By means of classical arguments we can prove the following:

Lemma 1.1.

- (i) There exists a unique solution u_{ε} of (1.3) in $W^{1,p}(\Omega)$, which is a weak solution of (1.1).
- (ii) The sequence $(u_{\varepsilon})_{\varepsilon}$ is bounded in $W^{1,p}(\Omega)$.

Proof. (i) The functional F_{ε} is convex, thanks to the convexity of V_{ε} , continuous for the strong topology of $W^{1,p}(\Omega)$, thanks to the trace theorems in $W^{1,p}(\Omega)$, hence lower semi-continuous for the weak topology of this space. F_{ε} is trivially coercive on $W^{1,p}(\Omega)$. Moreover F_{ε} is strictly convex. Hence (1.3) has a unique minimizer u_{ε} on $W^{1,p}(\Omega)$ which belongs to V_{ε} and satisfies:

$$\int_{\Omega} |\nabla u_{\varepsilon}|^{p-2} \nabla u_{\varepsilon}. \nabla v dx = p \int_{\Omega} f v dx, \qquad \forall v \in V_{\varepsilon},$$

hence (1.1) in a weak sense.

(ii) The estimates on u_{ε} are trivially deduced from (1.3) taking u_{ε} as a test function by means of Hölder's inequality.

The purpose of this work is to describe the asymptotic behaviour of the sequence $(u_{\varepsilon})_{\varepsilon}$ when the parameter ε goes to 0. The limit of this sequence will be obtained using epiconvergence arguments. For the description of this variational convergence well-fitted to the asymptotic analysis of minimization problems we refer to [1]. The present work follows the general description of limit obstacle or grid problems written by Dal Maso, De Giorgi and Longo in [6], [7], [9], [10], [8] and by Attouch and Picard in [2], [3], [4]. We will prove that $(F_{\varepsilon})_{\varepsilon}$ epi-converges in the weak topology of $W^{1,p}(\Omega)$ to F_o defined on $W^{1,p}(\Omega)$ by:

$$F_{o}(u) = \begin{cases} \int_{\Omega} |\nabla u|^{p} dx + \int_{\Sigma} a(x) |v_{|\Sigma}|^{p} (x) d\mu(x) & \text{if } u \in V_{o} \\ +\infty & \text{otherwise,} \end{cases}$$
(1.5)

where a is a nonnegative, lower semi-continuous and nonincreasing Borel measure, μ is a nonnegative Radon measure which belongs to $W^{-1/q,q}(\Sigma)$ and

$$V_o = \left\{ u \in W^{1,p}(\Omega) \mid u = 0 \text{ on } \Gamma_1 \right\}.$$

In the last part of this work we will discuss the example dealing with the ε -periodic distribution on the lateral boundary of a cylinder of identical strings.

2. Functional Framework

2.1. Capacities

The space $W^{1/q,p}(\Sigma)$ consists of the functions u in $L^p(\Sigma)$ satisfying:

$$\int_{\Sigma} \int_{\Sigma} \frac{|u(x) - u(y)|^p}{|x - y|^{n-2+p}} d\sigma(x) d\sigma(y) < +\infty.$$

This is a reflexive Banach space when equipped with the norm:

$$||u||_{o,p}^p = ||u||_{L^p(\Sigma)}^p + \int_{\Sigma} \int_{\Sigma} \frac{|u(x) - u(y)|^p}{|x - y|^{n-2+p}} d\sigma(x) d\sigma(y),$$

see [18]. One immediately verifies that if u belongs to $W^{1/q,p}(\Sigma)$ then $u^+ = \max(0,u)$ and |u| also belong to $W^{1/q,p}(\Sigma)$.

For every compact subset K of Σ we define its capacity as:

$$\operatorname{Cap}(K) = \inf \left\{ \|u\|_{o,p}^p \mid u \in C_c^o(\Sigma); u \ge 0 \text{ in } \Sigma; u \ge 1 \text{ in } K \right\}.$$

We can extend this definition to the case of every open subset ω of Σ by:

$$Cap(\omega) = \sup \{Cap(K) \mid K \text{ compact}; K \subset \omega\}$$

and finally to every subset A of Σ as:

$$Cap(A) = \inf \{ Cap(\omega) \mid \omega \text{ open}; A \subset \omega \}.$$

Thus defined, Cap is a Choquet capacity, as can be proved adapting the results of [14, Theorem 1.1] and [13, Lemma 3.4]. A property will be called "q-e true" (quasi everywhere true) if it is true except possibly on a set A satisfying $\operatorname{Cap}(A)=0$. A function u of $W^{1/q,p}(\Sigma)$ is said Cap-quasi-continuous if there exists a nonincreasing sequence $(\omega_n)_n$ of open subsets of Σ such that $\lim_{n\to+\infty}\operatorname{Cap}(\omega_n)=0$ and $u_{|(\Sigma\setminus\omega_n)}$ is continuous for every n. Lemma 2.10 of [2] implies that every u in $W^{1/q,p}(\Sigma)$ admits a unique Cap-quasi-continuous representant \widetilde{u} .

2.2. Integral representation of functionals

Let $O(\Sigma)$ (resp. $B(\Sigma)$) be the family of all open subsets of Σ (resp. the set of borelian subsets of Σ). We denote by **F** the family of functionals F from $W^{1/q,p}(\Sigma) \times O(\Sigma)$ into $[0, +\infty]$ satisfying (2.1), (2.2) and (2.3) with:

$$\forall \omega \in O(\Sigma) : u \mapsto F(u, \omega) \text{ is monotone and lower semi-continuous on } W^{1/q,p}(\Sigma),$$
 equipped with its strong topology, (2.1)

$$\forall u \in W^{1/q,p}(\Sigma) : \omega \mapsto F(u,\omega)$$
 is the restriction to $O(\Sigma)$ of some Borel measure, (2.2)

$$\forall u, v \in W^{1/q,p}(\Sigma), \forall \omega \in O(\Sigma), u_{|\omega} = v_{|\omega} \Rightarrow F(u,\omega) = F(v,\omega).$$
 (2.3)

We denote by \mathbf{F}_o the subfamily of \mathbf{F} consisting of the functionals F from $W^{1/q,p}(\Sigma) \times O(\Sigma)$ into $[0,+\infty]$ such that : $u \mapsto F(u,\omega)$ is monotone nonincreasing for every ω .

An integral representation theorem has been proved by Dal Maso [6], when the functionals F belonging to the class \mathbf{F}_o are defined from $W^{m,p}(\mathbb{R}^n) \times O(\mathbb{R}^n)$ into $[0, +\infty]$ for some m in \mathbb{N}^* . The following result can be proved in the same spirit, see [13].

Theorem 2.1. Let F be any element of \mathbf{F}_o . There exists a Borel function f from $\Sigma \times \mathbb{R}$ into $[0, +\infty]$, a nonnegative Radon measure μ in $W^{-1/q,q}(\Sigma)$ and a Borel nonnegative measure ν such that:

(i) For every u in $W^{1/q,p}(\Sigma)$, for every ω in $O(\Sigma)$:

$$F(u,\omega) = \int_{\omega} f(x,\widetilde{u}(x))d\mu(x) + \nu(\omega),$$

where \widetilde{u} is the quasi-continuous representant of u.

(ii) For every x in Σ , the function $t \mapsto f(x,t)$ is nonincreasing and lower semi-continuous on \mathbb{R} .

The measure μ is absolutely continuous with respect to the capacity Cap, in the sense that if Cap(B) is equal to 0, for some B in B(Σ), then μ (B) is also equal to 0, see [6, Part 2].

2.3. Compactness theorem

Let us introduce the following definition:

Definition 2.2. A family R of $B(\Sigma)$ is called rich if for every family $(B_t)_t$ of elements of $B(\Sigma)$ such that $\overline{B_s} \subset \stackrel{o}{B_t}$, $\forall s < t$, the set $E_t = \{t \in]0, 1[|B_t \notin R\}$ is at most countable.

Then one has:

Theorem 2.3. Let $(F_{\varepsilon})_{\varepsilon}$ be any family of functionals of \mathbf{F} , such that for every B in $B(\Sigma)$ there exists a bounded sequence $(t_{\varepsilon})_{\varepsilon}$ in $W^{1/q,p}(\Sigma)$ satisfying: $\sup_{\varepsilon} F_{\varepsilon}(t_{\varepsilon}, B) < +\infty$. Then there exists a subsequence $(F_{\varepsilon_k})_k$, a functional F in \mathbf{F} and a rich family R of $B(\Sigma)$, such that:

$$\forall u \in V_o, \ \forall B \in R : \underset{k \to +\infty}{\text{epi-lim}} \left\{ \int_{\Omega} |\nabla u|^p \, dx + F_{\varepsilon_k}(u_{|\Sigma}, B) \right\} = \int_{\Omega} |\nabla u|^p \, dx + F(u_{|\Sigma}, B),$$

where epi-lim denotes the epi-limit of the sequence of functionals, for the weak topology of $W^{1,p}(\Omega)$ restricted to V_o .

Proof. Let us define the functionals \widehat{F}^s and \widehat{F}^i on $V_o \times B(\Sigma)$ by:

$$||u||_{1,p}^{p} + \widehat{F}^{s}(u,B) = \inf \left\{ \limsup_{\varepsilon \to 0} \left\{ ||u_{\varepsilon}||_{1,p}^{p} + F_{\varepsilon}(u_{\varepsilon|\Sigma},B) \right\} \mid u_{\varepsilon} \xrightarrow{w - W^{1,p}} u \right\}$$

$$||u||_{1,p}^p + \widehat{F}^i(u,B) = \inf \left\{ \liminf_{\varepsilon \to 0} \left\{ ||u_{\varepsilon}||_{1,p}^p + F_{\varepsilon}(u_{\varepsilon|\Sigma},B) \right\} \mid u_{\varepsilon} \stackrel{w \to W^{1,p}}{\underset{\varepsilon \to 0}{\longrightarrow}} u \right\},$$

where the convergence of the sequence $(u_{\varepsilon})_{\varepsilon}$ takes place in the weak topology of $W^{1,p}(\Omega)$. It is easily seen that these functionals agree, in our case, by modifying u_{ε} near the boundary Γ_1 by means of cut-off functions. For every u in $W^{1/q,p}(\Sigma)$ we consider the convex set $K_u = \{v \in V_o \mid v_{|\Sigma} = u\}$ and the functional:

$$J_u(v) = \begin{cases} \int_{\Omega} |\nabla v|^p dx & \text{if } v \in K_u \\ +\infty & \text{otherwise.} \end{cases}$$

The problem $\min_{v \in V_o} J_u(v)$ has a unique solution r(u) which is the image of u through the continuous mapping r from $W^{1/q,p}(\Sigma)$ into V_o . One can then write:

$$||r(u)||_{1,p}^p + \widehat{F}^s(r(u), B) = \inf \left\{ \limsup_{\varepsilon \to 0} \left\{ ||u_{\varepsilon}||_{1,p}^p + F_{\varepsilon}(u_{\varepsilon|\Sigma}, B) \right\} \mid u_{\varepsilon} \stackrel{w \to W^{1,p}}{\underset{\varepsilon \to 0}{\longrightarrow}} r(u) \right\}$$

$$\|r(u)\|_{1,p}^p + \widehat{F}^i(r(u),B) = \inf\left\{ \liminf_{\varepsilon \to 0} \left\{ \|u_\varepsilon\|_{1,p}^p + F_\varepsilon(u_{\varepsilon|\Sigma},B) \right\} \mid u_\varepsilon \stackrel{w - W^{1,p}}{\underset{\varepsilon \to 0}{\longrightarrow}} r(u) \right\}$$

272 M. El Jarroudi / Boundary homogenization for a quasi-linear elliptic problem

and we define the functionals F^s and F^i on $W^{1/q,p}(\Sigma) \times B(\Sigma)$ by:

$$F^{s}(u, B) = \widehat{F}^{s}(r(u), B) ; F^{i}(u, B) = \widehat{F}^{i}(r(u), B).$$

Let us study the properties of these functionals.

Lemma 2.4.

- (i) For every ω in $O(\Sigma)$, $F^s(.,\omega)$ is nondecreasing (resp. nonincreasing) if F_{ε} is non-decreasing (resp. nonincreasing) for every ε .
- (ii) For every ω in $O(\Sigma)$, $F^s(.,\omega)$ is lower semi-continuous on $W^{1/q,p}(\Sigma)$.

Proof. (i) Choose ω in $O(\Sigma)$, u_1 and u_2 in $W^{1/q,p}(\Sigma)$ such that $u_1 \leq u_2$ almost everywhere on Σ . The maximum principle implies that : $r(u_1) \leq r(u_2)$ almost everywhere in Ω . We choose two sequences $(u_{1\varepsilon})_{\varepsilon}$ and $(u_{2\varepsilon})_{\varepsilon}$ converging to $r(u_1)$ and $r(u_2)$ respectively in the weak topology of $W^{1,p}(\Omega)$ and such that:

$$||r(u_i)||_{1,p}^p + \widehat{F}^s(r(u_i), \omega) = \limsup_{\varepsilon \to 0} \left\{ ||u_{i\varepsilon}||_{1,p}^p + F_\varepsilon(u_{i\varepsilon}, \omega) \right\}; \ i = 1, 2.$$

We then observe that the supremum $u_{1\varepsilon} \vee u_{2\varepsilon}$ (resp. the infimum $u_{1\varepsilon} \wedge u_{2\varepsilon}$) is such that the sequence $(u_{1\varepsilon} \vee u_{2\varepsilon})_{\varepsilon}$ (resp. $u_{1\varepsilon} \wedge u_{2\varepsilon}$) converges to $r(u_1) \vee r(u_2) = r(u_2)$ (resp. $r(u_1) \wedge r(u_2) = r(u_1)$) in the weak topology of $W^{1,p}(\Omega)$. Moreover because the norm is lower semi-continuous with respect to the weak topology of $W^{1,p}(\Omega)$ we get:

$$||r(u_2)||_{1,p}^p \leq \liminf_{\varepsilon \to 0} ||u_{1\varepsilon} \vee u_{2\varepsilon}||_{1,p}^p$$

We thus deduce:

$$F^{s}(u_{2}, \omega) \geq \limsup_{\varepsilon \to 0} \left\{ \|u_{2\varepsilon}\|_{1,p}^{p} + F_{\varepsilon}(u_{2\varepsilon}, \omega) \right\} - \liminf_{\varepsilon \to 0} \|u_{1\varepsilon} \vee u_{2\varepsilon}\|_{1,p}^{p}$$
$$\geq \limsup_{\varepsilon \to 0} \left\{ \|u_{2\varepsilon}\|_{1,p}^{p} - \|u_{1\varepsilon} \vee u_{2\varepsilon}\|_{1,p}^{p} + F_{\varepsilon}(u_{2\varepsilon}, \omega) \right\}.$$

Let us suppose that F_{ε} is nondecreasing for every ε . Then because of the property:

$$\forall u_1, \ u_2 \in W^{1,p}(\Omega): \ \|u_1 \vee u_2\|_{1,p}^p + \|u_1 \wedge u_2\|_{1,p}^p = \|u_1\|_{1,p}^p + \|u_2\|_{1,p}^p$$
 (2.4)

and since: $(u_{1\varepsilon} \wedge u_{2\varepsilon})_{|\Sigma} \leq u_{2\varepsilon|\Sigma}$, we get:

$$F^{s}(u_{2}, \omega) \geq \limsup_{\varepsilon \to 0} \left\{ \|u_{1\varepsilon} \wedge u_{2\varepsilon}\|_{1,p}^{p} - \|u_{1\varepsilon}\|_{1,p}^{p} + F_{\varepsilon}(u_{1\varepsilon} \wedge u_{2\varepsilon}, \omega) \right\}$$
$$\geq \|r(u_{1})\|_{1,p}^{p} + F^{s}(u_{1}, \omega) - \|r(u_{1})\|_{1,p}^{p} = F^{s}(u_{1}, \omega),$$

which implies that F^s is nondecreasing. The case where F_{ε} is nonincreasing for every ε in obtained in a similar way exchanging the roles of $u_{1\varepsilon} \wedge u_{2\varepsilon}$ and $u_{1\varepsilon} \vee u_{2\varepsilon}$.

(ii) Let $(u_n)_n$ be any sequence converging to u in the strong topology of $W^{1/q,p}(\Sigma)$. The sequence $(r(u_n))_n$ converges to r(u) in the strong topology of $W^{1,p}(\Omega)$. The functional: $u \mapsto ||r(u)||_{1,p}^p + \widehat{F}^s(r(u),\omega)$ is lower semi-continuous for the weak topology of $W^{1/q,p}(\Sigma)$ as an upper epi-limit of lower semi-continuous functionals (see [1]), hence is lower semi-continuous for the strong topology of $W^{1/q,p}(\Sigma)$. We thus deduce:

$$\liminf_{\varepsilon \to 0} \widehat{F}^s(r(u_n), \omega) \ge \widehat{F}^s(r(u), \omega) \Rightarrow \liminf_{\varepsilon \to 0} F^s(u_n, \omega) \ge F^s(u, \omega),$$

because of the definition of F^s .

Lemma 2.5. Let u be any element of $W^{1/q,p}(\Sigma)$, A and B be any elements of $O(\Sigma)$. Then:

$$F^s(u, A \cup B) \le F^s(u, A) + F^s(u, B).$$

Proof. There exists two sequences $(u_{1\varepsilon})_{\varepsilon}$ and $(u_{2\varepsilon})_{\varepsilon}$ converging to u in the weak topology of $W^{1,p}(\Omega)$ such that:

$$||u||_{1,p}^p + F^s(u,A) = \limsup_{\varepsilon \to 0} \left\{ ||u_{1\varepsilon}||_{1,p}^p + F_\varepsilon(u_{1\varepsilon},A) \right\}$$
$$||u||_{1,p}^p + \widehat{F}^i(u,B) = \liminf_{\varepsilon \to 0} \left\{ ||u_{2\varepsilon}||_{1,p}^p + F_\varepsilon(u_{2\varepsilon},B) \right\}.$$

Suppose that F_{ε} is nonincreasing on $W^{1,p}(\Omega)$ and define: $u_{\varepsilon} = u_{1\varepsilon} \vee u_{2\varepsilon}$. We obtain using (2.4) and (2.2):

$$\begin{aligned} \|u\|_{1,p}^{p} + F^{s}(u, A \cup B) \\ &\leq \limsup_{\varepsilon \to 0} \left\{ \|u_{\varepsilon}\|_{1,p}^{p} + F_{\varepsilon}(u_{\varepsilon}, A \cup B) \right\} \\ &\leq \limsup_{\varepsilon \to 0} \left\{ \|u_{1\varepsilon}\|_{1,p}^{p} + \|u_{2\varepsilon}\|_{1,p}^{p} - \|u_{1\varepsilon} \wedge u_{2\varepsilon}\|_{1,p}^{p} + F_{\varepsilon}(u_{1\varepsilon}, A) + F_{\varepsilon}(u_{2\varepsilon}, B) \right\} \\ &\leq \limsup_{\varepsilon \to 0} \left\{ \|u_{1\varepsilon}\|_{1,p}^{p} + F_{\varepsilon}(u_{1\varepsilon}, A) \right\} \\ &+ \limsup_{\varepsilon \to 0} \left\{ \|u_{2\varepsilon}\|_{1,p}^{p} + F_{\varepsilon}(u_{2\varepsilon}, B) \right\} + \limsup_{\varepsilon \to 0} \left\{ - \|u_{1\varepsilon} \wedge u_{2\varepsilon}\|_{1,p}^{p} \right\} \\ &\leq \|u\|_{1,p}^{p} + F^{s}(u, A) + \|u\|_{1,p}^{p} + F^{s}(u, B) + \limsup_{\varepsilon \to 0} \left\{ - \|u_{1\varepsilon} \wedge u_{2\varepsilon}\|_{1,p}^{p} \right\} \\ &\leq \|u\|_{1,p}^{p} + F^{s}(u, A) + F^{s}(u, B), \end{aligned}$$

since: $\limsup_{\varepsilon \to 0} \left\{ -\|u_{1\varepsilon} \wedge u_{2\varepsilon}\|_{1,p}^p \right\} = -\lim\inf_{\varepsilon \to 0} \|u_{1\varepsilon} \wedge u_{2\varepsilon}\|_{1,p}^p \le -\|u\|_{1,p}^p$. This proves the result in this case. If F_{ε} is nonincreasing we use $u_{1\varepsilon} \wedge u_{2\varepsilon}$ instead of $u_{1\varepsilon} \vee u_{2\varepsilon}$.

Lemma 2.6.

(i) Let u be any element of $W^{1/q,p}(\Sigma)$, A and B be any elements of $O(\Sigma)$ such that $A \cap B = \emptyset$, A' and B' be any elements of $O(\Sigma)$ such that $\overline{A'} \subset A$, $\overline{B'} \subset B$. Then:

$$F^{i}(u, A \cup B) \ge F^{i}(u, A') + F^{i}(u, B').$$

274 M. El Jarroudi / Boundary homogenization for a quasi-linear elliptic problem

(ii) For every u and v in $W^{1/q,p}(\Sigma)$ and every ω in $O(\Sigma)$ such that $u_{|\omega}=v_{|\omega}$ one has:

$$\sup_{\underline{\omega'}\subset\omega}F^i(v,\omega')\leq F^i(u,\omega).$$

Proof. (i) Let σ be any element of $O(\Sigma)$ and $\Omega_{\sigma} \subset \Omega$ a smooth and open subset of \mathbb{R}^n such that:

$$\overline{\Omega_{\sigma}} \cap \Sigma = \sigma \; ; \; \overline{\Omega_{\sigma}} \cap \Gamma_1 \neq \emptyset.$$

We define:

$$V_{\sigma} = \{ u \in W^{1,p}(\Omega_{\sigma}) \mid u = 0 \text{ on } \overline{\Omega_{\sigma}} \cap \Gamma_1 \},$$

equipped with the norm: $||u||_{1,\sigma,p} = \left(\int_{\Omega_{\sigma}} |\nabla u|^p dx\right)^{1/p}$. For every u in $W^{1/q,p}(\Sigma)$, and σ and ω in $O(\Sigma)$ verifying: $\omega \subset \sigma$, we define $F^i(u,\Omega_{\sigma},\omega)$ as:

$$||u||_{1,\sigma,p}^p + F^i(u,\Omega_\sigma,\omega) = \inf \left\{ \liminf_{\varepsilon \to 0} \left\{ ||u_\varepsilon||_{1,\sigma,p}^p + F_\varepsilon(u_\varepsilon,\omega) \right\} \mid u_\varepsilon \stackrel{w \to V_\sigma}{\underset{\varepsilon \to 0}{\longrightarrow}} u \right\}.$$

Let us first prove that:

$$F^{i}(u,\Omega_{\sigma},\omega) \leq F^{i}(u,\Omega_{\Sigma},\omega)$$

with: $\Omega_{\Sigma} = \Omega$. Indeed, there exists $(u_{\varepsilon})_{\varepsilon}$ converging to u in the weak topology of $W^{1,p}(\Omega)$ such that:

$$\|u\|_{1,p}^p + F^i(u,\Omega_{\Sigma},\omega) = \liminf_{\varepsilon \to 0} \left\{ \|u_{\varepsilon}\|_{1,p}^p + F_{\varepsilon}(u_{\varepsilon},\omega) \right\}.$$

Thus, we obtain:

$$\lim_{\varepsilon \to 0} \inf \left\{ \|u_{\varepsilon}\|_{1,p}^{p} + F_{\varepsilon}(u_{\varepsilon}, \omega) \right\} \\
\geq \lim_{\varepsilon \to 0} \inf \left\{ \|u_{\varepsilon}\|_{1,\omega,p}^{p} + F_{\varepsilon}(u_{\varepsilon}, \omega) \right\} + \lim_{\varepsilon \to 0} \inf \int_{\Omega \setminus \overline{\Omega_{\omega}}} |\nabla u|^{p} dx \\
\geq \|u\|_{1,\omega,p}^{p} + F^{i}(u, \Omega_{\omega}, \omega) + \lim_{\varepsilon \to 0} \inf \int_{\Omega \setminus \overline{\Omega_{\omega}}} |\nabla u|^{p} dx \\
\geq \|u\|_{1,p}^{p} + F^{i}(u, \Omega_{\omega}, \omega).$$

Let us choose ω' and ω in $O(\Sigma)$ such that $\overline{\omega'} \subset \omega$ and prove that:

$$F^{i}(u, \Omega_{\Sigma}, \omega') \leq F^{i}(u, \Omega_{\omega}, \omega).$$

There exists a sequence $(u_{\varepsilon})_{\varepsilon}$ converging to u in the weak topology of $W^{1,p}(\Omega_{\omega})$ such that:

$$||u||_{1,\omega,p}^p + F^i(u,\Omega_{\Sigma},\omega) = \liminf_{\varepsilon \to 0} \left\{ ||u_{\varepsilon}||_{1,p}^p + F_{\varepsilon}(u_{\varepsilon},\omega) \right\}.$$

We choose $\Omega_{\omega'} \subset \Omega_{\omega}$ and θ in $C_c^{\infty}(\mathbb{R}^N)$ with values in [0,1] such that:

$$\theta = \begin{cases} 1 & \text{on } \overline{\Omega_{\omega'}} \\ 0 & \text{on } \Omega \setminus \overline{\Omega_{\omega}}, \end{cases}$$

and define: $v_{\varepsilon} = \theta u_{\varepsilon} + (1 - \theta)u$. Observing that:

$$\nabla v_{\varepsilon} = \theta \nabla u_{\varepsilon} + (u_{\varepsilon} - u) \nabla \theta + (1 - \theta) \nabla u,$$

we write:

$$\|\nabla v_{\varepsilon}\|_{(L^{p}(\Omega))^{3}} \leq \|\theta \nabla u_{\varepsilon} + (1-\theta)\nabla u\|_{(L^{p}(\Omega))^{3}} + \|(u_{\varepsilon} - u)\nabla \theta\|_{(L^{p}(\Omega))^{3}}.$$

Because: $v_{\varepsilon|\omega'} = u_{\varepsilon|\omega'}$, we have: $F_{\varepsilon}(v_{\varepsilon}, \omega') = F_{\varepsilon}(u_{\varepsilon}, \omega') \leq F_{\varepsilon}(v_{\varepsilon}, \omega)$, thanks to (2.2) and (2.3). Because v_{ε} belongs to V_{ε} and $(v_{\varepsilon})_{\varepsilon}$ converges to u in the weak topology of $W^{1,p}(\Omega)$ we infer:

$$\|u\|_{1,p}^{p} + F^{i}(u, \Omega_{\Sigma}, \omega') \leq \liminf_{\varepsilon \to 0} \left\{ \|v_{\varepsilon}\|_{1,p}^{p} + F_{\varepsilon}(v_{\varepsilon}, \omega') \right\}$$

$$\leq \liminf_{\varepsilon \to 0} \left\{ \|\theta \nabla u_{\varepsilon} + (1 - \theta) \nabla u\|_{(L^{p}(\Omega))^{3}}^{p} + F_{\varepsilon}(u_{\varepsilon}, \omega) \right\}$$

$$\leq \liminf_{\varepsilon \to 0} \left\{ \|u_{\varepsilon}\|_{1,\omega,p}^{p} + F_{\varepsilon}(u_{\varepsilon}, \omega) \right\} + \int_{\Omega \setminus \overline{\Omega_{\omega}}} |\nabla u|^{p} dx$$

$$\leq \|u\|_{1,p}^{p} + F^{i}(u, \Omega_{\omega}, \omega),$$

because $(\|(u_{\varepsilon} - u) \nabla \theta\|)_{\varepsilon}$ converges to 0.

Let now u be any element of $W^{1/q,p}(\Sigma)$, A and B be elements of $O(\Sigma)$ such that $A \cap B = \emptyset$. There exist A' and B' in $O(\Sigma)$ such that: $\overline{A'} \subset A$, $\overline{B'} \subset B$, a sequence $(u_{\varepsilon})_{\varepsilon}$ converging to u in the weak topology of $W^{1,p}(\Omega_{A \cup B})$ such that:

$$||u||_{1,A\cup B,p}^{p} + F^{i}(u,\Omega_{A\cup B},A\cup B)$$

$$= \lim_{\varepsilon \to 0} \inf \left\{ ||u_{\varepsilon}||_{1,A\cup B,p}^{p} + F_{\varepsilon}(u_{\varepsilon},A\cup B) \right\}$$

$$= \lim_{\varepsilon \to 0} \inf \left\{ ||u_{\varepsilon}||_{1,A,p}^{p} + ||u_{\varepsilon}||_{1,B,p}^{p} + F_{\varepsilon}(u_{\varepsilon},A) + F_{\varepsilon}(u_{\varepsilon},B) \right\}$$

$$\geq ||u||_{1,A,p}^{p} + F^{i}(u,\Omega_{A},A) + ||u||_{1,B,p}^{p} + F^{i}(u,\Omega_{B},B),$$

which implies:

$$F^{i}(u, \Omega_{A \cup B}, A \cup B) \ge F^{i}(u, \Omega_{A}, A) + F^{i}(u, \Omega_{B}, B)$$

and finally:

$$F^{i}(u, \Omega, A \cup B) \geq F^{i}(u, \Omega_{A \cup B}, A \cup B)$$

$$\geq F^{i}(u, \Omega_{A}, A) + F^{i}(u, \Omega_{B}, B)$$

$$\geq F^{i}(u, \Omega, A') + F^{i}(u, \Omega, B').$$

(ii) Let u, v be any elements of $W^{1/q,p}(\Sigma)$, ω be any element of $O(\Sigma)$ such that: $u_{|\omega} = v_{|\omega}$. We choose $\Omega_{\omega} \subset \Omega$ such that $\omega \subset \overline{\Omega_{\omega}} \cap \Sigma$. We denote u (resp. v) the extension of u (resp. v) in Ω such that: $u_{|\Omega_{\omega}} = v_{|\Omega_{\omega}}$. There exists a sequence $(u_{\varepsilon})_{\varepsilon}$ converging to u in the weak topology of V_{ϱ} such that:

$$||u||_{1,p}^p + F^i(u,\omega) = \liminf_{\varepsilon \to 0} \left\{ ||u_{\varepsilon}||_{1,p}^p + F_{\varepsilon}(u_{\varepsilon},\omega) \right\}.$$

We choose ω' in $O(\Sigma)$ such that $\overline{\omega'} \subset \omega$, $\overline{\Omega_{\omega'}} \subset \Omega_{\omega}$ and $\overline{\omega'} \subset \overline{\Omega_{\omega'}} \cap \Sigma$ in such a way that $\overline{\Omega_{\omega'}}$ increases to Ω_{ω} when $\overline{\omega'}$ increases to ω . We then choose a function θ in $C_c^{\infty}(\mathbb{R}^N)$ with values in [0,1] such that:

$$\theta = \begin{cases} 1 & \text{on } \overline{\Omega_{\omega'}} \\ 0 & \text{on } \Omega \setminus \Omega_{\omega} \end{cases}$$

and a sequence $(z_{\varepsilon})_{\varepsilon}$ converging to v in the strong topology of $W^{1,p}(\Omega)$, with z_{ε} in V_{ε} for every ε . The sequence $(v_{\varepsilon})_{\varepsilon}$ defined by: $v_{\varepsilon} = \theta u_{\varepsilon} + (1-\theta)z_{\varepsilon}$ converges to v in the weak topology of $W^{1,p}(\Omega)$ and: $\nabla v_{\varepsilon} = \theta \nabla u_{\varepsilon} + (u_{\varepsilon} - z_{\varepsilon})\nabla \theta + (1-\theta)\nabla z_{\varepsilon}$. For t in]0,1[we write, thanks to the convexity of $x \mapsto |x|^{p}$:

$$\int_{\Omega} |t\nabla v_{\varepsilon}|^{p} dx \leq t \int_{\Omega} |\theta\nabla u_{\varepsilon} + (1-\theta)\nabla z_{\varepsilon}|^{p} dx + (1-t) \int_{\Omega_{\omega}\setminus\overline{\Omega_{\omega'}}} \left| \frac{t}{1-t} (u_{\varepsilon} - z_{\varepsilon})\nabla\theta \right|^{p} dx
\leq t \int_{\Omega_{\omega}} |\nabla u_{\varepsilon}|^{p} dx + \int_{\Omega_{\omega}\setminus\overline{\Omega_{\omega'}}} |\nabla z_{\varepsilon}|^{p} dx
+ (1-t) \int_{\Omega_{\omega}\setminus\overline{\Omega_{\omega'}}} \left| \frac{t}{1-t} (u_{\varepsilon} - z_{\varepsilon})\nabla\theta \right|^{p} dx.$$

We observe that:

$$\lim_{\varepsilon \to 0} \int_{\Omega_{\omega} \setminus \overline{\Omega_{\omega'}}} \left| \frac{t}{1-t} (u_{\varepsilon} - z_{\varepsilon}) \nabla \theta \right|^p dx = \int_{\Omega_{\omega} \setminus \overline{\Omega_{\omega'}}} \left| \frac{t}{1-t} (u-v) \nabla \theta \right|^p dx = 0,$$

since: $u_{|\Omega_{\omega}} = v_{|\Omega_{\omega}}$. Thus:

$$\liminf_{\varepsilon \to 0} \left\{ \int_{\Omega} |t \nabla v_{\varepsilon}|^{p} dx + F_{\varepsilon}(v_{\varepsilon}, \omega') \right\} \leq \liminf_{\varepsilon \to 0} \left\{ \int_{\Omega_{\omega}} |\nabla v_{\varepsilon}|^{p} dx + F_{\varepsilon}(v_{\varepsilon}, \omega') \right\} \\
+ \int_{\Omega \setminus \overline{\Omega_{\omega'}}} |\nabla v|^{p} dx.$$

Furthermore:

$$||v||_{1,p}^p + F^i(v,\omega') \le \liminf_{\varepsilon \to 0} \left\{ ||v_{\varepsilon}||_{1,p}^p + F_{\varepsilon}(v_{\varepsilon},\omega') \right\}.$$

Letting t increase to 1 in the preceding inequalities we obtain:

$$||v||_{1,p}^{p} + F^{i}(v, \omega') \leq \liminf_{\varepsilon \to 0} \left\{ \int_{\Omega_{\omega}} |\nabla u_{\varepsilon}|^{p} dx + F_{\varepsilon}(u_{\varepsilon}, \omega) \right\} + \int_{\Omega \setminus \overline{\Omega_{\omega'}}} |\nabla v|^{p} dx$$

$$\leq \liminf_{\varepsilon \to 0} \left\{ \int_{\Omega} |\nabla u_{\varepsilon}|^{p} dx + F_{\varepsilon}(u_{\varepsilon}, \omega) \right\}$$

$$+ \limsup_{\varepsilon \to 0} \left\{ -\int_{\Omega \setminus \overline{\Omega_{\omega}}} |\nabla u_{\varepsilon}|^{p} dx \right\} + \int_{\Omega \setminus \overline{\Omega_{\omega'}}} |\nabla v|^{p} dx$$

$$\leq ||u||_{1,p}^{p} + F^{i}(u, \omega) - \int_{\Omega \setminus \overline{\Omega_{\omega}}} |\nabla u|^{p} dx + \int_{\Omega \setminus \overline{\Omega_{\omega'}}} |\nabla v|^{p} dx.$$

We thus deduce:

$$F^{i}(v, \omega') \leq F^{i}(u, \omega) + \int_{\Omega_{\omega} \setminus \overline{\Omega_{\omega'}}} |\nabla v|^{p} dx,$$

because: $\int_{\Omega_{\omega}} |\nabla v|^p dx = \int_{\Omega_{\omega}} |\nabla u|^p dx$. Finally we let $\overline{\omega'}$ increase to ω which implies that $\int_{\Omega_{\omega}\setminus\overline{\Omega_{\omega'}}} |\nabla u|^p dx$ decreases to 0 and we get:

$$\sup_{\overline{\omega'} \subset \omega} F^i(v, \omega') \le F^i(u, \omega).$$

In a second step we intend to build F and R. From [11] we deduce the existence of a subsequence $(\varepsilon_k)_k$ and a countable family D dense in $B(\Sigma)$ such that:

$$\forall u \in V_o, \ \forall B \in D : \underset{k \to +\infty}{\text{epi-lim}} \|u\|_{1,p}^p + F_{\varepsilon_k}(u,B)$$

exists in the weak topology of $W^{1,p}(\Omega)$. This implies that \widehat{F}^s and \widehat{F}^i coincide on $V_o \times D$ and then $F^s = F^i$ on $W^{1/q,p}(\Sigma) \times D$. Let us define F on $W^{1/q,p}(\Sigma) \times B(\Sigma)$ by:

$$F(u, B) = \sup_{\overline{A} \subset \mathring{B}} \widehat{F}^s(u, A) = \sup_{\overline{A} \subset \mathring{B}} \widehat{F}^i(u, A)$$

and on $V_o \times B(\Sigma)$ by:

$$F(u_{|\Sigma}, B) = \sup_{\overline{A} \subset \mathring{B}} \widehat{F}^s(u, A) = \sup_{\overline{A} \subset \mathring{B}} \widehat{F}^i(u, A).$$

F takes nonnegative values because F^s and F^i take nonnegative values. F is lower semi-continuous on V_o as the upper enveloppe of lower semi-continuous functionals on V_o . Moreover, there exists a positive δ , a bounded sequence $(t_{\varepsilon})_{\varepsilon}$ included in V_o such that:

$$\sup_{\varepsilon} F_{\varepsilon}(t_{\varepsilon}, B) < \delta, \qquad \forall B \in B(\Sigma).$$

Because there exists a subsequence $(t_{\varepsilon_k})_k$ converging to some t in the weak topology of V_o we get:

$$||t||_{1,p}^p + F^s(t,\omega) = \limsup_{k \to +\infty} \left\{ ||t_{\varepsilon_k}||_{1,p}^p + F_{\varepsilon_k}(t_{\varepsilon_k}, B) \right\} < +\infty \Rightarrow F^s(t, B) < +\infty,$$

which implies that F is non indentically equal to $+\infty$. From [4], Lemma 3.2, there exists a rich family R in $B(\Sigma)$ such that:

$$\forall u \in W^{1/q,p}(\Sigma), \ \forall B \in R: \ F(u,B) = F^s(u,B) = F^i(u,B),$$

hence:

$$\forall u \in V_o, \ \forall B \in R: \ \|u\|_{1,p}^p + F(u,B) = \operatorname{epi-lim}_{\varepsilon \to 0} \left\{ \|u\|_{1,p}^p + F_{\varepsilon_k}(u,B) \right\},$$

the epi-lim being taken for the weak topology of V_o . We then establish:

Lemma 2.7. The functional F above defined belongs to the class F.

Proof. For every ω in $O(\Sigma)$, the functional: $u \mapsto F(u, \omega)$ is lower semi-continuous on $W^{1/q,p}(\Sigma)$, since the functionals $u \mapsto F^s(u, \omega)$ and $u \mapsto F^i(u, \omega)$ are lower semi-continuous on $W^{1/q,p}(\Sigma)$. It is nondecreasing (resp. nonincreasing) on $W^{1/q,p}(\Sigma)$, since the functionals $u \mapsto F_{\varepsilon}(u, \omega)$ are nondecreasing (resp. nonincreasing) on $W^{1/q,p}(\Sigma)$, see Lemma 2.4. Let us prove that F satisfies (2.2). Let u be any element of $W^{1/q,p}(\Sigma)$, ω_1 and ω_2 be disjoints elements of $O(\Sigma)$. For every Borel set B verifying: $\overline{B} \subset \omega_1 \cup \omega_2$ we write: $B = (B \cap \omega_1) \cup (B \cap \omega_2)$ and $\overline{B} \cap \omega_i = \overline{B} \cap \omega_i$, i = 1, 2. From Lemma 2.5, we deduce:

$$F^{s}(u,B) \leq F^{s}(u,B \cap \omega_1) + F^{s}(u,B \cap \omega_2) \leq F(u,\omega_1) + F(u,\omega_2),$$

which implies:

$$\sup_{\overline{B}\subset\omega_1\cup\omega_2} F^s(u,B) \le F(u,\omega_1) + F(u,\omega_2) \Rightarrow F(u,\omega_1\cup\omega_2) \le F(u,\omega_1) + F(u,\omega_2).$$

Let $\overline{B_1} \subset \omega_1$, $\overline{B_2} \subset \omega_2$, B in $O(\Sigma)$ such that: $\overline{B_1} \cup \overline{B_2} \subset B \subset \overline{B} \subset \omega_1 \cup \omega_2$. One has: $B = (B \cap \omega_1) \cup (B \cap \omega_2)$ and $\overline{B_i} \subset B \cap \omega_i \subset \overline{B \cap \omega_i} \subset \omega_i$, i = 1, 2. Moreover $B \cap \omega_1$ and $B \cap \omega_2$ are disjoints. From Lemma 2.6, we deduce:

$$F(u, \omega_1 \cup \omega_2) \ge F^i(u, B) = F^i(u, (B \cap \omega_1) \cup (B \cap \omega_2))$$

$$\ge F^i(u, (B \cap \omega_1)) + F^i(u, (B \cap \omega_2))$$

$$\ge F^i(u, B_1) + F^i(u, B_2),$$

which implies:

$$F(u, \omega_1 \cup \omega_2) \ge \sup_{\overline{B_1} \subset \omega_1} F^i(u, B_1) + \sup_{\overline{B_2} \subset \omega_2} F^i(u, B_2) = F(u, \omega_1) + F(u, \omega_2).$$

Let us now verify the σ -additivity property of F. We take any nondecreasing sequence $(\omega_n)_n$ of open Borel subsets of Σ and denote $\omega = \bigcup_n \omega_n$. Because: $F(u, \omega_n) \leq F(u, \omega)$, for every n, we get: $\limsup_{n \to +\infty} F(u, \omega_n) \leq F(u, \omega)$. Borel-Lebesgue theorem implies that for every B such that $\overline{B} \subset \omega$ there exists some ω_{n_o} verifying: $\overline{B} \subset \omega_{n_o}$, hence:

$$F^{s}(u, B) \leq F^{s}(u, \omega_{n_o}) \leq \limsup_{n \to +\infty} F(u, \omega_n) \Rightarrow \sup_{\overline{B} \subset \omega} F^{s}(u, B) \leq \limsup_{n \to +\infty} F(u, \omega_n),$$

which finally implies:

$$F(u,\omega) = \lim_{n \to +\infty} F(u,\omega_n).$$

F verifies (2.3). Indeed let u, v be any elements of $W^{1/q,p}(\Sigma)$, ω be any element of $O(\Sigma)$ such that $u_{|\omega} = v_{|\omega}$. From Lemma 2.6 we deduce:

$$F(u,\omega) = \sup_{\overline{\omega'} \in \omega} F^i(u,\omega') \le F(v,\omega).$$

Exchanging the roles of u and v we get: $F(u, \omega) = F(v, \omega)$.

2.4. Limit problems

Let us define the functionals F^i_{ε} , i=1,2 on $W^{1/q,p}(\Sigma)\times O(\Sigma)$ by:

$$F_{\varepsilon}^{1}(u,\omega) = \begin{cases} 0 & \text{if } \widetilde{u} \geq 0 \text{ q.e. on } \omega \cap T_{\varepsilon} \\ +\infty & \text{otherwise;} \end{cases}$$

$$F_{\varepsilon}^{2}(u,\omega) = \begin{cases} 0 & \text{if } \widetilde{u} \leq 0 \text{ q.e. on } \omega \cap T_{\varepsilon} \\ +\infty & \text{otherwise.} \end{cases}$$

We immediately verify that F_{ε}^1 belongs to \mathbf{F}_o and F_{ε}^2 belongs to \mathbf{F} (see [8], Theorem 1.9, for the proof of the lower semi-continuity property for the obstacle functionals). Moreover:

$$F_{\varepsilon}^{1}(u,\omega) = F_{\varepsilon}^{1}(-u^{-},\omega)$$

$$\forall u \in W^{1/q,p}(\Sigma), \ \forall \omega \in O(\Sigma): \quad F_{\varepsilon}^{2}(u,\omega) = F_{\varepsilon}^{2}(u^{+},\omega)$$

$$F_{\varepsilon}^{1}(u,\omega) = F_{\varepsilon}^{2}(-u,\omega),$$

$$(2.5)$$

with
$$u^+ = \max(u, 0), u^- = -\min(0, u).$$

Proposition 2.8. There exists a subsequence $(\varepsilon_k)_k$ two functionals F^1 and F^2 in \mathbf{F} and a rich family $R \subset B(\Sigma)$ such that for every u in V_o and for every ω in $R \cap O(\Sigma)$ one has

(i)
$$F^2(u^+, \omega) = F^1(-u^+, \omega),$$

$$(ii) \quad \|u\|_{1,p}^p + F^1(-u^-, \omega) + F^2(u^+, \omega) = \operatorname{epi-lim}_{\varepsilon \to 0} \left\{ \|u\|_{1,p}^p + F_{\varepsilon_k}^1(u, \omega) + F_{\varepsilon_k}^2(u, \omega) \right\}.$$

Proof. From the compacity Theorem 2.3, we infer the existence of a nondecreasing functional F^1 and a nonincreasing functional F^2 in \mathbf{F} , of a subsequence $(\varepsilon_k)_k$ (we will omit the subscript k in the following) and of a rich family $R \subset B(\Sigma)$ such that:

$$\forall u \in V_o, \ \forall \omega \in R \cap O(\Sigma): \ \|u\|_{1,p}^p + F^i(u,\omega) = \operatorname{epi-lim}_{\varepsilon \to 0} \left\{ \|u\|_{1,p}^p + F^i_{\varepsilon}(u,\omega) \right\}, \ i = 1, 2,$$

where the epi-limit is taken for the weak topology of $W^{1,p}(\Omega)$.

(i) Let $(u_{\varepsilon})_{\varepsilon}$ be a sequence converging to u^+ in the weak topology of $W^{1,p}(\Omega)$ such that:

$$\left\| u^+ \right\|_{1,p}^p + F^2(u^+,\omega) = \lim_{\varepsilon \to 0} \left\{ \left\| u_\varepsilon \right\|_{1,p}^p + F_\varepsilon^2(u_\varepsilon,\omega) \right\}.$$

Because: $F_{\varepsilon}^{2}(u_{\varepsilon},\omega) = F_{\varepsilon}^{1}(-(u_{\varepsilon})^{+},\omega)$, we have:

$$\lim_{\varepsilon \to 0} \left\{ \|u_{\varepsilon}\|_{1,p}^{p} + F_{\varepsilon}^{1}(-(u_{\varepsilon})^{+}, \omega) \right\} \geq \|u^{+}\|_{1,p}^{p} + F^{1}(-u^{+}, \omega) \Rightarrow F^{1}(-u^{+}, \omega) \leq F^{2}(u^{+}, \omega).$$

The reverse inequality is proved in a similar way.

(ii) Because the upper epi-lim always exists, there exists a sequence $(u_{\varepsilon})_{\varepsilon}$ converging to u in the weak topology of V_o such that:

$$\inf \left\{ \liminf_{\varepsilon \to 0} \left\{ \|v_{\varepsilon}\|_{1,p}^{p} + F_{\varepsilon}^{1}(v_{\varepsilon}, \omega) + F_{\varepsilon}^{2}(v_{\varepsilon}, \omega) \right\} \mid v_{\varepsilon} \xrightarrow[\varepsilon \to 0]{W-V_{o}} u \right\}$$

$$= \liminf_{\varepsilon \to 0} \left\{ \|u_{\varepsilon}\|_{1,p}^{p} + F_{\varepsilon}^{1}(u_{\varepsilon}, \omega) + F_{\varepsilon}^{2}(u_{\varepsilon}, \omega) \right\}.$$

Thanks to the equality: $||u_{\varepsilon}||_{1,p}^p = ||(u_{\varepsilon})^+||_{1,p}^p + ||(u_{\varepsilon})^-||_{1,p}^p$, we obtain:

$$\lim_{\varepsilon \to 0} \inf \left\{ \|u_{\varepsilon}\|_{1,p}^{p} + F_{\varepsilon}^{1}(u_{\varepsilon}, \omega) + F_{\varepsilon}^{2}(u_{\varepsilon}, \omega) \right\} \\
\geq \lim_{\varepsilon \to 0} \inf \left\{ \|(u_{\varepsilon})^{-}\|_{1,p}^{p} + F_{\varepsilon}^{1}(-(u_{\varepsilon})^{-}, \omega) \right\} + \lim_{\varepsilon \to 0} \inf \left\{ \|(u_{\varepsilon})^{+}\|_{1,p}^{p} + F_{\varepsilon}^{2}((u_{\varepsilon})^{+}, \omega) \right\} \\
\geq \|u^{-}\|_{1,p}^{p} + F^{1}(-u^{-}, \omega) + \|u^{+}\|_{1,p}^{p} + F^{2}(u^{+}, \omega) \\
\geq \|u\|_{1,p}^{p} + F^{1}(-u^{-}, \omega) + F^{2}(u^{+}, \omega).$$

Conversely, let u be any element of V_o . There exists a sequence $(u_{\varepsilon})_{\varepsilon}$ weakly converging to u such that $((u_{\varepsilon})^+)_{\varepsilon}$ (resp. $((u_{\varepsilon})^-)_{\varepsilon}$) weakly converges to u^+ (resp. u^-) and:

$$\|u^{-}\|_{1,p}^{p} + F^{1}(-u^{-}, \omega) = \lim_{\varepsilon \to 0} \left\{ \|(u_{\varepsilon})^{-}\|_{1,p}^{p} + F_{\varepsilon}^{1}(-(u_{\varepsilon})^{-}, \omega) \right\}$$
$$\|u^{+}\|_{1,p}^{p} + F^{2}(u^{+}, \omega) = \lim_{\varepsilon \to 0} \left\{ \|(u_{\varepsilon})^{+}\|_{1,p}^{p} + F_{\varepsilon}^{2}((u_{\varepsilon})^{+}, \omega) \right\}$$

hence:

$$\begin{aligned} \|u\|_{1,p}^{p} + F^{1}(-u^{-}, \omega) + F^{2}(u^{+}, \omega) \\ &= \|u^{-}\|_{1,p}^{p} + F^{1}(-u^{-}, \omega) + \|u^{+}\|_{1,p}^{p} + F^{2}(u^{+}, \omega) \\ &\geq \lim_{\varepsilon \to 0} \left\{ \|(u_{\varepsilon})^{-}\|_{1,p}^{p} + F_{\varepsilon}^{1}(-(u_{\varepsilon})^{-}, \omega) + \|(u_{\varepsilon})^{+}\|_{1,p}^{p} + F_{\varepsilon}^{2}((u_{\varepsilon})^{+}, \omega) \right\} \\ &\geq \limsup_{\varepsilon \to 0} \left\{ \|u_{\varepsilon}\|_{1,p}^{p} + F_{\varepsilon}^{1}(u_{\varepsilon}, \omega) + F_{\varepsilon}^{2}(u_{\varepsilon}, \omega) \right\} \\ &\geq \inf \left\{ \limsup_{\varepsilon \to 0} \left\{ \|v_{\varepsilon}\|_{1,p}^{p} + F_{\varepsilon}^{1}(v_{\varepsilon}, \omega) + F_{\varepsilon}^{2}(v_{\varepsilon}, \omega) \right\} \mid v_{\varepsilon} \xrightarrow[\varepsilon \to 0]{w-V_{o}} u \right\}. \end{aligned}$$

Proposition 2.9. There exists a Radon measure μ in $(W^{-1/q,q}(\Sigma))^+$ and a Borel function a from Σ into $[0, +\infty]$ lower semi-continuous and nonincreasing such that on $W^{1/q,p}(\Sigma) \times (R \cap O(\Sigma))$ we have:

$$F^{1}(-u^{-},\omega) = \int_{\omega} a(\sigma) \left| u^{-}(\sigma) \right|^{p} d\mu(\sigma) ; F^{2}(u^{+},\omega) = \int_{\omega} a(\sigma) \left| u^{+}(\sigma) \right|^{p} d\mu(\sigma).$$

Proof. Because F^1 belongs to \mathbf{F}_o Theorem 2.1 implies that:

$$F^1(u,\omega) = \int_{\omega} f(\sigma, \widetilde{u}(\sigma)) d\mu(\sigma) + \nu(\omega).$$

Then for every positive real λ one has:

$$\lambda^{p} \operatorname{epi-lim}_{\varepsilon \to 0} \left\{ \|v\|_{1,p}^{p} + F_{\varepsilon}^{1}(v,\omega) \right\} = \operatorname{epi-lim}_{\varepsilon \to 0} \left\{ \|\lambda v\|_{1,p}^{p} + F_{\varepsilon}^{1}(\lambda v,\omega) \right\},$$

since F_{ε}^1 only takes the values 0 or $+\infty$. Hence:

$$F^{1}(\lambda u, \omega) = \lambda^{p} F^{1}(u, \omega), \quad \text{on } W^{1/q,p}(\Sigma) \times (R \cap O(\Sigma)).$$

For every nonnegative t one has: $F^1(t, \omega) = 0$, since:

$$0 \le F^1(t,\omega) \le \liminf_{\varepsilon \to 0} \left\{ F_{\varepsilon}^1(t,\omega) \right\}.$$

This implies: $\int_{\omega} f(\sigma, t) d\mu(\sigma) + \nu(\omega) = 0$ and thus: $\nu(\omega) = 0$, since f takes nonnegative values and μ and ν are nonnegative measures. For every nonpositive t one has:

$$F^{1}(t,\omega) = (-t)^{p} F^{1}(-1,\omega),$$

from which we deduce:

$$\forall \omega \in R \cap O(\Sigma), \forall \sigma \in \omega : f(\sigma, \widetilde{u}^{-}(\sigma)) = (\widetilde{u}^{-}(\sigma))^{p} f(\sigma, -1) = a(\sigma) (\widetilde{u}^{-}(\sigma))^{p},$$

defining: $a(\sigma) := f(\sigma, -1)$. a is lower semi-continuous and nonincreasing (see Theorem 2.1). This implies:

$$F^1(-u^-,\omega) = \int_{\omega} a(\sigma) \left| \widetilde{u}^-(\sigma) \right|^p d\mu(\sigma) = \int_{\omega} a(\sigma) \left| u^-(\sigma) \right|^p d\mu(\sigma),$$

because $\mu(\widetilde{u} \neq u) = 0$. Because: $F^2(u^+, \omega) = F^1(-u^+, \omega)$, we get:

$$F^{2}(u^{+},\omega) = \int_{\omega} a(\sigma) \left| u^{+}(\sigma) \right|^{p} d\mu(\sigma).$$

Then we conclude with the following:

Theorem 2.10.

(i) The sequence $(F_{\varepsilon})_{\varepsilon}$ epi-converges in the weak topology of V_o to the functional F_o defined by

$$F_o(v) = \begin{cases} \int_{\Omega} |\nabla v|^p dx + \int_{\Sigma} a(\sigma) |v(\sigma)|^p d\mu(\sigma) & if \ v \in V_o \\ +\infty & otherwise. \end{cases}$$
 (2.6)

(ii) The sequence $(u_{\varepsilon})_{\varepsilon}$ converges in the weak topology of V_o to the solution of the minimization problem associated to this functional F_o , that is:

$$\min_{v \in V_o} \left\{ F_o(v) - p \int_{\Omega} f v dx \right\}.$$

Proof. We just observe that:

$$F_{\varepsilon}(v) = \begin{cases} \int_{\Omega} |\nabla v|^p dx + F_{\varepsilon}^1(v_{|\Sigma}, \Sigma) + F_{\varepsilon}^2(v_{|\Sigma}, \Sigma) & \text{if } v \in V_{\varepsilon} \\ +\infty & \text{otherwise.} \end{cases}$$

Then we apply the Propositions 2.8 and 2.9 and Theorem 1.10 of [1].

Remark 2.11. When we only consider the unilateral constraints: $u \geq 0$ on T_{ε} or $u \leq 0$ on T_{ε} , the additional term appearing in the limit problem is:

$$\int_{\Sigma} a(\sigma) \left| v^{+}(\sigma) \right|^{p} d\mu(\sigma) \text{ or } \int_{\Sigma} a(\sigma) \left| v^{-}(\sigma) \right|^{p} d\mu(\sigma).$$

3. Application: periodic distribution of strips on the lateral boundary of a cylinder

We here suppose that Ω is the cylinder:

$$\Omega = \left\{ x = (x_1, x_2, x_3) \in \mathbb{R}^3 \mid x_1^2 + x_2^2 < 1, x_3 \in]-H, H[\right\},\,$$

where H is positive. Γ_1 and Γ_2 are respectively the upper and lower faces of Ω and Σ is its lateral boundary. Let ε and r_{ε} be positive parameters with: $0 < r_{\varepsilon} < \varepsilon$. For every k in \mathbb{Z} , we denote by γ_{ε}^k the circle:

$$\gamma_{\varepsilon}^{k} = \left\{ x = (x_1, x_2, x_3) \in \mathbb{R}^3 \mid x_1^2 + x_2^2 = 1, x_3 = k\varepsilon \right\}.$$

Then T_{ε}^{k} is the strip of width $2r_{\varepsilon}$ centered on the circle γ_{ε}^{k} :

$$T_{\varepsilon}^{k} = \left\{ x = (x_1, x_2, x_3) \in \mathbb{R}^3 \mid x_1^2 + x_2^2 = 1, x_3 \in \left] - \frac{r_{\varepsilon}}{2} + k\varepsilon, \frac{r_{\varepsilon}}{2} + k\varepsilon \right[\right\}$$

see figure 3.1 below. We define T_{ε} as the union $\bigcup_{k=-n(\varepsilon)}^{n(\varepsilon)} T_{\varepsilon}^k$ of the strips contained in the lateral boundary Σ of Ω . Note that these strips are ε -periodically distributed on Σ and that the total number $2n(\varepsilon)+1$ of such strips is equivalent to H/ε for small values of ε . Finally we define: $\Sigma_{\varepsilon}=\Sigma\setminus T_{\varepsilon}$, see figure 3.1 below.

Because of the periodic repartition of the strips T_{ε}^k the measure $a(\sigma)d\mu(\sigma)$ which will appear in the limit problem (2.6) will be of the kind $Kd\sigma$ for some constant K in $[0, +\infty]$ and where $d\sigma$ is the Lebesgue measure on Σ . Our purpose is to identify the constant K.

Figure 3.1: The cylinder Ω and the strips T_{ε}^{k} .

3.1. Notations

Using the cylindrical coordinates: $x_1 = r\cos(\theta)$, $x_2 = r\sin(\theta)$, $x_3 = x_3$, with r in [0, 1[, θ in $[0, 2\pi]$ and x_3 in]-H, H[the prism Q associated to Ω is:

$$Q=[0,1[\times[0,2\pi]\times]{-}H,H[$$

and let us denote $D =]0, 1[\times] - H, H[$. For every positive R, B(R) (resp. $B^+(R)$) is the ball (resp. half-ball) of \mathbb{R}^2 defined by:

$$B(R) = \{(r, x_3) \mid r^2 + x_3^2 < R^2\} \text{ (resp. } B^+(R) = \{(r, x_3) \mid r^2 + x_3^2 < R^2, r > 0\} \}.$$

Let us introduce $\rho = 1 - r$ and for every k in $\{-n(\varepsilon), ..., n(\varepsilon)\}$ B_{ε}^{k} (resp. B_{ε}^{k+}) and $B_{r_{\varepsilon}}^{k}$ (resp. $B_{r_{\varepsilon}}^{k+}$) defined by:

$$B_{\varepsilon}^{k} = \left\{ (\rho, x_{3}) \mid (1 - \rho)^{2} + (x_{3} - k\varepsilon)^{2} < \varepsilon^{2}/4 \right\}, \text{ (resp. } B_{\varepsilon}^{k+} = B_{\varepsilon}^{k+} \cap \{\rho > 0\})$$

$$B_{r_{\varepsilon}}^{k} = \left\{ (\rho, x_{3}) \mid (1 - \rho)^{2} + (x_{3} - k\varepsilon)^{2} < r_{\varepsilon}^{2}/4 \right\}, \text{ (resp. } B_{r_{\varepsilon}}^{k+} = B_{r_{\varepsilon}}^{k+} \cap \{\rho > 0\})$$

and:

$$S_{\varepsilon}^{k} = \left\{ (\rho, \theta, x_3) \mid (\rho, x_3) \in B_{\varepsilon}^{k} ; \theta \in [0, 2\pi] \right\}, S_{\varepsilon}^{k+} = S_{\varepsilon}^{k} \cap \{\rho > 0\}$$

and $\partial S_{\varepsilon}^{k+} = \partial S_{\varepsilon}^{k} \cap \{\rho > 0\}$. If $T = \{0\} \times \left] - \frac{1}{2}, \frac{1}{2} \right[$ the strip T_{ε}^{k} can be written in cylindrical coordinates as:

$$T_{\varepsilon}^{k} = \{(0, \theta, x_3) \mid x_3 \in r_{\varepsilon}T + k\varepsilon ; \theta \in [0, 2\pi]\}.$$

3.2. Test-functions

Let w^{ε} be the solution of the following local problem written in cylindrical coordinates:

$$\begin{cases}
\operatorname{div}\left(\left|\nabla w^{\varepsilon}\right|^{p-2}\nabla w^{\varepsilon}\right) &= 0 & \operatorname{in} B(\varepsilon/2) \setminus r_{\varepsilon}T \\
w^{\varepsilon} &= 1 & \operatorname{on} r_{\varepsilon}T \\
w^{\varepsilon} &= 0 & \operatorname{on} \partial B(\varepsilon/2).
\end{cases} \tag{3.1}$$

Then we introduce the function w_{ε} deduced from the preceding function w^{ε} by means of a periodic process:

$$w_{\varepsilon}(r, x_3) = \begin{cases} w^{\varepsilon}(\rho, x_3 - k\varepsilon) & \text{in } B_{\varepsilon}^{k+} \setminus T_{\varepsilon}^{k} \\ 0 & \text{in } D \setminus \bigcup_{-n(\varepsilon)}^{n(\varepsilon)} \overline{B_{\varepsilon}^{k+}}. \end{cases}$$

Finally we define the test-function w_{ε}^{o} in Ω :

$$w_{\varepsilon}^{o}(x) = w_{\varepsilon}(\rho, x_3), \qquad (\rho, x_3) \in D.$$
 (3.2)

The properties of this test-function are summarized in the following:

Lemma 3.1.

(i) $\lim_{\varepsilon \to 0} \int_{\Omega} |\nabla w_{\varepsilon}^{o}|^{p} dx = ac \operatorname{meas}(\Sigma)$, where a belongs to $[0, +\infty]$ and is given by:

$$a = \begin{cases} \lim_{\varepsilon \to 0} \frac{(r_{\varepsilon})^{2-p}}{\varepsilon} & \text{if } p \neq 2\\ \lim_{\varepsilon \to 0} \frac{-1}{\varepsilon \ln(r_{\varepsilon})} & \text{if } p = 2 \end{cases}$$
 (3.3)

and c is the $W^{1,p}$ -capacity of T with respect to \mathbb{R}^2 given by:

$$c = \min_{w \in W_o^{1,p}(\mathbb{R}^2)} \left\{ \int_{\mathbb{R}^2} |\nabla w|^p dy \mid w = 1 \text{ on } T \right\}$$
 (3.4)

(ii) If a belongs to $[0, +\infty[$, the sequence $(w_{\varepsilon}^{o})_{\varepsilon}$ converges to 0 in the weak topology of $W^{1,p}(\Omega)$.

- (iii) If a belongs to $[0, +\infty[$:
 - (a) The sequence $\left(-\frac{1}{2}\sum_{k}\left(|\nabla w_{\varepsilon}|^{p-2}\frac{\partial w_{\varepsilon}}{\partial n}\right)_{|\partial B_{\varepsilon}^{k}}\delta_{\partial B_{\varepsilon}^{k}}\right)_{\varepsilon}$ converges to the measure equal to $\frac{ac}{2}\delta_{\{\rho=0\}\cap\overline{D}}$ in the strong topology of $W^{-1,q}(\widetilde{D})$, for every open subset \widetilde{D} of \mathbb{R}^{2} containing \overline{D} , where $\delta_{\partial B_{\varepsilon}^{k}}$ (resp. $\delta_{\{\rho=0\}\cap\overline{D}}$) is the Dirac measure on $\partial B_{\varepsilon}^{k}$ (resp. on $\{\rho=0\}\cap\overline{D}$):

$$\forall \varphi \in C^{\infty}(\overline{D}): \quad \left\langle \delta_{\partial B_{\varepsilon}^{k}}, \varphi \right\rangle = \int_{\partial B_{\varepsilon}^{k}} \varphi d\sigma; \quad \left\langle \delta_{\{\rho=0\} \cap \overline{D}}, \varphi \right\rangle = \int_{-H}^{H} \varphi(0, x_{3}) dx_{3}.$$

(b) The sequence $\left(-\frac{1}{2}\sum_{k}\left(|\nabla w_{\varepsilon}^{o}|^{p-2}\frac{\partial w_{\varepsilon}^{o}}{\partial n}\right)_{|\partial S_{\varepsilon}^{k}}\delta_{\partial S_{\varepsilon}^{k}}\right)_{\varepsilon}$ converges to the measure equal to $\frac{ac}{2}\delta_{\{\rho=0\}\cap\overline{Q}}$ in the strong topology of $W^{-1,q}(Q')$, for every open subset Q' of \mathbb{R}^{3} containing \overline{Q} , where $\delta_{\partial S_{\varepsilon}^{k}}$ (resp. $\delta_{\{\rho=0\}\cap\overline{Q}\}}$) is the Dirac measure on $\partial B_{\varepsilon}^{k}$ (resp. on $\{\rho=0\}\cap\overline{Q}\}$):

$$\forall \varphi \in C^{\infty}(\overline{Q}) : \quad \left\langle \delta_{\partial S_{\varepsilon}^{k}}, \varphi \right\rangle = \int_{\partial S_{\varepsilon}^{k}} \varphi d\sigma$$
$$\left\langle \delta_{\{\rho=0\} \cap \overline{Q}}, \varphi \right\rangle = \int_{0}^{2\pi} \int_{-H}^{H} \varphi(0, \theta, x_{3}) d\theta dx_{3}.$$

Proof. (i) We compute:

$$\int_{\Omega} |\nabla w_{\varepsilon}^{o}|^{p} dx = \int_{Q} |\nabla w_{\varepsilon}|^{p} (1 - \rho) d\rho d\theta dx_{3} = 2\pi \int_{D} |\nabla_{\rho, x_{3}} w_{\varepsilon}|^{p} (1 - \rho) d\rho dx_{3},$$

using the change of variables: $\rho = 1 - r$; $t = x_3 - k\varepsilon$, with $\nabla_{\rho,x_3} w_{\varepsilon} = \left(\frac{\partial w_{\varepsilon}}{\partial \rho}, \frac{\partial w_{\varepsilon}}{\partial x_3}\right)$ and then:

$$\int_{D} \left| \nabla_{\rho, x_{3}} w_{\varepsilon} \right|^{p} (1 - \rho) d\rho dx_{3} = \sum_{-n(\varepsilon)}^{n(\varepsilon)} \int_{B_{\varepsilon}^{k+}} \left| \nabla_{\rho, x_{3}} w_{\varepsilon} \right|^{p} (\rho, x_{3} - k\varepsilon) (1 - \rho) d\rho dx_{3}
\leq \frac{H}{\varepsilon} \int_{B(\varepsilon/2)} \left| \nabla w^{\varepsilon} \right|^{p} (1 - \rho) d\rho dt$$

and because of the symmetry of w_{ε} in $B(\varepsilon/2)$. Let us now consider three cases according to the values of the exponent p:

First case: 1

We compute:

$$\frac{1}{\varepsilon} \int_{B(\varepsilon/2)} \left| \nabla w^{\varepsilon} \right|^{p} d\rho dt = \frac{\left(r_{\varepsilon} \right)^{2-p}}{\varepsilon} \min_{w \in W_{o}^{1,p}(B(\varepsilon/2r_{\varepsilon}))} \left\{ \int_{B(\varepsilon/2r_{\varepsilon})} \left| \nabla w \right|^{p} dy \mid w = 1 \text{ on } T \right\},$$

which implies using the above definition (3.3) of a:

$$\lim_{\varepsilon \to 0} \frac{1}{\varepsilon} \int_{B(\varepsilon/2)} |\nabla w^{\varepsilon}|^{p} d\rho dt = \lim_{\varepsilon \to 0} \min_{w \in W_{o}^{1,p}(B(\varepsilon/2r_{\varepsilon}))} \left\{ \int_{B(\varepsilon/2r_{\varepsilon})} |\nabla w|^{p} dy \mid w = 1 \text{ on } T \right\}.$$

285

Because the sequence of convex sets $\{w \in W_o^{1,p}(B(\varepsilon/2r_\varepsilon)) \mid w=1 \text{ on } T\}$ Mosco-converges to $\{w \in W^{1,p}(\mathbb{R}^2) \mid w=1 \text{ on } T\}$, see [4], we deduce:

$$\lim_{\varepsilon \to 0} \frac{1}{\varepsilon} \int_{B(\varepsilon/2)} |\nabla w^{\varepsilon}|^{p} d\rho dt = ac,$$

where c is the $W^{1,p}$ -capacity of T with respect to \mathbb{R}^2 defined by (3.4). Furthermore, this implies:

$$\frac{1}{\varepsilon} \int_{B(\varepsilon/2)} \left| \nabla w^{\varepsilon} \right|^{p} \rho d\rho dt \leq \frac{1}{2} \int_{B(\varepsilon/2)} \left| \nabla w^{\varepsilon} \right|^{p} d\rho dt \xrightarrow[\varepsilon \to 0]{} 0,$$

because $\rho \leq \varepsilon/2$ and using the preceding argument. We get the following convergence:

$$\lim_{\varepsilon \to 0} \int_{Q} \left| \nabla_{\rho, x_{3}} w_{\varepsilon} \right|^{p} r dr d\theta dx_{3} = 2\pi Hac = \frac{ac}{2} \operatorname{meas}(\Sigma).$$

Second case: p = 2

The Appendix of [4] implies:

$$\frac{2\pi}{\ln(\varepsilon/r_{\varepsilon}) + \ln(2\pi)} \le \int_{B(\varepsilon/2)} |\nabla w^{\varepsilon}|^2 \, dr dx_3 \le \frac{2\pi}{\ln(\varepsilon/r_{\varepsilon})}$$

and then:

$$\lim_{\varepsilon \to 0} \frac{1}{\varepsilon} \int_{B(\varepsilon/2)} |\nabla w^{\varepsilon}|^2 dr dx_3 = 2a\pi,$$

from which we deduce:

$$\lim_{\varepsilon \to 0} \int_{\Omega} |\nabla w_{\varepsilon}^{o}|^{2} dx = 2\pi \lim_{\varepsilon \to 0} \int_{D} |\nabla w_{\varepsilon}|^{2} \rho d\rho dx_{3} = a\pi \operatorname{meas}(\Sigma).$$

Third case: p > 2

The test-functions w_{ε} are equal to 0 far from the boundary $r=1-\rho=1$. One can suppose that $1-\rho$ belongs to]1/2,1[hence:

$$2\pi \int_{D} |\nabla w_{\varepsilon}|^{2} (1 - \rho) d\rho dx_{3} \ge \pi \int_{D} |\nabla w_{\varepsilon}|^{2} d\rho dx_{3}.$$

Then we observe that:

$$\lim_{\varepsilon \to 0} \pi \int_{D} |\nabla w_{\varepsilon}|^{2} d\rho dx_{3} = \frac{c \operatorname{meas}(\Sigma)}{2} \lim_{\varepsilon \to 0} \frac{(r_{\varepsilon})^{2-p}}{\varepsilon} = +\infty,$$

because: 2 - p < 0, from which we get: $\lim_{\varepsilon \to 0} \int_{\Omega} |\nabla w_o^{\varepsilon}|^2 dx = +\infty$.

(ii) Let us first suppose that a belongs to $[0, +\infty[$ and $1 . The sequence <math>(\nabla w_o^{\varepsilon})_{\varepsilon}$ is bounded in $(L^p(\Omega))^3$, according to the first preceding assertion. The maximum principle,

286 M. El Jarroudi / Boundary homogenization for a quasi-linear elliptic problem see [12], implies that: $0 \le w_{\varepsilon}^o \le 1$, in Ω . Hence:

$$\int_{\Omega} |w_{\varepsilon}^{o}|^{p} dx = \int_{Q} |w_{\varepsilon}|^{p} r dr d\theta dx_{3} = \sum_{-n(\varepsilon)}^{n(\varepsilon)} \int_{S_{\varepsilon}^{k+}} |w_{\varepsilon}|^{p} (\rho, x_{3}) (1 - \rho) d\rho dx_{3}$$

$$\leq \sum_{-n(\varepsilon)}^{n(\varepsilon)} \operatorname{meas}(S_{\varepsilon}^{k+})$$

$$\leq C\varepsilon,$$

for some constant C, which proves that $(w_{\varepsilon}^{o})_{\varepsilon}$ converges to 0 in the weak topology of $W^{1,p}(\Omega)$.

(iii)(a) Observe first that $(|\nabla w_{\varepsilon}|^p d\rho dx_3)_{\varepsilon}$ converges to $ac\delta_{\{\rho=0\}\cap\overline{D}}$ in the sense of measures. Indeed, choose δ positive and any function φ in $C_0^{\infty}(\mathbb{R}^2)$. Green's formula implies:

$$-\int_{D} \operatorname{div} \left((|\nabla w_{\varepsilon}| + \delta)^{p-2} \nabla w_{\varepsilon} \right) \varphi(1 - w_{\varepsilon}) (1 - \rho) d\rho dx_{3}$$

$$= \int_{D} (|\nabla w_{\varepsilon}| + \delta)^{p-2} |\nabla w_{\varepsilon}|^{2} \varphi(1 - \rho) d\rho dx_{3}$$

$$+ \int_{D} (|\nabla w_{\varepsilon}| + \delta)^{p-2} \nabla w_{\varepsilon} \cdot \nabla (\varphi(1 - \rho)) (1 - w_{\varepsilon}) d\rho dx_{3}$$

$$- \sum_{-n(\varepsilon)}^{n(\varepsilon)} \frac{1}{2} \int_{\partial B_{\varepsilon}^{k}} (|\nabla w_{\varepsilon}| + \delta)^{p-2} \frac{\partial w_{\varepsilon}}{\partial n} \varphi d\sigma,$$

because w_{ε} is equal to 1 on T_{ε}^{k} and to 0 on $\partial B_{\varepsilon}^{k}$. We then let δ decrease to 0 and get:

$$0 = -\int_{D} \operatorname{div} \left(|\nabla w_{\varepsilon}|^{p-2} \nabla w_{\varepsilon} \right) \varphi(1 - w_{\varepsilon}) (1 - \rho) d\rho dx_{3},$$

because w_{ε} is independent of θ . Furthermore:

$$\lim_{\varepsilon \to 0} - \sum_{-n(\varepsilon)}^{n(\varepsilon)} \int_{\partial S_{\varepsilon}^{k}} |\nabla w_{\varepsilon}|^{p-2} \frac{\partial w_{\varepsilon}}{\partial n} \varphi d\sigma = \lim_{\varepsilon \to 0} \int_{Q} |\nabla w_{\varepsilon}|^{p} \varphi r dr d\theta dx_{3}$$
$$= \frac{ac}{2} \int_{0}^{2\pi} \int_{-H}^{H} \varphi(1, \theta, z) d\theta dx_{3},$$

which proves that $(|\nabla w_{\varepsilon}|^p r dr d\theta dx_3)_{\varepsilon}$ converges to $\frac{ac}{2} \delta_{\{\rho=0\} \cap \overline{D}}$ in the sense of measures. Then we apply a classical maximum principle argument see [5] if p=2 and Murat's result in [15] if 1 , in order to prove the announced convergence.

(iii)(b) Observe that for every φ in $C_0^{\infty}(\mathbb{R}^3)$ we have:

$$\left\langle \delta_{\partial S_{\varepsilon}^{k}},\varphi\right\rangle =\int_{0}^{2\pi}\int_{\partial B_{\varepsilon}^{k}}\varphi d\theta d\sigma.$$

Hence, one can write $\delta_{\partial S_{\varepsilon}^k}$ as the tensorial product $\delta_{\partial B_{\varepsilon}^k} \otimes d\theta$. From the preceding computations we infer:

$$-\frac{1}{2} \sum_{-n(\varepsilon)}^{n(\varepsilon)} \left(|\nabla w_{\varepsilon}^{o}|^{p-2} \frac{\partial w_{\varepsilon}^{o}}{\partial n} \right)_{|\partial S_{\varepsilon}^{k}} \delta_{\partial S_{\varepsilon}^{k}} \xrightarrow[\varepsilon \to 0]{} \frac{ac}{2} \delta_{\{\rho=0\} \cap \overline{D}} \otimes d\theta,$$

in the strong topology of $W^{-1,q}(Q')$ for every smooth open subset Q' containing \overline{Q} . But we finally observe that: $\delta_{\{\rho=0\}\cap\overline{D}}\otimes d\theta=\delta_{\{\rho=0\}\cap\overline{Q}}$.

3.3. Determination of the constant K

Proposition 3.2. Let us suppose that: 1 . One has <math>K = ac where a is given by (3.3) and c is given by (3.4). Moreover, when a is equal to $+\infty$ the limit problem becomes:

$$\min_{v \in W^{1,p}(\Omega)} \left\{ \int_{\Omega} |\nabla v|^p dx - p \int_{\Omega} f v dx \mid v \in V_o; \ v = 0 \ on \ \Sigma \right\}. \tag{3.5}$$

Proof. Let us first suppose that a is finite. We get:

$$K \operatorname{meas}(\Sigma) = \inf \left\{ \liminf_{\varepsilon \to 0} \int_{\Omega} |\nabla z_{\varepsilon}|^{p} dx \mid z_{\varepsilon} \overset{w - W^{1,p}(\Omega)}{\underset{\varepsilon \to 0}{\rightharpoonup}} 0 \; ; \; z_{\varepsilon} \in V_{\varepsilon} \right\}.$$

Let us choose $z_{\varepsilon} = w_{\varepsilon}^{o}$. Thanks to Lemma 3.1 the sequence $(z_{\varepsilon})_{\varepsilon}$ satisfies the required above properties. Moreover $(\int_{\Omega} |\nabla z_{\varepsilon}|^{p} dx)_{\varepsilon}$ converges to $ac \operatorname{meas}(\Sigma)$. This implies that: $K \leq ac$. Let us now choose any sequence $(z_{\varepsilon})_{\varepsilon}$ converging to 0 in the weak topology of V_{o} such that $z_{\varepsilon|T_{\varepsilon}} = 1$ and let us prove that:

$$\liminf_{\varepsilon \to 0} \int_{\Omega} \left| \nabla z_{\varepsilon} \right|^{p} dx \ge \liminf_{\varepsilon \to 0} \int_{\Omega} \left| \nabla w_{\varepsilon}^{o} \right|^{p} dx,$$

which will imply: $K \geq ac$. We write the subdifferential inequality:

$$\int_{\Omega} |\nabla z_{\varepsilon}|^{p} dx \ge \int_{\Omega} |\nabla w_{\varepsilon}^{o}|^{p} dx + p \int_{\Omega} |\nabla w_{\varepsilon}^{o}|^{p-2} \nabla w_{\varepsilon}^{o} \cdot \nabla (z_{\varepsilon} - w_{\varepsilon}^{o}) dx$$

and introduce: $\widetilde{\nabla} = \left(\frac{\partial}{\partial \rho}, \frac{1}{\rho} \frac{\partial}{\partial \theta}, \frac{\partial}{\partial x_3}\right)$..We observe that:

$$\widetilde{\nabla} w_{\varepsilon}^{o}.\widetilde{\nabla} z_{\varepsilon} = \nabla_{\rho,x_{3}} w_{\varepsilon}.\nabla_{\rho,x_{3}} z_{\varepsilon},$$

with $\nabla_{\rho,x_3} = \left(\frac{\partial}{\partial \rho}, \frac{\partial}{\partial x_3}\right)$ (we will simply write ∇ instead of ∇_{ρ,x_3}). Let:

$$Q_o = Q \cap \left\{ 0 < \rho < \frac{1}{2} \right\} = Q \cap \left\{ \frac{1}{2} < r < 1 \right\}.$$

Because w_{ε} is equal to 0 on $Q \setminus \overline{Q_o}$ we get:

$$\int_{\Omega} |\nabla w_{\varepsilon}^{o}|^{p-2} \nabla w_{\varepsilon}^{o} \cdot \nabla (z_{\varepsilon} - w_{\varepsilon}^{o}) dx = \int_{Q_{o}} |\nabla w_{\varepsilon}|^{p-2} \nabla w_{\varepsilon} \cdot \nabla (z_{\varepsilon} - w_{\varepsilon}) (1 - \rho) d\rho d\theta dx_{3}$$

$$= \int_{Q_{o}} |\nabla w_{\varepsilon}|^{p-2} \nabla w_{\varepsilon} \cdot \nabla ((z_{\varepsilon} - w_{\varepsilon}) (1 - \rho)) d\rho d\theta dx_{3}$$

$$+ \int_{Q_{o}} |\nabla w_{\varepsilon}|^{p-2} \frac{\partial w_{\varepsilon}}{\partial \rho} (z_{\varepsilon} - w_{\varepsilon}) d\rho d\theta dx_{3}.$$

Since:

$$\begin{split} \int_{Q_o} |\nabla w_{\varepsilon}|^{p-2} \nabla w_{\varepsilon} \cdot \nabla \left(\left(z_{\varepsilon} - w_{\varepsilon} \right) \left(1 - \rho \right) \right) d\rho d\theta dx_3 \\ &= \sum_{-n(\varepsilon)}^{n(\varepsilon)} \int_{S_{\varepsilon}^{k+}} |\nabla w_{\varepsilon}|^{p-2} \nabla w_{\varepsilon} \cdot \nabla \left(\left(z_{\varepsilon} - w_{\varepsilon} \right) \left(1 - \rho \right) \right) d\rho d\theta dx_3 \\ &= \sum_{-n(\varepsilon)}^{n(\varepsilon)} -n(\varepsilon) \int_{\partial S_{\varepsilon}^{k+}} |\nabla w_{\varepsilon}|^{p-2} \frac{\partial w_{\varepsilon}}{\partial n} \left(z_{\varepsilon} - w_{\varepsilon} \right) \left(1 - \rho \right) d\sigma \\ &- \sum_{-n(\varepsilon)}^{n(\varepsilon)} \int_{T_{\varepsilon}^{k}} |\nabla w_{\varepsilon}|^{p-2} \frac{\partial w_{\varepsilon}}{\partial n} \left(z_{\varepsilon} - w_{\varepsilon} \right) \left(1 - \rho \right) d\sigma, \end{split}$$

using Green's formula. Since $z_{\varepsilon} - w_{\varepsilon} = 0$ on T_{ε}^{k} the last sum is equal to 0. Moreover:

$$\sum_{-n(\varepsilon)}^{n(\varepsilon)} \int_{\partial S_{\varepsilon}^{k+}} |\nabla w_{\varepsilon}|^{p-2} \frac{\partial w_{\varepsilon}}{\partial n} (z_{\varepsilon} - w_{\varepsilon}) (1 - \rho) d\sigma$$

$$= -\sum_{-n(\varepsilon)}^{n(\varepsilon)} \left\langle \left(|\nabla w_{\varepsilon}|^{p-2} \frac{\partial w_{\varepsilon}}{\partial n} \right)_{|\partial S_{\varepsilon}^{k+}}, (z_{\varepsilon} - w_{\varepsilon}) (1 - \rho) \right\rangle,$$

where the last product is interpreted as a duality product between $W^{-1/q,q}(\partial S_{\varepsilon}^{k+})$ and $W^{1/q,p}(\partial S_{\varepsilon}^{k+})$. Let us extend by symmetry the term $\psi_{\varepsilon} := (z_{\varepsilon} - w_{\varepsilon}) (1 - \rho)$ and choose a smooth function χ in $C_0^{\infty}(\mathbb{R}^3)$ such that $\chi \equiv 1$ in a neighbourhood of $\rho = 0$ and $\chi \equiv 0$ on \widetilde{Q} where \widetilde{Q} is some smooth open subset containing $\overline{Q_o}$. We define: $\widetilde{\psi_{\varepsilon}} = \chi \psi_{\varepsilon}$ and observe that: $\widetilde{\psi_{\varepsilon}}|_{T_{\varepsilon}} = \psi_{\varepsilon}$ and the sequence $(\widetilde{\psi_{\varepsilon}})_{\varepsilon}$ converges to 0 in the weak topology of $W^{1,p}(\widetilde{Q})$. From Lemma 3.1 we deduce:

$$\lim_{\varepsilon \to 0} \sum_{-n(\varepsilon)}^{n(\varepsilon)} \left\langle \left(\left| \nabla w_{\varepsilon} \right|^{p-2} \frac{\partial w_{\varepsilon}}{\partial n} \right)_{\left| \partial S_{\varepsilon}^{k+} \right|}, \left(z_{\varepsilon} - w_{\varepsilon} \right) (1 - \rho) \right\rangle$$

$$= \lim_{\varepsilon \to 0} \frac{1}{2} \sum_{-n(\varepsilon)}^{n(\varepsilon)} \left\langle \left(\left| \nabla w_{\varepsilon} \right|^{p-2} \frac{\partial w_{\varepsilon}}{\partial n} \right)_{\left| \partial S_{\varepsilon}^{k+} \right|}, \widetilde{\psi_{\varepsilon}} \right\rangle = 0,$$

where the duality product is now taken between $W^{-1,q}(\widetilde{Q})$ and $W^{1,p}(\widetilde{Q})$. Hölder's inequality implies:

$$\left| \int_{Q_{o}} \left| \nabla w_{\varepsilon} \right|^{p-2} \frac{\partial w_{\varepsilon}}{\partial \rho} \left(z_{\varepsilon} - w_{\varepsilon} \right) d\rho d\theta dx_{3} \right| \leq 2^{1/p} \left\{ \int_{Q_{o}} \left| z_{\varepsilon} - w_{\varepsilon} \right|^{p} \left(1 - \rho \right) d\rho d\theta dx_{3} \right\}^{1/p}$$

$$\times \left\{ \int_{Q_{o}} \left| \nabla w_{\varepsilon} \right|^{p} d\rho d\theta dx_{3} \right\}^{1/q}$$

$$\leq 2^{1/p} \left\{ \int_{\Omega} \left| z_{\varepsilon} - w_{\varepsilon}^{o} \right|^{p} dx \right\}^{1/p}$$

$$\times \left\{ \int_{Q_{o}} \left| \nabla w_{\varepsilon} \right|^{p} d\rho d\theta dx_{3} \right\}^{1/q} .$$

Because $\lim_{\varepsilon \to 0} \int_{\Omega} |z_{\varepsilon} - w_{\varepsilon}^{o}|^{p} dx = 0$ and $\lim_{\varepsilon \to 0} \int_{Q_{o}} |\nabla w_{\varepsilon}|^{p} d\rho d\theta dx_{3} = ac \operatorname{meas}(\Sigma)$ we infer:

$$\lim_{\varepsilon \to 0} \int_{Q_o} |\nabla w_{\varepsilon}|^{p-2} \frac{\partial w_{\varepsilon}}{\partial \rho} (z_{\varepsilon} - w_{\varepsilon}) d\rho d\theta dx_3 = 0.$$

Finally we get:

$$\liminf_{\varepsilon \to 0} \int_{\Omega} |\nabla v_{\varepsilon}|^{p} dx \ge \liminf_{\varepsilon \to 0} \int_{\Omega} |\nabla w_{\varepsilon}^{o}|^{p} dx = ac \operatorname{meas}(\Sigma),$$

which ends the proof of the assertion: K = ac.

Let us now suppose that a is equal to $+\infty$ and 1 .

We define:

$$r_{\varepsilon}(p) = \begin{cases} (C\varepsilon)^{1/(2-p)} & \text{if } 1$$

and observe that the present situation implies the existence of some positive constant m such that: $r_{\varepsilon} \geq mr_{\varepsilon}(p)$. Let $T_{m,\varepsilon}$ be the union of strips of size $mr_{\varepsilon}(p)$ included in Σ and $F_{m,\varepsilon}$ the functional defined by:

$$F_{m,\varepsilon}(v) = \begin{cases} \int_{\Omega} |\nabla v|^p dx - p \int_{\Omega} f v dx & \text{if } v \in V_{m,\varepsilon} \\ +\infty & \text{otherwise,} \end{cases}$$

where $V_{m,\varepsilon}$ consists of the functions of $W^{1,p}(\Omega)$ vanishing on Γ_1 and on the strips of size $mr_{\varepsilon}(p)$ included in Σ . For every v in V_o one has: $F_{\varepsilon}(v) \geq F_{m,\varepsilon}(v)$. Let $(v_{\varepsilon})_{\varepsilon}$ be any sequence converging to v in the weak topology of V_o and such that v_{ε} belongs to $V_{m,\varepsilon}$ for every ε . We deduce from the preceding step:

$$\liminf_{\varepsilon \to 0} F_{\varepsilon}(v_{\varepsilon}) \geq \liminf_{\varepsilon \to 0} F_{m,\varepsilon}(v_{\varepsilon}) \geq \int_{\Omega} \left| \nabla v \right|^p dx - p \int_{\Omega} f v dx + mc \int_{\Sigma} \left| v_{|\Sigma} \right|^p d\sigma.$$

If $v_{|\Sigma}$ is not equal to 0 almost everywhere on Σ we get taking the supremum with respect to m:

$$\liminf_{\varepsilon \to 0} F_{\varepsilon}(v_{\varepsilon}) \ge +\infty.$$

If $v_{|\Sigma}$ is equal to 0 almost everywhere on Σ we get taking the supremum with respect to m:

$$\liminf_{\varepsilon \to 0} F_{\varepsilon}(v_{\varepsilon}) = \int_{\Omega} |\nabla v|^{p} dx - p \int_{\Omega} f v dx.$$

We then conclude using Theorem 1.10 of [1].

Remark 3.3.

(i) When a is equal to 0 or $+\infty$ we easily prove:

$$\lim_{\varepsilon \to 0} \int_{\Omega} |\nabla u_{\varepsilon}|^{p} dx = \lim_{\varepsilon \to 0} \int_{\Omega} |\nabla u|^{p} dx.$$

This implies that $(u_{\varepsilon})_{\varepsilon}$ converges to u in the strong topology of $W^{1,p}(\Omega)$.

(ii) When p > 2 the asymptotic behaviour of the solution u_{ε} can describe that of a non-newtonian fluid contained in the cylinder Ω and which is kept fixed along the strips T_{ε}^k of size r_{ε} . In this case there is no critical value of r_{ε} since the energy of the local problems always increases to $+\infty$. We conjecture that K is equal to $+\infty$ in this case and that the limit problem is described by the functional given in (3.5).

References

- [1] H. Attouch: Variational Convergence for Functions and Operators, Pitman, London, 1984.
- [2] H. Attouch, C. Picard: Problèmes variationnels et théorie du potentiel non linéaire, Ann. Fac. Sci. Toulouse. 1 (1979) 89–136.
- [3] H. Attouch, C. Picard: Comportement limite de problèmes de transmission unilatéraux à travers des grilles de forme quelconque, Rend. Sem. Mat. Univ. Politec. Torino 45(1) (1987) 71–85.
- [4] H. Attouch, C. Picard: Variational inequalities with varying obstacles, J. Func. Analysis 50 (1983) 329–386.
- [5] D. Cioranescu, F. Murat: Un terme étrange venu d'ailleurs, Collège de France Seminar Nonlinear PDE, Research Notes in Maths. 60, Pitman, London (1982) 98–138.
- [6] G. Dal Maso: On the integral representation of certain local functionals, Ricerche Mat. 32 (1983) 85–113.
- [7] G. Dal Maso: An Introduction to Γ-convergence, Progress in Nonlinear Differential Equations and their Applications, Birkhäuser, Basel, 1993.
- [8] G. Dal Maso, P. Longo: Γ-limits of obstacles, Ann. Mat. Pura Appl. 128 (1981) 1–50.
- [9] E. De Giorgi: Convergence problems for functionals and operators, In: Proc. of the Inter. Meeting on Recent Methods in Nonlinear Analysis, Rome, 1978, De Giorgi et al. (eds.), Pitagora Editrice, Bologna, (1979) 131–188.
- [10] E. De Giorgi, G. Dal Maso, P. Longo: Γ-limiti di obstacoli, Rend. Accad. Naz. Lincei. 68 (1980) 481–487.

- [11] E. De Giorgi, T. Franzoni: Su un tipo di convergenza variazionale, Rend. Accad. Naz. Lincei. 58 (1975) 842–850.
- [12] J. I. Diaz: Nonlinear Partial Differential Equations and Free Boundaries, Vol. 1, Research Notes in Maths. 106, Pitman, London, 1989.
- [13] M. El Jarroudi: Homogénéisation par Épi-convergence de Quelques Problèmes de la Mécanique des Milieux Continus, Thèse de Doctorat, Université de Haute-Alsace, 1994.
- [14] J. Frehse: Capacity methods in the theory of partial differential equations, Jahresber. der Deutschen Math. Verein. 84 (1982) 1–44.
- [15] N. Labani: Thèse de 3ème cycle, Université Paris Sud Orsay, 1987.
- [16] J. L. Lions, E. Magenes: Problèmes aux Limites Non-Homogènes, Vol. 1, Dunod, Paris, 1968.
- [17] M. Lobo, M. E. Perez: Boundary homogenization of certain elliptic problems for cylindrical bodies, Bull. Sci. Math. 116 (1992) 399–426.
- [18] J. Necas: Les Méthodes Directes en Théorie des Équations Elliptiques, Masson, Paris, 1967.