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On décrit le comportement asymptotique de la solution d’un probleme elliptique quasi-linéaire posé dans
un domaine de R™, n > 3 et comportant des conditions de Dirichlet homogénes sur de petites zones de
diametre inférieur & e réparties sur la frontiere de ce domaine, lorsque le parametre ¢ tend vers 0. On
utilise les méthodes d’épi-convergence pour décrire ce comportement limite.

We describe the asymptotic behaviour of the solution of a quasi-linear elliptic problem posed in a domain
of R*, n > 3 and with homogeneous Dirichlet boundary conditions imposed on small zones of size less than
e distributed on the boundary of this domain when the parameter € goes to 0. We use epi-convergence
arguments in order to establish the limit behaviour.

1. Introduction

Let Q be a smooth domain of R*, n > 3, the boundary 02 of which is decomposed into
the disjoint union I'y U T'y U X of non empty sets. We suppose that ¥ is smooth and we
dispose on X 2n(e) + 1 zones of size less than € assuming that 2n(e) + 1 is equivalent to

1/€ as € goes to 0. We denote by T* the k-th zone for k in {—n(e), .., n(e)}, see figure 1.1
below. We define T, as the union UZS)_n(E)Tf of the zones contained in ¥ and we suppose

that these zones never touch I'; UTy. Finally we define: ¥, = X\ T, see figure 1.1 below.
For p in |1, +oo[ we denote by W?(Q) the classical Sobolev space:

WP (Q) = {u € 17(Q) | g“

2

€ LP(Q), Vi€ {1,...,n}}.

WP(Q) is a Banach space when equipped with the norm:

||u||§’,p=/|u\pd3:+/ Vul? da.
Q Q

W'/aP(3) is the space consisting of the traces on ¥ of the functions in W'P(2), where ¢
is the conjugate exponent of p defined by 1 = % + % and W~1/99(%) is its dual space.
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We consider in €2 the following quasi-linear elliptic problem:

—div (|[Vuf?Vu,) = f inQ

Us = 0 omn Fl U TE 1.1
o (1)
Vulf"— = 0 onTUZX%,,
on

where f is supposed to belong to L?(£2) and n is the outer normal to .
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Figure 1.1: The domain {2 and the zones.

If V, is the subspace of W1?(Q) defined by:
Vo={ueW"(Q)|lu=0onT;UT.}, (1.2)

the minimization problem associated to (1.1) is:

min{/ |Vul? dz —p/ fudx},
u€Vz 0 0

or:

min {Fs(u)— p /Q fudx}, (1.3)

ueW1p(Q)

where the functional F, is defined on W'?(2) by:

Fo(u) = Jo IVulPdz ifu eV, (1.4)
© B +o0 otherwise. '

By means of classical arguments we can prove the following:

Lemma 1.1.

(i)  There eists a unique solution u. of (1.3) in WHP(Q), which is a weak solution of
(1.1).

(i)  The sequence (u.). is bounded in W'P(Q).
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Proof. (i) The functional F. is convex, thanks to the convexity of V., continuous for
the strong topology of W1P(Q2), thanks to the trace theorems in W'P({2), hence lower
semi-continuous for the weak topology of this space. F. is trivially coercive on W?(Q).
Moreover F is strictly convex. Hence (1.3) has a unique minimizer u. on W'?(Q) which
belongs to V. and satisfies:

/ VP> Vu,. Vodz = p/ fuvdz, Yv € V,,
Q Q

hence (1.1) in a weak sense.

(ii) The estimates on u, are trivially deduced from (1.3) taking u. as a test function by
means of Holder’s inequality. O

The purpose of this work is to describe the asymptotic behaviour of the sequence (u.).
when the parameter € goes to 0. The limit of this sequence will be obtained using epi-
convergence arguments. For the description of this variational convergence well-fitted to
the asymptotic analysis of minimization problems we refer to [1]. The present work follows
the general description of limit obstacle or grid problems written by Dal Maso, De Giorgi
and Longo in [6], [7], [9], [10], [8] and by Attouch and Picard in [2], [3], [4]. We will prove
that (F.). epi-converges in the weak topology of W*(Q) to F, defined on W'?(Q) by:

Fo(u) = {fﬂ Vul dz + [ a(z) [vs]” (2)du(z) ifuel, (1.5)

+00 otherwise,

where ¢ is a nonnegative, lower semi-continuous and nonincreasing Borel measure, u is a
nonnegative Radon measure which belongs to W~/%4(%) and

Vo={ueW"(Q)|u=0o0nT:}.

In the last part of this work we will discuss the example dealing with the e-periodic
distribution on the lateral boundary of a cylinder of identical strings.

2. Functional Framework
2.1. Capacities
The space W'/9P(X) consists of the functions u in LP(X) satisfying:

// e o 2+z!pd0(x)d0(y)<+oo.

This is a reflexive Banach space when equipped with the norm:

p p |u Yl
lulloy = llullzees) e 2+p i do(2)do(y),

see [18]. One immediately verifies that if u belongs to W'/%?(%) then ut = max (0, u) and
lu| also belong to W/aP(3).
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For every compact subset K of ¥ we define its capacity as:

Cap(K) = inf {||u||£’p lueCo(D); u>0in % u>1in K} .

We can extend this definition to the case of every open subset w of X by:
Cap(w) = sup {Cap(K) | K compact; K C w}
and finally to every subset A of ¥ as:
Cap(A) = inf {Cap(w) | w open; A C w}.

Thus defined, Cap is a Choquet capacity, as can be proved adapting the results of [14,
Theorem 1.1] and [13, Lemma 3.4]. A property will be called “g—e true” (quasi everywhere
true) if it is true except possibly on a set A satisfying Cap(4) =0. A function u of
Wt/ap(¥) is said Cap-quasi-continuous if there exists a nonincreasing sequence (w,), of
open subsets of ¥ such that lim,_, ., Cap(w,) = 0 and us\,) is continuous for every n.
Lemma 2.10 of [2] implies that every u in W'/9P(X) admits a unique Cap-quasi-continuous
representant .

2.2. Integral representation of functionals

Let O(X) (resp. B(X)) be the family of all open subsets of ¥ (resp. the set of borelian
subsets of ). We denote by F the family of functionals F' from W/4?(%) x O(X) into
[0, +00] satisfying (2.1), (2.2) and (2.3) with:

Vw € O(X) : u — F(u,w) is monotone and lower semi-continuous on W1/4?(%), (2.1)
equipped with its strong topology,

Yu € WY (S) : w  F(u,w) is the restriction to O(X) of some Borel measure, (2.2)

Yu,v € WP (5), Yw € O(8), ujp = vy = F(u,w) = F(v,w). (2.3)

We denote by F, the subfamily of F consisting of the functionals F' from W/%P(3) x O(X)
into [0, +o0] such that : u +— F'(u,w) is monotone nonincreasing for every w.

An integral representation theorem has been proved by Dal Maso [6], when the functionals
F belonging to the class F, are defined from W™P(R™) x O(R") into [0, +oc] for some m
in N*. The following result can be proved in the same spirit, see [13].

Theorem 2.1. Let F' be any element of F,. There exists a Borel function f from ¥ x R
into [0,400], a nonnegative Radon measure u in W—/99(X) and a Borel nonnegative
measure v such that:

(i)  For every u in WY (Z), for every w in O(X):

F(u,w) = / f (@, (@) du(z) + v(w),

where u is the quasi-continuous representant of u.
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(ii))  For every x in X, the function t — f(x,t) is nonincreasing and lower semi-conti-
nuous on R.

The measure i is absolutely continuous with respect to the capacity Cap, in the sense that
if Cap(B) is equal to 0, for some B in B(X), then u(B) is also equal to 0, see [6, Part 2].

2.3. Compactness theorem

Let us introduce the following definition:

Definition 2.2. A family R of B(X) is called rich if for every family (B;); of elements of
B(X) such that B, Cét, Vs < t, the set E, = {t €]0,1[| B; ¢ R} is at most countable.

Then one has:

Theorem 2.3. Let (F.). be any family of functionals of ¥, such that for every B in B(X)
there exists a bounded sequence (t.). in WY9P(X) satisfying: sup, F.(t., B) < +00. Then
there exists a subsequence (F;, )k, a functional F in F and a rich family R of B(X), such
that :

k

Yu eV, VBER: epi—lim{/ \Vul’ dz + ng(um,B)} = / \Vul” dz + F (us, B),
Q Q

k—-+o00

where epi-lim denotes the epi-limit of the sequence of functionals, for the weak topology of
WP(Q) restricted to V,.

Proof. Let us define the functionals F* and F' on V, x B(X) by:

lull?y + F*(u, B) = in {lim sup {[[uellf, + F(us, B)} e "2 u}
e—0

e—0

ulle, + B, B) = inf {lim inf {[juc[17, + P (s, B)} [ X7 u),

e—0

where the convergence of the sequence (u,), takes place in the weak topology of W'P(Q).
It is easily seen that these functionals agree, in our case, by modifying u. near the bound-
ary I'; by means of cut-off functions. For every u in W'/9P(%) we consider the convex set
K, = {v eV, vy = u} and the functional:

+o00 otherwise.

Ju(v) = {fQ \Vo|Pdz ifve K,

The problem min,ey, J,(v) has a unique solution 7(u) which is the image of u through
the continuous mapping r from W1/%?(3) into V,. One can then write:

()|, + F*(r(u), B) = inf {lim_%tlp {Ihulf, + Fulues, B) w2 r(u)}

Ai . . . ’lU*Wl’p
Ir (@), + Fi(r(u), B) = inf {timinf { ucll?, + Fo(ugs, B) } [ ue® X7 r(u) }
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and we define the functionals F* and F* on W/%?(3) x B(X) by:

F*(u, B) = F*(r(u), B) ; F'(u, B) = F'(r(u), B).

Let us study the properties of these functionals.

Lemma 2.4.

(i)  For every w in O(X), F*(.,w) is nondecreasing (resp. nonincreasing) if F; is non-
decreasing (resp. nonincreasing) for every €.

(i)  For every w in O(X), F*(.,w) is lower semi-continuous on WP (%).

Proof. (i) Choose w in O(X), u; and uy in W/%P(X) such that u; < u, almost everywhere
on ¥. The maximum principle implies that : r(u;) < r(ug) almost everywhere in Q. We
choose two sequences (ui.)e and (ug). converging to r(u;) and r(ug) respectively in the
weak topology of W1P(Q) and such that:

| (ui)lIf, + F*(r(u;),w) = limsup {||uig||11)’p + F. (e, w)} pi=1,2.

e—0

We then observe that the supremum u;. V ug. (resp. the infimum wuq. A ug.) is such that
the sequence (ui. V ug:), (resp. wuis A ug)) converges to r(ui) V r(uz) = r(uz) (resp.
r(ui) A r(ug) = r(uy)) in the weak topology of W?(€Q). Moreover because the norm is
lower semi-continuous with respect to the weak topology of WP(Q) we get:

(o)l < i inf fluse V el

We thus deduce:

F*(u,w) > Timnsup { [ue?,, + Fu(uae, ) } — T inf [[use v el
e—=0 ’ €0 ’

> lim sup {||u25||11),p — e V sl + F (s, w)} .

e—0

Let us suppose that F. is nondecreasing for every €. Then because of the property:

Yuy, ug € WHP(Q) ¢ |juy V g}, + lJus A g

P, =l +lwl?,  (2.4)

and since: (u1e A “25)|z < Uge|z, We get:

F?*(ug,w) > limsup {||u15 ANugellf ) — llwrell? ), + Fe(ue A uae, w)}

e—0
> [r(u)llf, + F*(ur,w) = [[r(ud)|lf, = F*(u1,w),

which implies that F* is nondecreasing. The case where F, is nonincreasing for every &
in obtained in a similar way exchanging the roles of ui. A uo. and w1, V uo..
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(ii) Let (u,), be any sequence converging to u in the strong topology of W/4P(X). The
sequence (r(uy)), converges to r(u) in the strong topology of W#(Q). The functional:

u = [lr(w)]f, + F5(r(u),w) is lower semi-continuous for the weak topology of W/%(%)
as an upper epi-limit of lower semi-continuous functionals (see [1]), hence is lower semi-
continuous for the strong topology of W/%?(X). We thus deduce:

lim inf F*(r(u,), w) > F*(r(u),w) = liminf F*(u,, w) > F*(u,w),

e—0 e—0

because of the definition of F'*. O

Lemma 2.5. Let u be any element of W'Y/%P(Z), A and B be any elements of O().
Then:
F*(u, AU B) < F*(u, A) + F*(u, B).

Proof. There exists two sequences (u.), and (us.), converging to u in the weak topology
of W?(Q) such that:

ull}, + F*(u, A) = limj(}lp{nule:”]l),p + Fi(uge, A)}

lull, + F(u, B) = Tim inf { [[use|[?, + Fx(ue, B) }

Suppose that F. is nonincreasing on W'?(Q) and define: u, = ui. V us.. We obtain using
(2.4) and (2.2):

ullf , + F*(u, AU B)

< limsup { |u.[[7,, + F.(u, AU B) |
e—0 ’

< timmsup { use [, + uze 17, — lse A s, 4+ Fooe, 4) + P (uar, B) |
E—

< lim sup {||u15||’1’,p + F.(ue, A)}
e—=0
+limsup { u [}, + Fe(uze, B) | +limsup { = luse A usel?, }

e—0 e—0
< lull? + F* (1, 4) + ull, + F* (o B) + imsup { ~ [fune A e[, |
e—

< lullf, + F°(u, A) + F*(u, B),

- . . p . . . p p .
since: limsup,_,, {— llu1e A u25||1,p} = —liminfe o [Ju1e A ugell7, < —||ul[7, . This proves
the result in this case. If F. is nonincreasing we use ui. A ug. instead of ui. V ug.. ]

Lemma 2.6.
(i)  Let u be any element of WY9P(Z), A and B be any elements of O(X) such that
ANB =1, A" and B' be any elements of O(X) such that A' C A, B' C B. Then:

F'(u, AUB) > F'(u, A') + F'(u, B').
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(ii)  For every u and v in W9(X) and every w in O() such that uy, = v|, one has:

sup F' (v, ') < F'(u,w).

w'Cw

Proof. (i) Let o be any element of O(X) and €, C Q a smooth and open subset of R"
such that:

O, NY=0;0,NT #0.

We define: -
Vo={ueW"?(Q,) |u=0o0nQ,NI},

1/p
equipped with the norm: [luf|, . = (fﬂa |Vul’ dm) . For every u in W/9?(¥), and o
and w in O(X) verifying: w C o, we define F*(u,Q,,w) as:

2 i ‘m 3 w—Ves
||u||11),a,p + F*(u, €2, w) = inf {hrgri)lglf{“usnll),a,p + Fs(usaw)} | e g:\o u} )

Let us first prove that: . ,
F'(u, Q,w) < F'(u, O5,w),

with: Qy = Q. Indeed, there exists (u.). converging to u in the weak topology of W1P((2)
such that: .
lull, + F¥(u, Qx,0) = Timinf { lue|f, + F(u.,w)}

Thus, we obtain:
. . p
hgglglf{lluslll,p + F.(ue, w)}
> liminf{||u6||’1’w +F5(u6,w)} —i—liminf/ IVl do
e—0 WP e—=0 Q\m
>l + Filu, ) —|—1iminf/ IVl da
> e—0 Q\Q_w

> |ull?, + F* (1, Qu, w).

Let us choose w' and w in O(X) such that w’ C w and prove that:

F'(u,Q5,w") < F'(u, Qu,w).
There exists a sequence (u, ). converging to u in the weak topology of W'?(£,,) such that:
Lwp

lull .y + Fo(u, On,0) = Timinf { e, + Fu(ue,w)

We choose Qy C 2, and 6 in C>°(R") with values in [0, 1] such that:

0 — 1 on
10 onQ\Q,
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and define: v, = fu, + (1 — #)u. Observing that:
Vv, = 0Vu, + (u. —u)VO + (1 — §)Vu,
we write:

||VUE||(LP(Q))3 < [[0Vue + (1 - H)Vu||(LP(Q))3 + [[ (ue — U)V9||(Lp(n))3 :

Because: Ve, = Uelor, We have: F,(ve,w') = F(u.,w') < Fy(v.,w), thanks to (2.2) and
(2.3). Because v, belongs to V; and (v.), converges to u in the weak topology of W*(Q)
we infer:

el + F(u, 5, ) < limint {|lecll?, + Fo(vs, ) |

< lim] i(}1f{||0Vug + (1= 0)Vull?yye + Felte, w)}
< limi p } p
< hrsxl)lglf{HuEHl,w’p + F.(ue,w) ¢ + /Q\E |Vul” dz
< lullf, + F'(u, Qu, w),

because (||(u. —u) V8||), converges to 0.

Let now u be any element of W/7(3), A and B be elements of O(X) such that ANB = ().
There exist A" and B" in O(X) such that: A’ C A, B’ C B, a sequence (u.). converging
to u in the weak topology of W?(Q4,5) such that:

”U”I{,AUB,p + F'(u,Qaup, AU B)

= timinf { ucl]? o5, + Po(ue, AU B) |

Do+ Felue, A) + Fo(us, B) |
> lul] o, + F(t, 2, A) + [l g, + Fi(u, 2, B),

= lirEILiglf{”Us”If,A,p + [Jue

which implies: ‘ 4 .
F'(u,QauB, AU B) > F*(u,Qa, A) + F'(u, g, B)

and finally:

F'(u,Q, AU B) > F*(u,Qaup, AU B)
> Fi(anAaA) + FZ(“” QBaB)
> F'(u,Q,A") + F'(u,Q, B').

(ii) Let u, v be any elements of W'/%?(X), w be any element of O(X) such that: u, = vy,
We choose €, C Q such that w C Q,N Y. We denote v (resp. v) the extension of u (resp.
v) in Q such that: ujo, = vjo,. There exists a sequence (u.). converging to u in the weak
topology of V, such that:

el + F(w,w) = timint { ]2, + P (e, )}
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We choose w' in O(X) such that w' C w, Q, C Q, and w’' C Q N Y in such a way that
Q. increases to €, when w’ increases to w. We then choose a function 6 in C®°(RY) with

values in [0, 1] such that:
0 — 1 onQ,
10 onQ\Q,

and a sequence (z.). converging to v in the strong topology of W1?(Q), with z, in V, for
every £. The sequence (v.). defined by: v, = Ou, + (1 — 0)z. converges to v in the weak
topology of W?(Q) and: Vv, = 0Vu, + (v — 2.) VO + (1 —0)Vz.. For ¢ in ]0, 1| we write,
thanks to the convexity of z — |z|":

t p
[tV [P dx <t [ |0Vu. + (1 —0)Vz " dx + (1 —t) ——(ue — 2.) V0| dzx
Q Q Q\O, 1-1¢
gt/ |qu|de+/ V2P da
y SRt
t p
+(1—1) / ——(ue — 2:) V0| dz.

We observe that:

p

lim dr =0,
e—0 QN

——(ue — 2:)V0O

t
1-1¢

P t
da::/ ‘—(u—v)VG
o 1=t

since: g, = v|q,. Thus:

lim inf {/ V0, P da + Fs(vg,w')} < lim inf {/ Vol? dz + F. (v, w')}
Q Qo

e—0 e—0
+ / \Vol? dz.
Q.

Furthermore:
loll7, + Fi(v,w') < liminf {||oaf, + Fu(ve,w) }

Letting ¢ increase to 1 in the preceding inequalities we obtain:

[oll} , + F'(v,0) < liminf{/Q \Vu [P do + Fg(ug,w)} —|—/Q |VolP dx

e—0 \Qu’

< lim inf {/ VP de + F.(u, w)}
Q

e—0

+limsup{—/ |Vu,|’ dx} +/ \Vol? dzx
e—=0 N\ N\Q,,

ﬂwm+Wmm—/

Q

|VulP dx—l—/ |Voulf dx.
\m Q\Q,s
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We thus deduce:
Fi(v,w') < F¥(u,w) +/ |Vo|? dz,

0\

because: wi Vol doe = wi |Vu|P dz. Finally we let o' increase to w which implies that

wi\m |Vul? dz decreases to 0 and we get:
sup F'(v,w') < F'(u,w).
W' Cw

O

In a second step we intend to build F' and R. From [11] we deduce the existence of a
subsequence (gx), and a countable family D dense in B(X) such that:

Vu € V,, VB € D : epilim [ull?, + Fr, (u, B)

k—400

exists in the weak topology of WP (Q). This implies that F* and F' coincide on V, x D
and then F* = F' on W'/%?(X) x D. Let us define F on W/4?(%) x B(X) by:

F(u,B) = supF*(u,A) = supF'(u, A)
Acp AcB
and on V, x B(X) by:

F(us, B) = sup F*(u, A) = sup F'(u, A).
Ach Ach

F takes nonnegative values because F'* and F* take nonnegative values. F is lower semi-
continuous on V, as the upper enveloppe of lower semi-continuous functionals on V.
Moreover, there exists a positive 4, a bounded sequence (). included in V, such that:

supF.(t., B) < 0, VB € B(Y).

Because there exists a subsequence (., )r converging to some ¢ in the weak topology of
V, we get:

611, + F*(t,) = timsup {1, 7, + Fx, (1o, B) } < o0 = F*(t, B) < +oo,

—+0o0

which implies that F' is non indentically equal to +oco. From [4], Lemma 3.2, there exists
a rich family R in B(X) such that:

Yu € WY4?(S), VB € R: F(u, B) = F*(u, B) = F'(u, B),
hence:

Vu €V, VB € R: |lulfl, + F(u,B) = epi-lim{[lulf}, + F.,(u, B)}

e—0

the epi-lim being taken for the weak topology of V,. We then establish:
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Lemma 2.7. The functional F above defined belongs to the class F.

Proof. For every w in O(X), the functional: u — F(u,w) is lower semi-continuous on
W'/aP(3), since the functionals u — F*(u,w) and u — F*(u,w) are lower semi-continuous
on W/%?(%)). It is nondecreasing (resp. nonincreasing) on W'/%?(3), since the functionals
u + F.(u,w) are nondecreasing (resp. nonincreasing) on W1/9?(%), see Lemma 2.4. Let
us prove that F satisfies (2.2). Let u be any element of W/%?(¥), w; and w; be disjoints
elements of O(Y). For every Borel set B verifying: B C w; Uw, we write: B = (BN w;)U
(BNwsy) and BNw; = BNw;, i = 1,2. From Lemma 2.5, we deduce:

F*(u,B) < F*(u, BNw1) + F°(u, BNws) < F(u,w) + F(u,ws),
which implies:

sup F®(u,B) < F(u,w1) + F(u,ws) = F(u,w; Uws) < F(u,w;) + F(u,ws).

§Cw1 Uwa

Let By C wi, By C ws, B in Q(E) such that: By UB; C B C B C w; Uws. One has:
B=(BNw)U(BNuwy) and B; C BNw; C BNw; C w;, i = 1,2. Moreover BN w; and
B N wy are disjoints. From Lemma 2.6, we deduce:

F(uyn Usn) > Fi{u, B) = Fi(u, (B N1wr) U (B )
> F'(u, (BN w))+ F'(u, (BN w))
> F'(u, By) + F'(u, B),

which implies:

F(u,wy Uwy) > sup F'(u, Bi) + sup F'(u, By) = F(u,w1) + F(u,ws).
BiCw: ByCwa

Let us now verify the o-additivity property of F'. We take any nondecreasing sequence
(wn),, of open Borel subsets of ¥ and denote w = Upw,. Because: F'(u,w,) < F(u,w), for
every n, we get: limsup,_, . F(u,w,) < F(u,w). Borel-Lebesgue theorem implies that
for every B such that B C w there exists some w,, verifying: B C w,,, hence:

F*(u, B) < F*(u,wy,) < limsup F(u,w,) = supF*(u, B) < limsup F(u,w,),

n—+o00 BCw n—-+oo

which finally implies:
F(u,w) = lm F(u,wy).

n—-+00

F verifies (2.3). Indeed let u, v be any elements of W'/%P(X), w be any element of O(X)
such that u), = v|,. From Lemma 2.6 we deduce:

F(u,w) = sup F'(u,w') < F(v,w).

w'Cw

Exchanging the roles of v and v we get: F(u,w) = F(v,w).
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2.4. Limit problems
Let us define the functionals F?, i = 1,2 on W/%?(X) x O(X) by:

0 ifu>0q.e. onwnT,
(U'a w) = .
400 otherwise;

0 ifu<0q.e.onwnT,
(U'7 w) = .
+o00  otherwise.

We immediately verify that F! belongs to F, and F? belongs to F (see [8], Theorem 1.9,
for the proof of the lower semi-continuity property for the obstacle functionals). Moreover:

Fsl(u’ w) = Fsl(_u_a w)
Vu e WY9P(2), Vw € O(2) 1 Fi(u,w) = F2(u*,w) (2.5)
F2(~u,w),

Fl(u,w) -

€

™
™

with 4t = max(u,0), v~ = — min(0, u). O

Proposition 2.8. There ezists a subsequence (gy), two functionals F* and F? in F and
a rich family R C B(X) such that for every u in V, and for every w in RN O(X) one has

(i) F(ut,w)=F'Y(-utw),
() iy + P (—u ) Pt ) = epicim, g {IlullL, + F (1) + F2 (0,)}.

Proof. From the compacity Theorem 2.3, we infer the existence of a nondecreasing func-
tional F' and a nonincreasing functional F? in F, of a subsequence (g), (we will omit
the subscript & in the following) and of a rich family R C B(X) such that:

Vu € Vs, Yw e RNOE): |Julff , + F'(u,w) = epsij(i)m{HuH’l’,p + F(u, w)} ,1=1,2,

where the epi-limit is taken for the weak topology of W'?(Q).
(i) Let (u.), be a sequence converging to u™ in the weak topology of W'?(Q) such that:

[t 7, + P2t ) = tim {[Juell, + P2 (ue, ) }-

Because: F2(u,,w) = F(— (u.)",w), we have:

tim { [uclf?, + F2(— (w) @) } > w7+ F!(—ut,w) = F'(—u*,w) < F2(u*,w).

The reverse inequality is proved in a similar way.

(ii) Because the upper epi-lim always exists, there exists a sequence (u.). converging to
u in the weak topology of V, such that:

. .. P 1 2 wj/;,
inf {llgrilglf{||v€||1,p + F_ (ve,w) + F: (vg,w)} | ve e u}
.. 1 2
= hrgri)lonf{||u5||71”],J + F (ue,w) + F2(ue,w)} .
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Thanks to the equality: ||u|

1p = ll(we) "I, + Il (ue)~I[1,, we obtain:

o P 1 2
h?i}glf{“%“l,p + F- (ue,w) + FZ (ue, w)}

> lim inf { H(uE)_HT,p + FN— (ue)” ,w)} + lirgrl)iglf { H(UE)JFHII’,I) + F2((ue)* 7w)}

e—0

> ||o]

p 1 - +||P 2(,,+
ot F (—u,w) + ||u H1,p+F (u™,w)
> lullf , + F'(—u™,w) + F*(u",w).

Conversely, let u be any element of V,. There exists a sequence (u.). weakly converging
to u such that ((u.)"), (resp. ((ue)~).) weakly converges to u™ (resp. u~) and:

o]

ip + F'Y(—u",w) = lim{”(us)fﬂip + FM(— (ue)” ,w)}

e—0

Jwt|f, + F2(ut,w) = lim { || o) |17, + F2((u) " 0) |

e—0

hence:

[ull?,, + F*(—u™,w) + F*(u", w)

=l [l7, + FH(umw) + (o[l + P2, w)

> lim { [(ue) ([}, + FH (= (o)™ w) + [ (we) [}, + F2((ue) ,w)}
> limsup { [[u.|[}, + B2 (ue,w) + F(u., )}
e—0

> int {imoup (o, + F20es) + F2(0ms) v " .
e—0 k

e—0

O

Proposition 2.9. There exists a Radon measure p in (W~'/%9(X))* and a Borel function

a from Y into [0, +00] lower semi-continuous and nonincreasing such that on WP () x
(RN O(X)) we have:

F'~u",w) = / a(o) [u™(0)[" du(o) ; F*(u',w) = / a(o) ‘u+(a)‘p du(o).

w

Proof. Because F' belongs to F, Theorem 2.1 implies that:
Fi(uw) = [ f0,1(0))du(o) + (o).

Then for every positive real A one has:

Nepi-lim { |l + FX (o, w)} — epi-lim { Ill? )+ FL (Ao, w)} ,

e—0 e—0

since F! only takes the values 0 or +o0o. Hence:

FrQu,w) = X F!(u,w), on WYer(2) x (RN O(R)).
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For every nonnegative ¢ one has: F'(t,w) = 0, since:

1 o 1
0< Fi(tyw) < hrgri}glf {F!(t,w)}.

This implies: [ f(o,t)du(0) + v(w) = 0 and thus: v(w) = 0, since f takes nonnegative
values and p and v are nonnegative measures. For every nonpositive ¢ one has:

Fl(t,w) = (=t)*F'(-1,w),
from which we deduce:
Vw € RNO(E), Vo ew: f(o,a (0)) = (@ (0))" flo,-1) = alo) (i (0))",
defining: a(o) := f(o,—1). a is lower semi-continuous and nonincreasing (see Theorem

2.1). This implies:

P(-uw) = [ ao) [T @) du(o) = [ a(o) o ()] du(o).

because p(u # u) = 0. Because: F?(ut,w) = F'(—u',w), we get:

fﬂ(u+¢u):‘/]xa)Mﬁ(anpdu«ﬂ.

Then we conclude with the following:

Theorem 2.10.

(i)  The sequence (F;), epi-converges in the weak topology of Vi, to the functional F,
defined by

R@:{kwwm+&aﬁmﬁwmﬂzmem 26)

+00 otherwise.

(ii)  The sequence (u.), converges in the weak topology of V, to the solution of the mini-
mization problem associated to this functional F,, that is:

%%2 {Fo(v) —p/ﬂfvdx} :

F(v) = Jo IVvPdz 4+ Fl (v, X) + F2(vs, X) ifvel;
T 4o otherwise.

Proof. We just observe that:

Then we apply the Propositions 2.8 and 2.9 and Theorem 1.10 of [1]. O

Remark 2.11. When we only consider the unilateral constraints: © > 0 on 7 or u < 0
on T,, the additional term appearing in the limit problem is:

/Ea(a) |vt(0)|” du(o) or /Ea(a) v (0)|” du(o).
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3. Application: periodic distribution of strips on the lateral boundary of a
cylinder

We here suppose that 2 is the cylinder:
Q={z=(21,20,23) €R® | 2? + 2} < 1,25 €]|-H H[},

where H is positive. I'; and 'y are respectively the upper and lower faces of €2 and ¥ is
its lateral boundary. Let € and r. be positive parameters with: 0 < r, < ¢. For every k
in Z, we denote by +* the circle:

7 ={r = (21,22,23) €R’ [ + a5 =1, 25 = ke } .
Then T* is the strip of width 27, centered on the circle v*:

TF = {CC:(CUl,.’L'Q,.’L'?,) ER |22 +22 =1, 3 E]—T—;—st,%-i-ke[}

(€)
see figure 3.1 below. We define T, as the union U TF of the strips contained in the

k=—n(e)
lateral boundary X of €2. Note that these strips are e-periodically distributed on ¥ and
that the total number 2n(c) + 1 of such strips is equivalent to H/e for small values of .
Finally we define: ¥, = ¥\ T}, see figure 3.1 below.

Because of the periodic repartition of the strips 7 the measure a(o)du(c) which will
appear in the limit problem (2.6) will be of the kind Kdo for some constant K in [0, +o0]
and where do is the Lebesgue measure on ¥. Our purpose is to identify the constant K.

o

Lt 45

Figure 3.1: The cylinder Q and the strips T*.

3.1. Notations

Using the cylindrical coordinates: z; = rcos(f), xo = rsin(d), z3 = z3, with r in [0, 1], 6
in [0, 27| and x3 in |—H, H[ the prism @ associated to € is:

Q=10,1[ x [0,27] x |-H, H|

and let us denote D =10, 1[ x |—H, H|. For every positive R, B(R) (resp. B*(R)) is the
ball (resp. half-ball) of R? defined by:

B(R) = {(r, x3) | r? + 23 < R2} (resp. BT (R) = {(7‘, z3) |+ a5 < R* r > O})
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Let us introduce p = 1 — r and for every k in {—n(g),...,n(¢)} B¥ (resp. B¥") and BF
(resp. BET) defined by:
B = {(p,z3) | (1 = p)® + (x5 — ke)® < €2/4}, (vesp. B** = B*" n {p > 0})
Bf = {(p,3) | (1= p)* + (w5 — ke)® <r2/4}, (vesp. By = B} N {p>0})
and:
S¢ = {(p,0,23) | (p,x3) € Bf 5 0 € [0,27]}, SE* = SEN {p > 0}
and 0SH+t = 0S5 N{p > 0}. If T = {0} x| —3, L[ the strip T can be written in cylindrical
coordinates as:
TF ={(0,0,23) | 23 € r.T + ke ; 0 € [0,27]} .
3.2. Test-functions
Let w® be the solution of the following local problem written in cylindrical coordinates:
div (|[Vw P> Vuw®) = 0 in B(e/2)\r.T

w® = 1 onrT (3.1)
w® = 0 on 0B(e/2).

Then we introduce the function w,. deduced from the preceding function w*® by means of
a periodic process:

we(p,z3 — ke) in BFT\ TF

= n(e) —
we(r, 73) 0 in D\ U BEF.
Finally we define the test-function w? in €:
wl(z) = we(p, x3), (p,z3) € D. (3.2)

The properties of this test-function are summarized in the following:

Lemma 3.1.
(1) lim.o [, [Vw?|” dz = ac meas(X), where a belongs to [0,+0c] and is given by:

. (ro)??
I

a = . _1 ] (33)
lim——~ ifp=2

e—0¢ In(r,)

and c is the W'P-capacity of T with respect to R? given by:

¢c= min { \VwlPdy | w=1 on T} (3.4)
R?

weWol’p(Rz)

(ii) If a belongs to [0,+o0[, the sequence (w?). converges to 0 in the weak topology of
WhP(Q).
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(iii) If a belongs to [0, +o0:
(a) The sequence (—l > (IVw, [P~ 26ws)|aBk (533k>8 converges to the measure equal

5{p 0}nD in the strong topology of W—4(D ) for every open subset D of R?
contammg D, where Somr (Tesp. 6{p:0}nD) is the Dirac measure on OBY (resp.

on{p=0}ND):

H

Vo € C*(D) : <5635,gp> = /aBk pdo; <(5{p:0}05, g0> = / (0, z3)dxs.

—-H

(b) The sequence ( 5Dk (\Vw p—22 >|a . 535k> converges to the measure equal
sk 77 )

to 5 dyp—oyng in the strong topology of W~ L4(Q"), for every open subset Q' of R®
containing Q, where Sas (resp. (5{,):0}0@) is the Dirac measure on OB (resp.

on {p=0}NQ):
Ve eC¥@Q): (buspe)= [ o

27 H
<5{p:0}ﬂ§a (P> = / / SD(O, 9, xg)dad.’l?g,
0 —H

Proof. (i) We compute:
/ |\Vw?|P dx = / |Vw, [P (1 — p)dpdfdzs = 27r/ |V pzswel” (1 — p)dpdas,
Q Q D

using the change of variables: p =1 —17; t = 23 — ke, with V,,,w. = (% %> and

dp 7 Ox3
then:
n(e)
[ Va1 = phpdaa = 3 / ¥ pngt0e” (0,23 — he)(1 — p)ddpdes
—n(e)
H
<= Vs |” (1 — p)dpdt
B(e/2)

and because of the symmetry of w,. in B(e/2). Let us now consider three cases according
to the values of the exponent p:

First case: 1 < p <2

We compute:

1 ep (7"5)271) . P
— \Vw®|? dpdt = min [VwlPdy [l w=1onT;,
€ JB(e/2) € weW, P(B(e/2re)) \J B(e/2re)

which implies using the above definition (3.3) of a:

1
lim— |Vw® [P dpdt = alim min {/ \VwlPdy | w=1 on T} .
B(e/2r:)

e—=0¢g B(£/2) e—0 wEWol p(B(s/Z'rE))
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Because the sequence of convex sets {w € W}P(B(e/2r.)) | w =1 on T} Mosco-converges
to {w € WHP(R?) | w =1 on T}, see [4], we deduce:

1
lim= |Vw® P dpdt = ac,
e=0¢ B(E/Z)

where c is the WP —capacity of T with respect to R? defined by (3.4). Furthermore, this
implies:

1 1
—/ |Vw|P pdpdt < —/ |Vw®|P dpdt — 0,
€ JBe/2) 2 I/ =0
because p < £/2 and using the preceding argument. We get the following convergence:

lim/ \V s We|” rdrdfdzs = 2n Hac = ac meas(X).
e—0 Q 2
Second case: p =2
The Appendix of [4] implies:

2T 2 2
< Vuw®|" drdzs <
In(e/re) + In(2m) — /3(5/2) | | °= In(e/rc)

and then:

1
lim— \Vw|? drdzs = 2ar,
e—=0¢g B(€/2)

from which we deduce:

lim/ \Vw?|* dz = 27rlim/ (V. |” pdpdzs = am meas(X).
Q e—=0 Jp

e—0

Third case: p > 2

The test-functions w, are equal to 0 far from the boundary r = 1 — p = 1. One can
suppose that 1 — p belongs to |1/2, 1] hence:

27r/ \Vw,|* (1 — p)dpdzs > 7r/ \Vw,|” dpdzs.
D D

Then we observe that:

. 2 . (TE)Qip
limm | |Vw.|" dpdzs = lim = 400,
D

e—0 £—0 g

cmeas(X)

because: 2 —p < 0, from which we get: liné A Vs dz = +o0.
E—r

(ii) Let us first suppose that a belongs to [0, 4+o00] and 1 < p < 2. The sequence (Vw;), is
bounded in (L?(9))?, according to the first preceding assertion. The maximum principle,
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see [12], implies that: 0 < w? < 1, in . Hence:

n(e)

/ |wl|? dx =/ |we|? rdrdfdxs = Z / lwel? (p, 3)(1 — p)dpdxs3
Q Q Cne) VST
n(e)
< Z meas(S5T)
—n(e)

< Ck,

for some constant C, which proves that (w?). converges to 0 in the weak topology of
WhP(Q).

(iii) (a) Observe first that (|Vw,|” dpdzs), converges to acdy,_ 5 in the sense of measures.

Indeed, choose § positive and any function ¢ in C§°(R?). Green’s formula implies:
—/ div ((|Vwe| + 6)" 7 V) (1 — w.) (1 — p)dpdas
D
:/ (IVwe| + 872 [V o(1 — p)dpdas
D

+/D (V| + 62 V.V (p(1 = p)) (1 — w.)dpdas

> [ (9 v 8
— = We —pdo,
2 9Bk on 14
— (5) €
because w, is equal to 1 on T* and to 0 on OBF. We then let § decrease to 0 and get:

0= —/ div (|Vw. "> Vw.) ¢(1 — w.)(1 — p)dpdzs,
D

because w, is independant of . Furthermore:

n(e)
ow
. _ p—2 3 : p
llr% _E(E) /as;c |Vw,| B pdo = llr%/Q |Vw,|” ordrdfdz;

2T H
- @/ / o(1,0, 2)d0ds,
2)o Jom

which proves that (|Vw.[" rdrdfdzs), converges to & 6, ), 5 in the sense of measures.
Then we apply a classical maximum principle argument see [5] if p = 2 and Murat’s result
in [15] if 1 < p < 2, in order to prove the announced convergence.

(iii) (b) Observe that for every ¢ in C$°(R?®) we have:

2w
<(535§,<p>:/ / pdbdo.
o JoBk
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Hence, one can write dygx as the tensorial product dspr ® dfl. From the preceding com-
putations we infer:

ow? ac
9 Z (‘V P~ ? an ) dasr — _5{»0:0}05 ® db,

in the strong topology of W~44(Q)") for every smooth open subset @' containing Q. But
we finally observe that: § {p=0}nD ® dfd =6 (p=0}n0- O

3.3. Determination of the constant K

Proposition 3.2. Let us suppose that: 1 < p < 2. One has K = ac where a is given by
(3.3) and c is given by (3.4). Moreover, when a is equal to +oo the limit problem becomes:

min {/ Vol dx —p /fvdx lveVy v=0on E} (3.5)

veWLp(
Proof. Let us first suppose that a is finite. We get:

—_whlp
Wi (@)

K meas(X) = inf {liminf/ VzlPdz | 2 " 0; 2 € VE} :
e—0 Q

Let us choose 2z, = w?. Thanks to Lemma 3.1 the sequence (z.)_ satisfies the required
above properties. Moreover ([, |Vz |’ dx)s converges to acmeas(X). This implies that:
K < ac. Let us now choose any sequence (z.). converging to 0 in the weak topology of
V, such that z, 7. =1 and let us prove that:

hmlnf/ V2 |P dz > lim 1nf/ |Vw?|P de,
which will imply: K > ac. We write the subdifferential inequality:
/ V2P dx > / \Vw?|P dz +p/ VWP V.V (2. — w?)dz
Q Q Q
and introduce: V = (ai’ %i, ai) .We observe that:
ewg.%zs = V) 2:We.Vp g3 2,

with V, . = (i i) (we will simply write V instead of V). Let:

Q0=Qﬂ{0<p< } Qﬂ{ <r<1}
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Because w, is equal to 0 on Q \ Q, we get:

/ IVl > V.V (z. —w)dz = | |[Vw|? > Vw..V (2. — w.) (1 — p)dpdfdzs
Q Qo
Vw: "> Vw,.V ((z. — w.) (1 — p)) dpdfdzs
Qo
+ [ |Vw? ow. (2 — w,) dpdfdzs.
Q Op

Since:

/ IV, |P*Vw,..V ((z —w.) (1 — p)) dpdfdzs

o

Z /Sk Vw7 V.V ((z —w.) (1~ p)) dpdfds

—n(e)

n(e) awg
:Z—n(s)/ (VO (s w) (1 p)do
355+ TL

n(e)

—Z/ V™ 0 (2, ) (1 p)io,

using Green’s formula. Since z, — w, = 0 on T the last sum is equal to 0. Moreover:
n(e)
_9 Ow,
S Vet e w) (- g
) 8S§+ an

¥ << vt ) e e 00 —p)>,

—n(e)

where the last product is interpreted as a duality product between W~/ 24(9Sk+) and
Wl/ar(9Sk+). Let us extend by symmetry the term v, := (2. — w,) (1 — p) and choose a
smooth function x in C°(R?) such that x = 1 in a neighbourhood of p = 0 and x = 0 on

Q where Q is some smooth open subset containing Q,. We define: 7,b5 X% and observe

that: wgm = 1), and the sequence (%) converges to 0 in the weak topology of Wl”’(@).

From Lemma 3.1 we deduce:

n(e)
: dw,
]1_1)% <<|V N ? 9 ) ; (2 — we) (1_p)>
‘ —n(e) n |35§+

— 1 1% v |P—2% &) =
02 ) - on Iasé“*’ )=

—n(e
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where the duality product is now taken between W~=1¢(Q) and W'?(Q). Hélder’s in-
equality implies:

1/p
‘/ |V, P2 8811; (2. — w,.) dpdfdaxs| < 217 {/ |ze —w P (1 — p)dpdﬁdxg,}

1/q
X {/ |Vw, [P dpd@dxg}
1/p
< 9l/p {/ |ze — w?fP da:}
Q

1/q
X { \Vw, [P dpd0d3:3} :
Qo

Because lim Jo l2e = w?|P dz =0 and lim Jo, IVwel” dpdfdzs = acmeas(X) we infer:

lim/ Vw, P2 %_u; (ze — w.) dpdfdzz = 0.

e—0
Finally we get:
hm mf/ |V P dz > hm 1nf/ |Vw?|P dz = ac meas(Y),

which ends the proof of the assertion: K = ac.

Let us now suppose that a is equal to +o0o and 1 < p < 2.
We define:

() = (Ce)V/@ P ifl<p<?2
Pr= exp(—1/Ce) ifp=2

and observe that the present situation implies the existence of some positive constant m
such that: r. > mr.(p). Let T,,, . be the union of strips of size mr(p) included in ¥ and
F., . the functional defined by:

Jo Vv dz —p [, fvdz ifve V.,
Fe(v) = .
400 otherwise,
where V},, . consists of the functions of W'?(Q) vanishing on I'; and on the strips of size
mre(p) included in ¥. For every v in V, one has: F.(v) > F,.(v). Let (v.), be any
sequence converging to v in the weak topology of V, and such that v, belongs to V,, . for
every €. We deduce from the preceding step:

e—0

liminf F_(v.) > hmlanmE (ve) / |VoulP dx — /fvd:v—l—mc/ ‘v‘2| do.
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If vy is not equal to 0 almost everywhere on ¥ we get taking the supremum with respect
to m:
liminf F, (v.) > +o0.
e—0

If vy is equal to 0 almost everywhere on ¥ we get taking the supremum with respect to
m:

e—0

lim inf F_ (v, ) :/ \Vol? dz —p/ fodz.
0 %

We then conclude using Theorem 1.10 of [1]. O

Remark 3.3.
(i) When a is equal to 0 or +00 we easily prove:

lim | |Vu.|"dz = lim/ \Vul? dx.
e=0 Jq

e—0 Q

This implies that (u.), converges to u in the strong topology of W'?(Q).

(ii) When p > 2 the asymptotic behaviour of the solution u. can describe that of a
non-newtonian fluid contained in the cylinder {2 and which is kept fixed along the
strips T¥ of size r.. In this case there is no critical value of 7. since the energy of
the local problems always increases to +0o. We conjecture that K is equal to +oo
in this case and that the limit problem is described by the functional given in (3.5).
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