BV Functions with Respect to a Measure and Relaxation of Metric Integral Functionals

Giovanni Bellettini

Dipartimento di Matematica, Università di Roma "Tor Vergata", Via della Ricerca Scientifica, 00133 Roma, Italy. e-mail: belletti@axp.mat.uniroma2.it

Guy Bouchitté

 $\begin{array}{c} \textit{D\'epartement de Math\'ematiques (Laboratoire A.N.L.A.),} \\ \textit{Universit\'e de Toulon et du Var, BP 132, F-83957 La Garde, Cedex, France.} \\ e\text{-mail: bouchitte@univ-tln.fr} \end{array}$

Ilaria Fragalà

Dipartimento di Matematica "L. Tonelli", Università di Pisa, Via Buonarroti, 2, 56127 Pisa, Italy. e-mail: fragala@dm.unipi.it

Received December 16, 1998 Revised manuscript received April 27, 1999

We introduce and study the space of bounded variation functions with respect to a Radon measure μ on \mathbb{R}^N and to a metric integrand φ on the tangent bundle to μ . We show that it is equivalent to view such space as the class of μ -integrable functions for which a distributional notion of (μ, φ) -total variation is finite, or as the finiteness domain of a relaxed functional. We prove a quite general coarea-type formula and then we focus our attention to the problem of finding an integral representation for the (μ, φ) -total variation.

Keywords: Bounded variation functions, Radon measures, Relaxation, Duality, Integral representation

1991 Mathematics Subject Classification: 26A45, 49M20, 46N10

1. Introduction

In this paper we define the space of bounded variation functions with respect to a Radon measure μ , and we study some of its properties. Our approach is inspired by [5], where the Sobolev-type spaces $W_{\mu}^{1,p}$ associated with a measure μ are introduced, and the relaxation of integral functionals on $W_{\mu}^{1,p}$ is studied for p>1. We focus our attention on the relaxation in L_{μ}^{1} of integral functionals with respect to μ , where the integrand is a sublinear function φ . Following the geometric approach proposed in [1], where \mathbb{R}^{N} is viewed as a Banach space endowed with a Finsler metric, one can look at the integrand φ as a metric: this leads to give, for any $u \in L_{\mu}^{1}(\mathbb{R}^{N})$, a natural distributional definition of (μ, φ) -total variation $|D_{\mu}u|_{\varphi}$. The consistency of our definition with the usual notion of |Du| when μ is the Lebesgue measure and φ is the euclidean metric is proved in Section 3 (see Proposition 3.1). We next introduce the space $BV_{\mu,\varphi}$ as the class of all functions $u \in L_{\mu}^{1}(\mathbb{R}^{N})$ with $|D_{\mu}u|_{\varphi} < +\infty$.

In Section 4 we enlighten the interest of our (μ, φ) -total variation by showing a quite ge-

neral coarea formula in L^1_{μ} . When applied to particular measures μ , this formula clearly encompasses previous generalizations (see [13], [3], [15], [21]). We stress that our proof technique, suggested by the use of distributional definitions, is different from the classical methods based on the approximation with smooth functions [12]; namely we use a commutation argument from [7] between supremum and integral. As a corollary, we show that the chain rule holds for functions in the Sobolev space $W^{1,1}_{\mu}$.

In Section 5 we show that $|D_{\mu}u|_{\varphi}$ and $BV_{\mu,\varphi}$ coincide respectively with the relaxation on L^1_{μ} of an integral functional, and with its domain of finiteness (see Theorem 5.1); furthermore, under suitable regularity assumptions, we prove an integral representation theorem for $|D_{\mu}u|_{\varphi}$ on the Sobolev space $W^{1,1}_{\mu}$ (which is a strict subspace of $BV_{\mu,\varphi}$).

The problem of extending this type of result out of $W^{1,1}_{\mu}$ is quite delicate (see [6] for the integral representation in the classical space $BV(\Omega)$), and is studied in Section 6. Here we provide some sufficient conditions in order to have an integral representation for $|D_{\mu}u|_{\varphi}$ on $BV_{\mu,\varphi}$; we also give a counterexample showing that such a representation does not hold for a general measure μ .

2. Notation

For a positive integer d, let \mathcal{R}^d be the class of all \mathbb{R}^d -valued Borel measures with finite total variation on \mathbb{R}^N ; when d=1, we simply denote by \mathcal{R} the space of signed Borel measures with finite total variation on \mathbb{R}^N , and we let \mathcal{R}_+ be the subclass of \mathcal{R} given by all positive and finite Borel measures.

For $\mu \in \mathcal{R}_+$ we denote by $\mu \sqsubseteq E$ the restriction measure of μ to a μ -measurable subset E of \mathbb{R}^N , and by spt μ the support of μ . Whenever dealing with integrals with respect to μ on \mathbb{R}^N , we omit the integration domain. For any $k \in [0,N)$, \mathcal{H}^k denotes the k-dimensional Hausdorff measure and \mathcal{L}^N is the Lebesgue measure. If α is a vector-valued measure with finite total variation, the polar decomposition of α is given by $\alpha = \theta |\alpha|$, where $|\alpha|$ denotes the positive total variation measure of α , and the density $\theta := \frac{d\alpha}{d|\alpha|}$ has unitary norm $|\alpha|$ -a.e.; by writing $\alpha << \mu$, we mean that $|\alpha|$ is absolutely continuous with respect to μ . For p=1 or $p=+\infty$, we set $L^p_\mu := L^p(\mathbb{R}^N,d\mu)$ and $(L^p_\mu)^N := (L^p(\mathbb{R}^N,d\mu))^N$; the subscript μ is omitted when $\mu = \mathcal{L}^N$. The spaces of continuous functions, of continuous vector fields, and of continuous vector fields vanishing at infinity on \mathbb{R}^N are denoted respectively by \mathcal{C} , \mathcal{C}^N , \mathcal{C}^N_0 . Unless otherwise specified, the symbol of duality $\langle \cdot \,, \, \cdot \rangle$ is used for the pairing between L^∞_μ and L^1_μ , while the euclidean norm and scalar product between two vectors z and z' of \mathbb{R}^N are denoted by $|\cdot|$ and $z \cdot z'$. For a subset E of \mathbb{R}^N we denote by χ_E the characteristic function of E.

We set

$$X_{\mu} := \{ \sigma \in (L_{\mu}^{\infty})^{N} : \operatorname{div}(\sigma \mu) \in L_{\mu}^{\infty} \} ;$$
 (2.1)

in (2.1) we call $\operatorname{div}(\sigma\mu)$ the distribution whose action on a test function $\psi \in \mathcal{D} := \mathcal{C}_c^{\infty}(\mathbb{R}^N)$ is given by

$$\langle \operatorname{div}(\sigma \mu), \psi \rangle_{(\mathcal{D}', \mathcal{D})} := -\int \sigma \cdot \nabla \psi \, d\mu \ .$$
 (2.2)

In other words, an element σ of $(L_{\mu}^{\infty})^N$ belongs to X_{μ} if and only if there exists a constant $C \in [0, +\infty)$ such that $|\int \sigma \cdot \nabla \psi| d\mu \leq C \|\psi\|_{L_{\mu}^1}$ for every $\psi \in \mathcal{D}$. The explicit expression of $\operatorname{div}(\sigma \mu)$ for a special choice of μ is given in (3.5).

Similarly to [5, Section 2], we define the tangent space to μ at a point $x \in \mathbb{R}^N$ as

$$T_{\mu}(x) := \mu - \operatorname{ess} \bigcup \{ \sigma(x) : \sigma \in X_{\mu} \} ;$$

in particular, for any $\sigma \in X_{\mu}$ we have $\sigma(x) \in T_{\mu}(x)$ for μ -a.e. x.

We always assume that $T_{\mu}(x)$ is not reduced to zero μ -a.e., and we set

$$T\mu := \{(x, z) : x \in \mathbb{R}^N, z \in T_\mu(x)\}$$
.

When $\mu = \mathcal{L}^N \sqcup \Omega$, where Ω is an open subset of \mathbb{R}^N with Lipschitz continuous boundary, we have $T_{\mu}(x) = \mathbb{R}^N$ for μ -a.e. x, while for $\mu = \mathcal{H}^k \sqcup M$, where M is a Lipschitz k-manifold, T_{μ} coincides μ -a.e. with the usual tangent space to M. For further properties of T_{μ} we refer to [14].

For $\psi \in \mathcal{D}$ and μ -a.e. $x \in \mathbb{R}^N$, the symbol $\nabla_{\mu}\psi(x)$ stands for $P_{\mu}(x)[\nabla\psi(x)]$, where $P_{\mu}(x)[\cdot]$ is the orthogonal projection of \mathbb{R}^N onto $T_{\mu}(x)$.

A Sobolev-type space $W_{\mu}^{1,1}$ can be defined, following [5], as the completion of \mathcal{D} with respect to the norm $\|\psi\|_{L_{\mu}^1} + \|\nabla_{\mu}\psi\|_{(L_{\mu}^1)^N}$. Thus any function $u \in W_{\mu}^{1,1}$ admits a tangential gradient $\nabla_{\mu}u \in (L_{\mu}^1)^N$, and the following integration by parts formula holds:

$$-\langle \operatorname{div}(\sigma\mu), u \rangle = \int \sigma \cdot \nabla_{\mu} u \, d\mu \,, \qquad \sigma \in X_{\mu} \,, \ u \in W_{\mu}^{1,1} \,. \tag{2.3}$$

For the proof of (2.3), which is the same as in the case p > 1, we refer to [5].

If $(\eta_i)_{i\in I}$ is an arbitrary family of μ -measurable closed-valued multifunctions from \mathbb{R}^N to \mathbb{R}^N , we denote by μ – ess $\sup_{i\in I} \eta_i$ the multifunction η from \mathbb{R}^N to \mathbb{R}^N characterized (up to μ -negligible sets) by the two properties (see [23]):

- (i) $\eta_i(x) \subseteq \eta(x)$ for μ -a.e. $x, \forall i \in I$;
- (ii) η is minimal with respect to inclusion μ -a.e. (i.e. for any other μ -measurable and closed-valued multifunction θ such that, for every $i \in I$, $\eta_i(x) \subseteq \theta(x)$ for μ -a.e. x, there holds $\eta(x) \subseteq \theta(x)$ for μ -a.e. x).

We say that a function $\varphi: T\mu \to [0, +\infty)$ is a metric integrand, and we write $\varphi \in \mathcal{M}$, if the following conditions are satisfied:

for any
$$z \in \mathbb{R}^N$$
, the map $x \mapsto \varphi(x, P_{\mu}(x)[z])$ is μ -measurable on \mathbb{R}^N ; (2.4)

for
$$\mu$$
-a.e. $x \in \mathbb{R}^N$, the map $z \mapsto \varphi(x, z)$ is convex on $T_{\mu}(x)$; (2.5)

there exists
$$C > 0$$
 such that $\varphi(x, z) \le C|z|$ for $(x, z) \in T\mu$; (2.6)

$$\varphi(x, tz) = t\varphi(x, z) \text{ for } (x, z) \in T\mu, \ t > 0.$$
(2.7)

We associate with φ the dual metric φ^o defined on the dual bundle $T^*\mu$ of $T\mu$ as

$$\varphi^o(x, z^*) := \sup\{z \cdot z^* : z \in T_\mu(x), \varphi(x, z) \le 1\}.$$

Notice that $z \cdot z^* \leq \varphi(x, z) \varphi^o(x, z^*)$ for any $z \in T_\mu(x)$, $z^* \in T_\mu^*(x)$, and that $\varphi^{oo} = \varphi$.

Furthermore, the metric φ^o still enjoys properties (2.4), (2.5), and (2.7) on $T^*\mu$ (see for instance [10]).

Finally, we recall that, if J is a proper functional defined on a Banach space X with values in $\mathbb{R} \cup \{+\infty\}$, the relaxed functional \overline{J} of J is defined as the greatest lower semi-continuous functional less than or equal to J on X (see [9]), while the Fenchel conjugate functional J^* of J is defined on the dual space of X (see [19]) by $J^*(x^*) := \sup\{\langle x, x^* \rangle - J(x) : x \in X\}$.

3. The (μ, φ) -total variation

Some generalized notions of bounded variation functions have been proposed in the literature: for instance the theory of perimeters on a smooth manifold has been studied in [17], while more recently the class of BV functions over rectifiable currents has been introduced in [3]. Our definition reads as follows.

Let $\mu \in \mathcal{R}_+$ and $\varphi \in \mathcal{M}$. For every function $u \in L^1_\mu$ we define the (μ, φ) -total variation $|D_\mu u|_\varphi$ of u as

$$|D_{\mu}u|_{\varphi} := \sup \left\{ -\langle \operatorname{div}(\sigma\mu), u \rangle : \sigma \in X_{\mu}, \, \varphi^{o}(x, \sigma(x)) \leq 1 \text{ for } \mu\text{-a.e. } x \right\}$$
 (3.1)

and we set

$$BV_{\mu,\varphi} := \{ u \in L^1_{\mu} : |D_{\mu}u|_{\varphi} < +\infty \} .$$

In particular, if E is a μ -measurable subset of \mathbb{R}^N such that $\chi_E \in L^1_\mu$, we define the (μ,φ) -perimeter $P_{\mu,\varphi}(E)$ of E as $P_{\mu,\varphi}(E):=|D_\mu\chi_E|_\varphi$.

It immediately follows that the functionals $u \mapsto |D_{\mu}u|_{\varphi}$ and $E \mapsto P_{\mu,\varphi}(E)$ are lower semicontinuous with respect to the convergence in L^1_{μ} . Notice also that, whenever φ satisfies a coercivity-type condition of the form

$$\varphi(x,z) \ge C^{-1}|z| , \qquad (x,z) \in T\mu , \qquad (3.2)$$

the space $BV_{\mu,\varphi}$ is independent of φ ; in particular, when $\varphi(x,z)=|z|,\ BV_{\mu,\varphi}$ will be denoted by BV_{μ} .

Let us now show that, if $\mu = \mathcal{L}^N \sqcup \Omega$ and $\varphi(x, z) = |z|$, then $|D_{\mu}u|_{\varphi}$ and $BV_{\mu,\varphi}$ reduce to the usual notions $|Du|(\Omega)$ and $BV(\Omega)$, respectively.

To this aim, we recall (see [2], Theorem 1.9 with p=N and q=N/(N-1)) that, if $\Omega \subseteq \mathbb{R}^N$ is a bounded open set with Lipschitz boundary, $u \in BV(\Omega)$, and $\sigma \in (L^{\infty}(\Omega))^N$ with div $\sigma \in L^N(\Omega)$, then it is possible to define, in a natural way, a real valued measure (σ, Du) satisfying $\int_{\Omega} (\sigma, Du) \leq ||\sigma||_{L^{\infty}(\Omega)} |Du|(\Omega)$, and a trace $[\sigma \cdot \nu] \in L^{\infty}(\partial\Omega)$ on $\partial\Omega$ of the normal component of σ , such that the following Gauss-Green formula holds:

$$\int_{\Omega} u \operatorname{div} \sigma \, dx + \int_{\Omega} (\sigma, Du) = \int_{\partial \Omega} [\sigma \cdot \nu] u \, d\mathcal{H}^{N-1}$$
(3.3)

(here ν is the outward unit normal to $\partial\Omega$).

Proposition 3.1. Let $\Omega \subseteq \mathbb{R}^N$ be a bounded open set with Lipschitz boundary, let $\mu := \mathcal{L}^N \sqcup \Omega$ and $\varphi(x,z) := |z|$. Then $|D_{\mu}u|_{\varphi} = |Du|(\Omega)$ for every $u \in L^1_{\mu} = L^1(\Omega)$, hence $BV_{\mu,\varphi} = BV(\Omega)$.

Proof. Given $\sigma \in (L^{\infty}(\Omega))^N$ with div $\sigma \in L^{\infty}(\Omega)$, and $\psi \in \mathcal{D}$, (3.3) yields:

$$\langle \operatorname{div}(\sigma \mu), \psi \rangle_{(\mathcal{D}', \mathcal{D})} = -\int_{\Omega} \sigma \cdot \nabla \psi \, dx = \int_{\Omega} \psi \operatorname{div} \sigma \, dx - \int_{\partial \Omega} [\sigma \cdot \nu] \psi \, d\mathcal{H}^{N-1}$$
.

In order to have $\sigma \in X_{\mu}$, the right hand side member needs to be controlled by the norm of ψ in $L^1(\Omega)$. This yields $[\sigma \cdot \nu] = 0$ \mathcal{H}^{n-1} a.e. on $\partial \Omega$. Therefore

$$X_{\mu} = \left\{ \sigma \in (L^{\infty}(\Omega))^{N} : \operatorname{div} \sigma \in L^{\infty}(\Omega) , [\sigma \cdot \nu] = 0 \ \mathcal{H}^{N-1} \text{-a.e. on } \partial \Omega \right\} . \tag{3.4}$$

The inclusion $(\mathcal{C}_c^1(\Omega))^N \subseteq X_\mu$ and the fact that $\varphi^o(x,z) = |z|$ imply that $|D_\mu u|_{\varphi} \ge |Du|(\Omega)$, hence $BV_{\mu,\varphi} \subseteq BV(\Omega)$. It remains to prove that $|D_\mu u|_{\varphi} \le |Du|(\Omega)$. For any $u \in BV(\Omega)$ and $\sigma \in X_\mu$, by (3.3) and (3.4) we have

$$-\langle \operatorname{div}(\sigma \mu), u \rangle = -\int_{\Omega} u \operatorname{div} \sigma \, dx = \int_{\Omega} (\sigma, Du) \, .$$

Hence, if $\|\sigma\|_{(L^{\infty}(\Omega))^N} \leq 1$, we get $-\langle \operatorname{div}(\sigma\mu), u \rangle \leq |Du|(\Omega)$. Passing to the supremum over σ , we deduce $|D_{\mu}u|_{\varphi} \leq |Du|(\Omega)$. As a consequence, $BV_{\mu,\varphi} = BV(\Omega)$.

Example 3.2. A natural case to be considered is when $\mu = a\mathcal{H}^k \, \square \, M$, where M is a smooth connected k-manifold and φ is a continuous metric integrand on the tangent bundle to M. If the density a is a positive function in $L_{\mu}^{\infty} \cap \mathcal{C}^1$ with $\nabla \log a \in (L_{\mu}^{\infty})^N$, and σ is a \mathcal{C}^1 tangent field to M, one can easily check, using the divergence theorem on a smooth manifold (see for instance [22]), that $\sigma \in X_{\mu}$, as

$$\operatorname{div}(\sigma\mu) = (\operatorname{div}_{\mu}\sigma + \sigma \cdot \nabla \log a)\mu \tag{3.5}$$

where $\operatorname{div}_{\mu} \sigma := \sum_{i=1}^{N} (\nabla_{\mu} \sigma^{i})_{i}$. Moreover, essentially due to the smoothness of spt μ , we will show in Section 6 that, as in the classical case $\mu = \mathcal{L}^{N} \sqcup \Omega$, there exists a vector valued measure $D_{\mu}u$ which allows to give an integral representation of the (μ, φ) -total variation on the whole space $BV_{\mu,\varphi}$.

Example 3.3. We point out that the choice

$$\mu := \left[\pi^{-\frac{N}{2}} (\lambda_1 \cdot \ldots \cdot \lambda_N)^{-\frac{1}{2}} \exp \left(-\sum_{i=1}^N x_i^2 / \lambda_i \right) \right] \mathcal{L}^N , \quad \varphi(z) := \left(\sum_{i=1}^N \eta_i z_i^2 \right)^{1/2} ,$$

where λ_i , η_i , i = 1, ..., N, are suitable positive real numbers, could relate, when $N \to +\infty$, the space $BV_{\mu,\varphi}$ to a theory of perimeters in infinite-dimensional Hilbert spaces (see [11] and [16]).

4. Coarea formula

Several generalizations of the classical coarea-formula for BV functions [12, Section 5.5] have been proposed in the literature (see for instance [13, 3.2.22], [3, Proposition 2.13], [15, Theorem 2.3.5], [21, Theorem 17.1]). We now present a coarea-type formula, which holds on L^1_{μ} for any $\mu \in \mathcal{R}_+$ and any $\varphi \in \mathcal{M}$, provided one adopts the distributional definition of (μ, φ) -total variation introduced in the previous section. As a consequence we obtain the stability of $BV_{\mu,\varphi}$ under composition (see Corollary 4.2 below). We let $\{u > t\} := \{x \in \mathbb{R}^N : u(x) > t\}$.

Theorem 4.1. Let $\mu \in \mathcal{R}_+$ and $\varphi \in \mathcal{M}$. Then for any $u \in L^1_{\mu}$, the map $t \mapsto P_{\mu,\varphi}(\{u > t\})$ is Lebesgue-measurable and the following coarea-type formula holds:

$$|D_{\mu}u|_{\varphi} = \int_{\mathbb{R}} P_{\mu,\varphi}(\{u > t\}) dt$$
 (4.1)

Proof. Define

$$\mathcal{K} := \{ \sigma \in X_{\mu} : \varphi^{o}(x, \sigma(x)) \le 1 \text{ for } \mu\text{-a.e. } x \} . \tag{4.2}$$

Let us fix $u \in L^1_\mu$ and define for every $\sigma \in \mathcal{K}$

$$f_{\sigma}(t) := -\langle \chi_{\{u>t\}}, \operatorname{div}(\sigma \mu) \rangle, \qquad t \in \mathbb{R}.$$

The function $t \mapsto \mu(\{u > t\})$ is bounded and non-increasing on \mathbb{R} , hence continuous at all $t \in \mathbb{R} \setminus D$, with D at most countable. Then f_{σ} is also continuous on $\mathbb{R} \setminus D$ for any $\sigma \in X_{\mu}$. Applying the Lindelöf's Theorem to the family of continuous functions f_{σ} on $\mathbb{R} \setminus D$, there exists a countable sequence $\{\sigma_n\} \subset \mathcal{K}$ such that

$$\sup \{ f_{\sigma}(t) : \sigma \in \mathcal{K} \} = \mathcal{L}^{1} - \operatorname{ess sup} \{ f_{\sigma}(t) : \sigma \in \mathcal{K} \} = \sup_{n} f_{\sigma_{n}}(t) , \qquad \forall t \in \mathbb{R} \setminus D . \tag{4.3}$$

Therefore

$$P_{\mu,\varphi}(\{u > t\}) = \sup_{n} f_{\sigma_n}(t) , \qquad \mathcal{L}^{1} \text{- a.e. } t \in \mathbb{R} , \qquad (4.4)$$

which entails the measurability statement of the theorem.

Notice now that, for any $\sigma \in X_{\mu}$, there holds

$$-\langle u, \operatorname{div}(\sigma \mu) \rangle = -\langle u^{+}, \operatorname{div}(\sigma \mu) \rangle + \langle u^{-}, \operatorname{div}(\sigma \mu) \rangle$$

$$= -\int_{0}^{+\infty} \langle \chi_{\{u>t\}}, \operatorname{div}(\sigma \mu) \rangle dt + \int_{-\infty}^{0} \langle 1 - \chi_{\{u>t\}}, \operatorname{div}(\sigma \mu) \rangle dt$$

$$= \int_{\mathbb{R}} f_{\sigma}(t) dt , \qquad (4.5)$$

where we used Fubini's theorem and the fact that $\langle 1, \operatorname{div}(\sigma \mu) \rangle = 0$ for any $\sigma \in X_{\mu}$. If we pass to the supremum over $\sigma \in \mathcal{K}$ in (4.5), using (4.3) and (4.4), we get

$$|D_{\mu}u|_{\varphi} \leq \int_{\mathbb{R}} P_{\mu,\varphi}(\{u > t\}) dt$$
, $u \in L^{1}_{\mu}$.

It remains to prove the difficult part of (4.1), namely

$$|D_{\mu}u|_{\varphi} \ge \int_{\mathbb{R}} P_{\mu,\varphi}(\{u > t\}) dt , \qquad u \in L^{1}_{\mu} .$$
 (4.6)

First, we observe that to prove (4.6) it is enough to verify that

$$\int \varphi(x, \nabla_{\mu} u) \, d\mu \ge \int_{\mathbb{R}} P_{\mu, \varphi}(\{u > t\}) \, dt \,, \qquad u \in \mathcal{D} \,. \tag{4.7}$$

Indeed, by Theorem 5.1 below, given $u \in L^1_\mu$ there exists a sequence $\{u_n\} \subseteq \mathcal{D}$ converging to u in L^1_μ such that

$$|D_{\mu}u|_{\varphi} = \lim_{n \to +\infty} \int \varphi(x, \nabla_{\mu}u_n) d\mu$$
.

Possibly passing to a subsequence (still denoted by $\{u_n\}$), we have $\chi_{\{u_n>t\}} \to \chi_{\{u>t\}}$ in L^1_μ for \mathcal{L}^1 -a.e. $t \in \mathbb{R}$. Then applying (4.7) to every u_n and passing to the limit as $n \to +\infty$, by the L^1_μ -lower semicontinuity of the (μ, φ) -perimeter and Fatou's Lemma we have

$$\int_{\mathbb{R}} P_{\mu,\varphi}(\{u > t\}) dt \le \int_{\mathbb{R}} \liminf_{n \to +\infty} P_{\mu,\varphi}(\{u_n > t\}) dt \le \liminf_{n \to +\infty} \int_{\mathbb{R}} P_{\mu,\varphi}(\{u_n > t\}) dt
\le \lim_{n \to +\infty} \int_{\mathbb{R}} \varphi(x, \nabla_{\mu} u_n) d\mu = |D_{\mu} u|_{\varphi},$$

that is (4.6).

We are thus reduced to prove (4.7). Let $u \in \mathcal{D}$. We introduce the following subset $\mathcal{C}(u)$ of $L^1(\mathbb{R})$:

$$\mathcal{C}(u) := \left\{ \sum_{i=1}^{m} \alpha_i f_{\sigma_i} , \ \sigma_i \in \mathcal{K}, \ \alpha_i \in \mathcal{D}(\mathbb{R}; [0, 1]), \ \sum_{i=1}^{m} \alpha_i = 1, \ m \in \mathbb{N} \right\} .$$

We claim that

$$\int \varphi(x, \nabla_{\mu} u) \, d\mu \ge \sup_{g \in \mathcal{C}(u)} \int_{\mathbb{R}} g \, dt . \tag{4.8}$$

Indeed, let $g = \sum_{i=1}^{m} \alpha_i f_{\sigma_i} \in \mathcal{C}(u)$, where $\sigma_i \in \mathcal{K}$, $\alpha_i \in \mathcal{D}(\mathbb{R}; [0,1])$, and $\sum_{i=1}^{m} \alpha_i = 1$. Define $A_i(t) := \int_{-\infty}^{t} \alpha_i(s) \, ds$ for $t \in \mathbb{R}$, $i = 1, \ldots, m$. Then we have the chain rule identity $\nabla_{\mu}(A_i \circ u) = \alpha_i(u) \nabla_{\mu} u$. Using Fubini's theorem and noticing that $\varphi(x, \nabla_{\mu} u(x)) \geq \nabla_{\mu} u(x) \cdot \sigma(x)$ for μ -a.e. x whenever σ belongs to \mathcal{K} , we get

$$\int_{\mathbb{R}} g(t) dt = \int_{\mathbb{R}} -\langle \chi_{\{u>t\}}, \sum_{i=1}^{m} \alpha_{i}(t) \operatorname{div}(\sigma_{i}\mu) \rangle dt = \sum_{i=1}^{m} -\langle A_{i} \circ u, \operatorname{div}(\sigma_{i}\mu) \rangle$$

$$= \sum_{i=1}^{m} \int \nabla_{\mu}(A_{i} \circ u) \cdot \sigma_{i} d\mu = \sum_{i=1}^{m} \int \alpha_{i}(u) \nabla_{\mu} u \cdot \sigma_{i} d\mu$$

$$\leq \sum_{i=1}^{m} \int \alpha_{i}(u) \varphi(x, \nabla_{\mu} u) d\mu = \int \varphi(x, \nabla_{\mu} u) d\mu ,$$

which proves the claim (4.8).

By construction, the family C(u) enjoys the following property (stability by partitions of unity): for $l \in \mathbb{N}$, if g_1, \ldots, g_l belong to C(u) and β_1, \ldots, β_l are functions in $\mathcal{D}(\mathbb{R}; [0, 1])$

with $\sum_{j=1}^{l} \beta_j = 1$, then there holds $\sum_{j=1}^{l} \beta_j g_j \in \mathcal{C}(u)$. This enables us to apply an argument

about commutation between supremum and integral (see [7, Theorem 1]) which entails

$$\sup_{g \in \mathcal{C}(u)} \int_{\mathbb{R}} g \, dt = \int_{\mathbb{R}} \left(\mathcal{L}^1 - \operatorname{ess sup}_{g \in \mathcal{C}(u)} g \right) \, dt \, .$$

356 G. Bellettini, G. Bouchitté, I. Fragalà / BV functions with respect to a measure

Since C(u) contains $\{f_{\sigma} : \sigma \in \mathcal{K}\}$, by (4.8) and (4.4) we deduce

$$\int \varphi(x, \nabla_{\mu} u) \, d\mu \ge \sup_{g \in \mathcal{C}(u)} \int_{\mathbb{R}} g \, dt = \int_{\mathbb{R}} \left(\mathcal{L}^{1} - \operatorname{ess sup}_{g \in \mathcal{C}(u)} g \right) \, dt \\
\ge \int_{\mathbb{R}} \left(\mathcal{L}^{1} - \operatorname{ess sup}_{\sigma \in \mathcal{K}} f_{\sigma} \right) \, dt .$$
(4.9)

Finally, one can check directly by the definition of μ -essential supremum that the choice of the family $\{\sigma_n\} \subset \mathcal{K}$ in (4.3) entails

$$P_{\mu,\varphi}(\{u > t\}) = \mathcal{L}^1 - \operatorname*{ess\ sup}_{\sigma \in \mathcal{K}} f_{\sigma} . \tag{4.10}$$

From (4.9) and (4.10) we get (4.7), and this completes the proof of (4.1).

Corollary 4.2. Let $A : \mathbb{R} \to \mathbb{R}$ be a Lipschitz function. Then for every $u \in BV_{\mu,\varphi}$, it holds $A \circ u \in BV_{\mu,\varphi}$. Moreover if A is monotone non decreasing, we can write

$$|D(A \circ u)|_{\mu,\varphi} = \int_{\mathbb{R}} a(t) P_{\mu,\varphi}(\{u > t\}) dt , \qquad (4.11)$$

where a(t) denotes the a.e. defined derivative of A.

Proof. Let us assume first that A is monotone non decreasing. Set $B(t) := \sup\{s : A(s) < t\}$; then B(t) is a non decreasing function in $BV_{loc}(\mathbb{R})$ such that $B \circ A(t) = t$ and $\{A \circ u > t\} = \{u > B(t)\}$ for a.e. t. Applying (4.1) to A(u), we deduce

$$|D(A \circ u)|_{\mu,\varphi} = \int_{\mathbb{R}} P_{\mu,\varphi}(\{u > B(t)\}) dt.$$

We deduce (4.11) by noticing that the functions $f(s) := \int_{-\infty}^{A(s)} P_{\mu,\varphi}(\{u > B(t)\}) dt$ and $g(s) := \int_{-\infty}^{s} P_{\mu,\varphi}(\{u > t\}) a(t) dt$ are absolutely continuous, non decreasing and have a.e. the same derivative. Therefore they coincide and have the same limit as $s \to +\infty$ that is

$$\int_{\mathbb{R}} P_{\mu,\varphi}(\{u > B(t)\}) dt = \int_{\mathbb{R}} P_{\mu,\varphi}(\{u > t\}) a(t) dt$$

Since a(t) is bounded, it follows that for $u \in BV_{\mu,\varphi}$, $|D(A \circ u)|_{\mu,\varphi} < +\infty$ and so $A \circ u$ belongs to $BV_{\mu,\varphi}$. This implication can be extended to the general case, by writting $A \circ u = (A_+ \circ u) - (A_- \circ u)$ where A_+ and A_- denote primitives of the positive and of the negative parts of a(t).

Remark 4.3. In light of Section 5, the left hand side of (4.11) can be written in an integral form with respect to μ when $u \in W_{\mu}^{1,1}$. Indeed the chain rule $\nabla_{\mu}(A \circ u) = a(u)\nabla_{\mu}u$ applies, see Theorem 5.4. Thus, due to Theorem 5.3, when μ and φ satisfy suitable regularity assumptions (see Theorem 5.7), (4.11) becomes:

$$\int \varphi(x, \nabla_{\mu} u) \, a(u) \, d\mu = \int_{\mathbb{R}} a(t) \, P_{\mu, \varphi}(\{u > t\}) \, dt .$$

5. Relaxation on $BV_{\mu,\varphi}$ and integral representation on $W_{\mu}^{1,1}$

Let $\mu \in \mathcal{R}_+$, $\varphi \in \mathcal{M}$, and let $J: L^1_\mu \to [0, +\infty]$ be the functional defined by

$$J(u) := \begin{cases} \int \varphi(x, \nabla_{\mu} u) \, d\mu & \text{if } u \in \mathcal{D} \\ +\infty & \text{if } u \in L^{1}_{\mu} \setminus \mathcal{D} \end{cases}$$
 (5.1)

In this section, we consider the relaxed functional of J defined by

$$\overline{J}(u) = \inf \left\{ \liminf_{n \to +\infty} J(u_n) : u_n \to u \text{ in } L^1_{\mu} \right\}.$$

The next theorem relates \overline{J} to the distributional notion (3.1) of (μ, φ) -total variation.

Theorem 5.1. Let $\mu \in \mathcal{R}_+$, $\varphi \in \mathcal{M}$, and let J be defined as in (5.1). Then for every $u \in L^1_\mu$ we have $\overline{J}(u) = |D_\mu u|_\varphi$; in particular $BV_{\mu,\varphi}$ is the finiteness domain of \overline{J} .

Proof. It is useful to extend φ to a metric integrand Φ defined on $\mathbb{R}^N \times \mathbb{R}^N$ by setting

$$\Phi(x,z) := \varphi(x, P_{\mu}(x)[z]) . \tag{5.2}$$

For any $z \in \mathbb{R}^N$, the map $x \mapsto \Phi(x, z)$ is μ -measurable, and Φ satisfies (2.5), (2.6), and (2.7) on $\mathbb{R}^N \times \mathbb{R}^N$. Moreover, if we identify $T^*\mu$ with $T\mu$ through the canonical scalar product on \mathbb{R}^N and we use the homogeneity of Φ , it turns out that the Fenchel conjugate $\Phi^*(x,\cdot)$ of $\Phi(x,\cdot)$ is

$$\Phi^*(x, z^*) = \begin{cases} 0 & \text{if } z^* \in T_{\mu}(x), \ \varphi^o(x, z^*) \le 1 \\ +\infty & \text{otherwise} \end{cases}, \quad (x, z^*) \in \mathbb{R}^N \times \mathbb{R}^N . \quad (5.3)$$

In terms of the integrand Φ , the functional (5.1) can be written as $J(u) = \int \Phi(x, \nabla u) d\mu$ if $u \in \mathcal{D}$, and $J(u) = +\infty$ if $u \in L^1_{\mu} \setminus \mathcal{D}$. Then we can use such expression for J in order to compute \overline{J} : this allows to closely follow the proof of [5, Theorem 3.1], to which we refer for the details. Since J is convex, there holds $\overline{J} = J^{**}$ [20, Theorem 5], where J^{**} is defined as the double Fenchel transform of J in the duality between L^1_{μ} and L^{∞}_{μ} .

Let A be the densely defined linear operator from L^1_{μ} to $(L^1_{\mu})^N$ given by $A(u) = \nabla u$ with domain $D(A) := \mathcal{D}$; denoting by A^* the adjoint of A, we have $D(A^*) = X_{\mu} \subseteq (L^{\infty}_{\mu})^N$, $A^* : D(A^*) \ni \sigma \mapsto -\operatorname{div}(\sigma \mu) \in L^{\infty}_{\mu}$. Hence, by [5, Theorem 5.1] we have

$$J^*(v) = \inf \left\{ \int \Phi^*(x,\sigma) d\mu : \sigma \in X_\mu, A^*\sigma = v \right\}, \quad v \in L_\mu^\infty.$$

Arguing exactly as in the proof of Theorem 3.1 of [5], we get

$$J^{**}(u) = \sup \left\{ -\langle \operatorname{div}(\sigma\mu), u \rangle - \int \Phi^*(x, \sigma) \, d\mu : \sigma \in X_\mu \right\} , \quad u \in L^1_\mu .$$

Therefore taking into account (5.3), and recalling (4.2), we have for every $u \in L^1_u$

$$\overline{J}(u) = \sup \{ -\langle \operatorname{div}(\sigma \mu), u \rangle : \sigma \in \mathcal{K} \} = |D_{\mu} u|_{\varphi} .$$

Remark 5.2. Notice that $\overline{J} = \overline{J'}$ for any functional J' with $\overline{J} \leq J' \leq J$ on L^1_{μ} . This in particular applies for

$$J'(u) := \begin{cases} \int \varphi(x, \nabla_{\mu} u) \, d\mu & \text{if } u \in W_{\mu}^{1,1} \\ +\infty & \text{if } u \in L_{\mu}^{1} \setminus W_{\mu}^{1,1} \end{cases}.$$

Indeed $J' \leq J$. Moreover, since $J'(u) \geq \int \sigma \cdot \nabla_{\mu} u \, d\mu = -\langle \operatorname{div}(\sigma \mu), u \rangle$ for any $u \in W_{\mu}^{1,1}$ and $\sigma \in \mathcal{K}$, passing to the supremum over $\sigma \in \mathcal{K}$ and using Theorem 5.1 we get $J' \geq \overline{J}$.

We next give an integral representation result for the (μ, φ) -total variation on the Sobolev space $W^{1,1}_{\mu}$. Let $\mu \in \mathcal{R}_+$, $\varphi \in \mathcal{M}$ and \mathcal{K} be given by (4.2). We define a new integrand $h: \mathbb{R}^N \times \mathbb{R}^N \to [0, +\infty)$ by

$$h(x,z) := \mu - \underset{\sigma \in \mathcal{K}}{\operatorname{ess sup}} \left\{ \sigma(x) \cdot z \right\} . \tag{5.4}$$

It is easy to check that the restriction of h to $T\mu$ belongs to the class \mathcal{M} ; in view of Lemma 5.5 below, this restriction coincides with φ under suitable regularity assumptions.

Theorem 5.3. Let $\mu \in \mathcal{R}_+$, $\varphi \in \mathcal{M}$, and let h be defined by (5.4). Then the following representation formula of the (μ, φ) -total variation holds:

$$|D_{\mu}u|_{\varphi} = \int h(x, \nabla_{\mu}u) d\mu , \quad u \in W_{\mu}^{1,1} .$$
 (5.5)

Proof. By applying Theorem 5.1 and using (2.3), we get

$$\overline{J}(u) = \sup_{\sigma \in \mathcal{K}} \left\{ -\langle \operatorname{div}(\sigma \mu), u \rangle \right\} = \sup_{\sigma \in \mathcal{K}} \left\{ \int \sigma \cdot \nabla_{\mu} u \, d\mu \right\} , \qquad u \in W_{\mu}^{1,1} . \tag{5.6}$$

We notice that the subset S(u) of L^1_{μ} defined by $S(u) := \{\sigma \cdot \nabla_{\mu} u : \sigma \in \mathcal{K}\}$ is stable by smooth partitions of unity. Indeed let $\sigma_1, \sigma_2, \ldots, \sigma_l$ be elements of \mathcal{K} and let $\alpha_1, \alpha_2, \ldots, \alpha_l$ belong to \mathcal{D} , with $\alpha_i \geq 0$ and $\sum_{i=1}^l \alpha_i = 1$. By the convexity of $\varphi^o(x, \cdot)$, $\sigma := \sum_{i=1}^l \alpha_i \sigma_i$ still satisfies $\varphi^o(x, \sigma(x)) \leq 1$ μ -a.e.; moreover, since $\operatorname{div}(\sigma \mu) = \sum_{i=1}^l [\alpha_i \operatorname{div}(\sigma_i \mu) + (\nabla \alpha_i \cdot \sigma_i)\mu]$, we have also $\sigma \in X_{\mu}$. Applying the commutation result between supremum and integral proved in [7, Theorem 1], and taking into account (5.6) and (5.4), we conclude, for $u \in W^{1,1}_{\mu}$,

$$\overline{J}(u) = \int \mu - \operatorname{ess \, sup}_{\sigma \in \mathcal{K}} \{ \sigma \cdot \nabla_{\mu} u \} \ d\mu = \int h(x, \nabla_{\mu} u) \ d\mu \ ,$$

that is
$$(5.5)$$
.

As a consequence of Theorem 5.3, we get the following chain rule formula on $W_u^{1,1}$.

Theorem 5.4. Let $\mu \in \mathcal{R}_+$ and $u \in W^{1,1}_{\mu}$. Then for any \mathcal{L}^1 -negligible set $N \subset \mathbb{R}$ it holds

$$\nabla_{\mu} u = 0 \qquad \mu\text{-a.e. on } u^{-1}(N) ;$$
 (5.7)

moreover, for any $a \in L^{\infty}(\mathbb{R})$, setting $A(t) := \int_0^t a(s) ds$, $A \circ u$ belongs to $W^{1,1}_{\mu}$, and the following chain rule holds:

$$\nabla_{\mu}(A \circ u) = a(u)\nabla_{\mu}u \qquad \mu\text{-a.e.} . \tag{5.8}$$

Proof. We first prove that $A \circ u$ belongs to $W^{1,1}_{\mu}$ and that (5.8) holds under the assumption $A \in \mathcal{C}^{\infty}(\mathbb{R})$. Let $\{u_n\} \subset \mathcal{D}$ be a sequence converging to u in $W^{1,1}_{\mu}$. Then $A \circ u_n \in \mathcal{D}$ for every n, and projecting onto the tangent space to μ the usual chain rule, we get $\nabla_{\mu}(A \circ u_n) = a(u_n)\nabla_{\mu}u_n$; since $a(u_n)\nabla_{\mu}u_n \to a(u)\nabla_{\mu}u$ in measure μ , and since a is bounded, by Vitali's convergence criterion we get that $\nabla_{\mu}(A \circ u_n) \to a(u)\nabla_{\mu}u$ in L^1_{μ} . This implies by definition that $A \circ u \in W^{1,1}_{\mu}$ and that $\nabla_{\mu}(A \circ u) = a(u)\nabla_{\mu}u$.

Let $\varphi(x,z) := |z|$, and let h be the function defined in (5.4) associated with φ . Then, using Theorem 5.3, we get

$$\int a(u)h(x,\nabla_{\mu}u) d\mu = \int h(x,\nabla_{\mu}(A\circ u)) d\mu$$

$$= |D(A\circ u)|_{\mu,\varphi} = \int_{\mathbb{R}} a(t)P_{\mu,\varphi}(\{u>t\}) dt .$$
(5.9)

One can check that (5.9) still holds if we replace the \mathcal{C}^{∞} function a by the characteristic function of a Borel subset $N \subset \mathbb{R}$: indeed N can be approximated from the exterior and from the interior respectively by open and compact sets, which in turn can be approximated respectively by an increasing or a decreasing sequence of smooth functions.

In particular, let us take $a = \chi_N$ in (5.9), where $N \subset \mathbb{R}$ is \mathcal{L}^1 -negligible. We get

$$\int_{u^{-1}(N)} h(x, \nabla_{\mu} u) d\mu = \int_{N} P_{\mu, \varphi}(\{u > t\}) dt = 0.$$

Then, recalling the definition (5.4) of h, it follows that $\nabla_{\mu}u(x) \in T_{\mu}^{\perp}(x)$ for μ -a.e. $x \in u^{-1}(N)$. As by construction $\nabla_{\mu}u(x) \in T_{\mu}(x)$ for μ -a.e. x, this implies (5.7).

It remains to prove that (5.8) holds for any $a \in L^{\infty}(\mathbb{R})$. Let $\{a_n\}$ be a sequence of \mathcal{C}^{∞} functions bounded in $L^{\infty}(\mathbb{R})$ and converging to a \mathcal{L}^1 -a.e. Then $A_n \circ u \to A \circ u$ in L^1_{μ} . Let N be a negligible subset of \mathbb{R} such that $a_n(t) \to a(t)$ for every $t \in \mathbb{R} \setminus N$. We have $a_n(u) \to a(u)$ μ -a.e. on $\mathbb{R}^N \setminus u^{-1}(N)$, which implies by (5.7) that $a_n(u) \nabla_{\mu} u \to a(u) \nabla_{\mu} u$ μ -a.e. Since we know that $\nabla_{\mu}(A_n \circ u) = a_n(u) \nabla_{\mu} u$ for every n, it follows from the completeness of $W^{1,1}_{\mu}$ that the sequence $\{A \circ u_n\}$ converges in $W^{1,1}_{\mu}$, hence its limit is $A \circ u$ and (5.8) holds.

Our aim now is to compare the integrands h and φ . We will adopt the notation $h_1 \leq h_2$ (or equivalently $h_1(x, z) \leq h_2(x, z)$) and $h_1 \equiv h_2$ to denote the following relations between metric integrands of the class \mathcal{M} :

$$h_1 \preceq h_2 \iff h_1(x,z) \leq h_2(x,z) \text{ for all } x \in \mathbb{R}^N \setminus E, \text{ with } \mu(E) = 0, z \in T_{\mu}(x);$$

 $h_1 \equiv h_2 \iff h_1 \preceq h_2 \text{ and } h_2 \preceq h_1.$

Next, we associate with φ a lower semicontinuous regularization (with respect to μ) by setting

$$\overline{\varphi}_{\mu}(x,z) := \sup \left\{ \phi(x) \cdot z : \phi \in \mathcal{C}^{N} , \phi(x) \cdot z \leq \varphi(x,z) , P_{\mu} \circ \phi \in X_{\mu} \right\}.$$
 (5.10)

It is easy to check that $\overline{\varphi}_{\mu}$ belongs to the class \mathcal{M} when restricted to $T\mu$ (note however that the equality $\overline{\varphi}_{\mu} = +\infty$ will occur mostly on the complement of $T\mu$).

The following comparison result holds.

Lemma 5.5. Let $\mu \in \mathcal{R}_+$, $\varphi \in \mathcal{M}$, and let h, $\overline{\varphi}_{\mu}$ be defined by (5.4) and (5.10) respectively. Then

$$\overline{\varphi}_{\mu} \leq h \leq \varphi . \tag{5.11}$$

Proof. Let \mathcal{K} be defined by (4.2) and set

$$\mathcal{C}_{\mu} := \left\{ P_{\mu} \circ \phi : \phi \in \mathcal{C}^{N}, \ P_{\mu} \circ \phi \in X_{\mu} , \ \phi(x) \cdot z \leq \varphi(x, z) \right\},$$

$$\mathcal{K}_{\mu} := \left\{ \sigma \in (L_{\mu}^{\infty})^{N} : \sigma(x) \in T_{\mu}(x) , \ \varphi^{o}(x, \sigma(x)) \leq 1 \text{ for } \mu \text{ -a.e. } x \right\}.$$

Note that a field σ in \mathcal{K}_{μ} is not necessarily in X_{μ} , since in the definition of \mathcal{K}_{μ} we have skipped the (non local) condition on $\operatorname{div}(\sigma \mu)$.

Since $\mathcal{C}_{\mu} \subseteq \mathcal{K} \subseteq \mathcal{K}_{\mu}$, we have, for μ -a.e. x in \mathbb{R}^N and for all $z \in T_{\mu}(x)$:

$$\overline{\varphi}_{\mu}(x,z) = \mu - \underset{\sigma \in \mathcal{C}_{\mu}}{\operatorname{ess sup}} \{ \sigma(x) \cdot z \} \leq \mu - \underset{\sigma \in \mathcal{K}}{\operatorname{ess sup}} \{ \sigma(x) \cdot z \} = h(x,z)$$

$$\leq \mu - \underset{\sigma \in \mathcal{K}_{\mu}}{\operatorname{ess sup}} \{ \sigma(x) \cdot z \} = \sup \{ z \cdot z^{*} : z^{*} \in T_{\mu}(x) , \varphi^{o}(x,z^{*}) \leq 1 \}$$

$$= \varphi(x, P_{\mu}(x)[z]).$$

This completes the proof of (5.11).

Remark 5.6. The following examples, in which we have $\overline{\varphi}_{\mu} \equiv h$, show that the equivalence $h \equiv \varphi$ may not hold, due to the lack of regularity either of φ or of μ .

(i) Let N=1, let $\mu=\mathcal{L}^1 \sqcup (0,1)$, let $F\subset (0,1)$ be a closed set with empty interior such that $\mathcal{L}^1(F)>0$ and let us set

$$\varphi(x,z) := \begin{cases} |z| & \text{if } x \in F \\ 0 & \text{if } x \notin F \end{cases}.$$

Then one can check that \mathcal{K} is reduced to $\{0\}$, hence $h \equiv 0$, while φ is by definition nonzero on a set of positive measure μ .

(ii) Let N = 1, let $\varphi(x, z) = |z|$, let F be as in the example i), and let $\mu = a(x)\mathcal{L}^1 \sqcup (0, 1)$, where

$$a(x) := \begin{cases} 2 & \text{if } x \in F \\ 1 & \text{if } x \in (0,1) \setminus F. \end{cases}$$

For any $\sigma \in \mathcal{K}$, we have $|a\sigma| \leq 1$ on (0,1): indeed $a\sigma$ is continuous, because $\frac{d}{dx}(a\sigma) \in L^{\infty}(0,1)$, and it holds $|a\sigma| \leq 1$ on the dense set $(0,1) \setminus F$. Hence $|\sigma| \leq a^{-1}$ μ -a.e. for any $\sigma \in \mathcal{K}$; moreover, for any constant $\lambda \leq 1$, the function $\sigma(x) := \lambda (a(x))^{-1}$ belongs to \mathcal{K} . By definition (5.4) it follows that $h(x,z) = a(x)^{-1}|z|$, and in particular that we do not have $h \equiv \varphi$.

In order to avoid the pathological-type behaviours described in Remark 5.6, we are led to introduce the following assumption on μ :

$$\mathcal{V}_{\mu} := \{ \phi \in \mathcal{C}_0^N : P_{\mu} \circ \phi \in X_{\mu} \} \text{ is dense in } \mathcal{C}_0^N . \tag{5.12}$$

This condition will also be useful in Section 6, and it can be shown that it is related to the regularity of the mean curvature vector $H(\mu) := \operatorname{div}(P_{\mu}\mu)$ of μ [4].

Theorem 5.7. Let $\mu \in \mathcal{R}_+$ satisfy (5.12), and let $\varphi \in \mathcal{M}$ be a lower semicontinuous metric on $T\mu$ such that (3.2) holds. Then $\overline{\varphi}_{\mu} \equiv \varphi$. In particular, it holds

$$|D_{\mu}u|_{\varphi} = \int \varphi(x, \nabla_{\mu}u) d\mu , \qquad u \in W_{\mu}^{1,1} .$$

Proof. By Lemma 5.5, it is enough to show that $\varphi \preceq \overline{\varphi}_{\mu}$. Let t < 1, and let $\phi \in \mathcal{C}^N$ such that $\phi(x) \cdot z \preceq t\varphi(x,z)$. Then by (5.12) there exists a sequence $\{\phi_n\} \subseteq \mathcal{V}_{\mu}$ which converges uniformly to ϕ . For n large enough, we have $\|\phi_n - \phi\|_{\infty} \leq (1-t)C^{-1}$, where C is the positive constant appearing in (3.2); thus, there exists \bar{n} such that, for $n > \bar{n}$,

$$\phi_n(x) \cdot z \leq \|\phi_n - \phi\|_{\infty} |z| + |\phi(x) \cdot z|$$

$$\leq (1 - t)C^{-1} |z| + t\varphi(x, z) \leq \varphi(x, z) .$$

By definition (5.10), we deduce

$$\phi(x) \cdot z = \lim_{n \to +\infty} \phi_n(x) \cdot z \preceq \overline{\varphi}_{\mu}(x, z) ;$$

then, using also the lower semicontinuity assumption on φ , we get (see for instance [9, Lemma 2.2.3])

$$t\varphi(x,z) = \sup \left\{ \phi(x) \cdot z : \phi \in \mathcal{C}^N , \phi(x) \cdot z \le t\varphi(x,z) \right\} \preceq \overline{\varphi}_{\mu}(x,z) .$$

Since t < 1 was arbitrary, it follows $\varphi \leq \overline{\varphi}_{\mu}$.

6. Integral representation on $BV_{\mu,\varphi}$

The natural generalization of Theorem 5.3 would be an integral representation for the (μ, φ) -total variation of the type

$$|D_{\mu}u|_{\varphi} = \int h(x, D_{\mu}u) , \qquad u \in BV_{\mu,\varphi} , \qquad (6.1)$$

for some metric integrand h and some element $D_{\mu}u \in \mathcal{R}^{N}$. Here and in the following, the notation must be intended in the usual sense of integration theory, namely

$$\int h(x, D_{\mu}u) = \int h(x, \nu_{\mu}^{u}(x)) d|D_{\mu}u| ,$$

where $|D_{\mu}u|$ is the total variation measure of $D_{\mu}u$, and ν_{μ}^{u} is the density of $D_{\mu}u$ with respect to $|D_{\mu}u|$.

In order to have (6.1), we ask whether it is possible to find a vector measure $D_{\mu}u$ which yields such an integral representation. This question turns out to be quite delicate, and we will prove in Example 6.4 that it has, in general, a negative answer. In fact, as we will show, this problem is directly related to the possibility of finding a closed extension \overline{T} of the (densely defined) linear operator T defined by

$$T:L^1_\mu\to\mathcal{R}^N\quad,\quad D(T):=W^{1,1}_\mu\quad,\quad Tu:=(\nabla_\mu u)\ \mu\ ,$$

where \mathcal{R}^N is endowed with the weak star topology. Recall that \overline{T} , if it exists, is unique and its graph coincides with the closure $\overline{G(T)}$ in $L^1_{\mu} \times \mathcal{R}^N$ of the graph G(T) of T. Unfortunately, the closability of T is not satisfied for a general measure μ (see again Example 6.4 below, where the closure of the graph of T fails to be a graph). The following lemma gives a necessary and sufficient condition on μ for the closability of T.

Lemma 6.1. Let $\mu \in \mathcal{R}_+$. Then T is closable if and only if (5.12) holds. In this case, $\overline{T}u$ is the vector-valued measure determined by

$$\langle \overline{T}u, \phi \rangle_{(\mathcal{R}^N, \mathcal{C}_0^N)} := -\langle u, \operatorname{div}[(P_\mu \phi)\mu] \rangle , \qquad \phi \in \mathcal{V}_\mu ,$$
 (6.2)

and we have $BV_{\mu} \subseteq D(\overline{T})$.

Proof. Recalling that \mathcal{R}^N is endowed with the weak star topology, the adjoint operator $T^*: \mathcal{C}_0^N \to L_\mu^\infty$ has domain $D(T^*) = \mathcal{V}_\mu$ and is defined by $T^*\phi := -\operatorname{div}[(P_\mu\phi)\mu]$ for all $\phi \in \mathcal{V}_\mu$. Since $\overline{G(T)} = [\mathcal{J}(G(T^*))]^\perp$, where $\mathcal{J}: L_\mu^1 \times \mathcal{R}^N \ni (u,\lambda) \to (-\lambda,u) \in \mathcal{R}^N \times L_\mu^1$ [8, II.6], we have

$$\overline{G(T)} = \left\{ (u, \lambda) \in L^1_{\mu} \times \mathcal{R}^N : \langle \lambda, \phi \rangle_{(\mathcal{R}^N, \mathcal{C}^N_0)} := -\langle u, \operatorname{div}[(P_{\mu}\phi)\mu] \rangle, \ \phi \in \mathcal{V}_{\mu} \right\}.$$
 (6.3)

Thus, $\overline{G(T)}$ is a graph if and only if the linear subspace of \mathcal{R}^N given by $\{\lambda \in \mathcal{R}^N : (0,\lambda) \in \overline{G(T)}\} = \mathcal{V}_{\mu}^{\perp}$ reduces to $\{0\}$, that is if and only if \mathcal{V}_{μ} is dense in \mathcal{C}_0^N . In this case, $\overline{G(T)}$ coincides with the graph of the operator \overline{T} given by (6.2). Whenever $u \in BV_{\mu}$, applying (3.1) (with $\varphi(x,z) = |z|$), we find that there exists a positive constant C such that

$$|\langle u, \operatorname{div}[(P_{\mu}\phi)\mu] \rangle| \leq C \|P_{\mu}\phi\|_{(L^{\infty}_{\mu})^{N}} \leq C \|\phi\|_{(L^{\infty}_{\mu})^{N}}, \qquad \phi \in \mathcal{V}_{\mu}.$$

Therefore
$$BV_{\mu} \subseteq D(\overline{T})$$
.

Given $\mu \in \mathcal{R}_+$ satisfying (5.12) and $u \in BV_{\mu}$, we set $D_{\mu}u := \overline{T}u$. Notice that $D_{\mu}u = (\nabla_{\mu}u) \mu$ whenever $u \in W_{\mu}^{1,1}$. Then we can derive the following

Lemma 6.2. Let $\mu \in \mathcal{R}_+$ satisfy (5.12) and let $\{u_n\}$ be a sequence in $W_{\mu}^{1,1}$ such that

$$u_n \to u \quad in \ L^1_\mu \quad , \quad \sup_n \int |\nabla_\mu u_n| \ d\mu < +\infty \ .$$

Then $u \in BV_{\mu}$ and $(\nabla_{\mu}u_n) \mu \to D_{\mu}u$ weakly star in \mathbb{R}^N .

Proof. The sequence $\{(u_n, (\nabla_{\mu}u_n) \mu)\}$ is precompact in $L^1_{\mu} \times \mathcal{R}^N$ and, by definition of \overline{T} , any of its cluster points (u, λ) belongs to $G(\overline{T})$. Therefore the whole sequence converges to $(u, \overline{T}u)$. It remains to check that u belongs to BV_{μ} , which follows from the lower semicontinuity of the (μ, φ) -total variation when $\varphi(x, z) = |z|$ and from Remark 5.2. We have indeed

$$|D_{\mu}u|_{\varphi} \leq \liminf_{n \to +\infty} |D_{\mu}u_n|_{\varphi} = \liminf_{n \to +\infty} \int |\nabla_{\mu}u_n| d\mu < +\infty.$$

Let $\mu \in \mathcal{R}_+$ satisfy (5.12). We are going to prove that, for any smooth and coercive $\varphi \in \mathcal{M}$, (6.1) holds with $h = \varphi$ provided the following additional regularity assumption on μ is fulfilled:

$$\sup \left\{ \langle u, \operatorname{div} \left[(P_{\mu} \phi) \mu \right] \rangle : \phi \in \mathcal{V}_{\mu} , |\phi| \leq 1 \right\} = \sup \left\{ \langle u, \operatorname{div} (\sigma \mu) \rangle : \sigma \in X_{\mu} , |\sigma| \leq 1 \text{ μ-a.e.} \right\}.$$

$$(6.4)$$

Notice that conditions (5.12) and (6.4) are both satisfied when we take $\mu = a\mathcal{H}^k \sqcup M$ as in Example 3.2. Indeed in that case (5.12) is satisfied because \mathcal{V}_{μ} contains $\mathcal{C}_c^{\infty}(\mathbb{R}^N; \mathbb{R}^N)$ (which happens whenever μ has mean curvature in $(L_{\mu}^{\infty})^N$, see also Remark 5.6), while (6.4) can be checked by using local coordinates and approximation by convolution.

Theorem 6.3. Let $\mu \in \mathcal{R}_+$ such that (5.12) and (6.4) hold. Assume that $\varphi \in \mathcal{M}$ satisfies the coercivity condition (3.2) and admits a continuous extension on the whole of $\mathbb{R}^N \times \mathbb{R}^N$. Then

$$|D_{\mu}u|_{\varphi} = \int \varphi(x, D_{\mu}u) , \qquad u \in BV_{\mu} . \tag{6.5}$$

Proof. Denote by G(u) the right hand side of (6.5). Let us first show that $|D_{\mu}u|_{\varphi} \geq G(u)$. We can assume that $|D_{\mu}u|_{\varphi}$ is finite. By Theorem 5.1, there exists a sequence $\{u_n\} \subset \mathcal{D}$ such that $u_n \to u \in L^1_{\mu}$ and $\int \varphi(x, \nabla_{\mu}u_n) d\mu \to |D_{\mu}u|_{\varphi}$. By Lemma (6.2), we deduce that $u \in BV_{\mu}$ and $(\nabla_{\mu}u_n) \mu \to D_{\mu}u$ weakly star in \mathcal{R}^N . By the continuity of (the extension of) φ , we can apply Reshetnyak's lower semicontinuity theorem [18, Theorem 2], which gives the claimed inequality:

$$|D_{\mu}u|_{\varphi} = \lim_{n \to +\infty} \int \varphi(x, \nabla_{\mu}u_n) d\mu \ge \int \varphi(x, D_{\mu}u) = G(u).$$

In order to show the converse inequality, let us fix $u \in BV_{\mu}$ and divide the proof into in two steps. As a first step, we show that (6.5) holds when $\varphi(x, z) := |z|$. Indeed, by (6.4), (6.2), and (5.12), we get:

$$\begin{split} |D_{\mu}u|_{\varphi=|\cdot|} &= \sup \Big\{ \langle u, \operatorname{div}(\sigma\mu) \rangle \ : \ \sigma \in X_{\mu} \ , |\sigma| \leq 1 \ \mu\text{-a.e.} \Big\} \\ &= \sup \Big\{ \langle u, \operatorname{div} \big[(P_{\mu}\phi)\mu \big] \rangle \ : \ \phi \in \mathcal{V}_{\mu} \ , \ |\phi| \leq 1 \Big\} = \int |D_{\mu}u| \ . \end{split}$$

As a second step, we pass to consider the case of a general metric $\varphi \in \mathcal{M}$ as in the assumptions. By the first step, we can choose a suitable sequence $\{u_n\} \subset \mathcal{D}$ such that $u_n \to u \in L^1_\mu$ and $\int |\nabla_\mu u_n| d\mu \to \int |D_\mu u|$. By the lower semicontinuity of the (μ, φ) -total variation, and by Reshetnyak's continuity theorem [18, Theorem 3], we infer

$$|D_{\mu}u|_{\varphi} \leq \liminf_{n \to +\infty} \int \varphi(x, \nabla_{\mu}u_n) d\mu = \int \varphi(x, D_{\mu}u) = G(u).$$

Finally, let us give an example of measure μ for which condition (5.12) is not satisfied (and in fact the closure of the graph of the operator T is not a graph). The measure μ under consideration is the one dimensional Hausdorff measure on a Lipschitz (but not \mathcal{C}^1) curve S in \mathbb{R}^2 . We find that, if E is a set whose boundary (in S) meets the singular part of S, the explicit expression for the (μ, φ) -perimeter of E (see formula (6.6)) is not compatible with an integral representation of the form $|D_{\mu}u|_{\varphi} = \int \varphi(x, \alpha_u)$, for a vector-valued measure α_u . Indeed, in order to have such an integral representation, the map $\varphi \mapsto |D_{\mu}u|_{\varphi}$ needs to be linear for any $u \in BV_{\mu,\varphi}$, while (6.6) shows that this is not the case for $u = \chi_E$.

Example 6.4. Let N=2 and $\mu:=\mathcal{H}^1 \sqcup S$, where

$$S := S_+ \cup S_-$$
, $S_+ := \{(t, t) : t \in [0, 1]\}$, $S_- := \{(t, -t) : t \in [-1, 0]\}$.

Clearly the tangent space $T_{\mu}(x)$ is μ -a.e. one-dimensional and it is determined by the direction $\nu(x) := \nu_{\pm}$ respectively for $x \in S_{\pm} \setminus \{O\}$, where O is the origin of \mathbb{R}^2 and $\nu_{\pm} := (1/\sqrt{2}, \pm 1/\sqrt{2})$. Let $\varphi \in \mathcal{M}$ not depend explicitly on x, i.e. $\varphi(x, z) = \varphi(z)$ for $x \in S \setminus \{O\}$ and $z \in \mathbb{R}\nu(x)$.

We claim that, if we take $E := S_+$, there holds

$$P_{\mu,\varphi}(E) = \min\left\{\varphi(\nu_{+}), \, \varphi(\nu_{-})\right\}. \tag{6.6}$$

Let us prove (6.6). Let $\gamma: I:=[-\sqrt{2},\sqrt{2}]\to S$ be a parametrization by arc-length of $S\setminus\{O\}$ such that $\gamma(\pm\sqrt{2}):=A^{\pm}:=(\pm1,1)$ and $\gamma(0)=O$. A measurable vector field σ such that $\sigma(x)\in T_{\mu}(x)$ for μ -a.e. x can be written as

$$\sigma(x) = \tilde{\sigma}(\gamma^{-1}(x)) \nu(x) , \qquad x \in S \setminus \{O\} ,$$

where $\tilde{\sigma}$ is a scalar function defined \mathcal{L}^1 -a.e. on I. One can check that $\sigma \in X_{\mu}$ if and only if $\tilde{\sigma}$ belongs to $W_0^{1,\infty}(I)$ and in that case $\operatorname{div}(\sigma\mu) = (\tilde{\sigma}' \circ \gamma^{-1}) \mu$ where $\tilde{\sigma}'$ coincides with the \mathcal{L}^1 -a.e. defined derivative of the Lipschitz function $\tilde{\sigma}$.

Let $u = \chi_E$. Recalling (3.1), letting \tilde{u} such that $u = \tilde{u} \circ \gamma^{-1}$, and integrating by parts, we

get

$$P_{\mu,\varphi}(E) := \sup \left\{ -\langle \operatorname{div}(\sigma\mu), u \rangle : \sigma \in X_{\mu}, \, \varphi^{o}(\sigma(x)) \leq 1 \text{ for } \mu\text{-a.e. } x \right\}$$

$$= \sup \left\{ -\int_{-\sqrt{2}}^{\sqrt{2}} \tilde{u}(s) \, \tilde{\sigma}'(s) \, ds : \, \tilde{\sigma} \in W_{0}^{1,\infty}(I), \, \varphi^{o}(\tilde{\sigma}(s)\nu) \leq 1 \text{ for } \mathcal{L}^{1}\text{-a.e. } s \in I \right\}$$

$$= \sup \left\{ \tilde{\sigma}(0) : \, \tilde{\sigma} \in W_{0}^{1,\infty}(I), \, \varphi^{o}(\tilde{\sigma}\nu) \leq 1 \text{ for } \mathcal{L}^{1}\text{-a.e. } s \in I \right\}$$

$$= \sup \left\{ \lambda \in \mathbb{R} : \, \max\{\varphi^{o}(\lambda\nu_{+}), \varphi^{o}(\lambda\nu_{-})\} \leq 1 \right\}$$

$$= \min \left\{ \varphi(\nu_{+}), \, \varphi(\nu_{-}) \right\}.$$

We conclude the paper with three further observations concerning Example 6.4.

- (i) The formula (6.6) seems rather disconcerting. The key point is that the condition $\sigma \in X_{\mu}$ allows the existence of tangent fields σ whose norm is continuous but whose direction jumps at the corner O. Computing the concentration of energy at O for a given u leads to individuate the optimal jump of σ .
- (ii) By Theorem 5.1, we have $P_{\mu,\varphi}(E) = \overline{J}(\chi_E)$, hence there exists a sequence $\{u_n\} \subset W^{1,1}_{\mu}$ converging to χ_E in L^1_{μ} such that $P_{\mu,\varphi}(E) = \lim_{n \to +\infty} J(u_n)$. For instance we can take $u_n := v_n \circ \gamma^{-1}$, where $\{v_n\}$ is any sequence of non decreasing functions in $W^{1,1}(I)$ such that $v_n(-\sqrt{2}) = 0$, $v_n(\sqrt{2}) = 1$, $v_h \to \chi_E \circ \gamma \mathcal{L}^1$ -a.e. on I and $v_n(0) = 1$ if $\varphi(\nu_+) \geq \varphi(\nu_-)$ and $v_n(0) = 0$ otherwise.
- (iii) The closure in C_0^2 of the subspace V_{μ} associated with μ defined in (5.12) is given here by

$$\overline{\mathcal{V}}_{\mu} = \left\{ \phi \in \mathcal{C}_0^2 : \phi(O) \in \mathbb{R}(1,0) \right\} . \tag{6.7}$$

This can be derived from the fact that, if we ask that $\phi \in X_{\mu}$ when ϕ is a tangent vector field in $(\mathcal{C}^1(S \setminus \{O\}))^2$, we find the necessary condition $\phi(O^+) \cdot \nu_+ = \phi(O^-) \cdot \nu_-$, where $\phi(O^\pm) := \lim_{S_{\pm}\ni x\to O} \phi(x)$. Thus, by (6.7), $\overline{\mathcal{V}}_{\mu}$ is a strict closed subspace of \mathcal{C}_0^2 and therefore the operator T is not closable, or equivalently $\overline{G(T)}$ is not a graph. In fact, one can check by using (6.3) and (6.7) that $(\chi_E, (t, 1/\sqrt{2}) \delta_O)$ belongs to $\overline{G(T)}$ for any real t.

References

- [1] M. Amar, G. Bellettini: A notion of total variation depending on a metric with discontinuous coefficients, Ann. Inst. H. Poincaré 11 (1994) 91–133.
- [2] G. Anzellotti: Pairings between measures and bounded functions and compensated compactness, Ann. Mat. Pura Appl. 135 (1983) 293–318.
- [3] G. Anzellotti, S. Delladio, G. Scianna: BV functions over rectifiable currents, Ann. Mat. Pura Appl. 170 (1996) 257–296.
- [4] G. Bouchitté, G. Buttazzo, I. Fragalà: Mean curvature of a measure and related variational problems, Ann. Scuola Norm. Sup. Pisa. Cl. Sci. 25(4) (1997) 179–196.
- [5] G. Bouchitté, G. Buttazzo, P. Seppecher: Energies with respect to a measure and applications to low dimensional structures, Calc. Var. Partial Differential Equations 5 (1997) 37–54.

- [6] G. Bouchitté, G. Dal Maso: Integral representation and relaxation of convex local functionals on $BV(\Omega)$, Ann. Scuola Norm. Sup. Pisa. Cl. Sci. 20(4) (1988) 398–420.
- [7] G. Bouchitté, M. Valadier: Integral representation of convex functionals on a space of measures, J. Funct. Anal. 80 (1988) 398–420.
- [8] H. Brézis: Analyse Fonctionnelle, Masson, Paris, 1993.
- [9] G. Buttazzo: Semicontinuity, Relaxation, and Integral Representation in the Calculus of Variations, Pitman Res. Notes Math. Ser 207, Longman, Harlow, 1989.
- [10] C. Castaing, M. Valadier: Convex Analysis and Measurable Multifunctions, Lecture Notes in Math. 580, Springer Verlag, Berlin, 1977.
- [11] E. De Giorgi: Su alcune generalizzazioni della nozione di perimetro, In: Equazioni Differenziali e Calcolo delle Variazioni (G. Buttazzo, A. Marino, M.K.W. Murthy, Eds.), Quaderno UMI 39, Pitagora (1995) 237–250.
- [12] L. C. Evans, R. F. Gariepy: Measure Theory and Fine Properties of Functions, Studies in Advanced Math., CRC Press, Ann Harbor, 1992.
- [13] H. Federer: Geometric Measure Theory, Springer-Verlag, Berlin, 1969.
- [14] I. Fragalà, C. Mantegazza: On some notions of tangent space to a measure, Proc. Roy. Soc. Edinburgh, 129A (1990) 331–342.
- [15] B. Franchi, R. Serapioni, F. Serra Cassano: Meyers-Serrin type theorems and relaxation of variational integrals depending on vector fields, Houston J. Math. 22 (1996) 859–889.
- [16] P. Malliavin: Stochastic Analysis, Springer-Verlag, Berlin, 1997.
- [17] U. Massari: Insiemi di perimetro finito su varietà, Boll. Un. Mat. Ital. 6, III-B (1984) 149–169.
- [18] Y. G. Reshetnyak: Weak convergence of completely additive vector measures on a set, Siberian Math. J. 9 (1968) 1039–1045 (translation of Sibirskii Math. Zh. 9 (1968) 1386– 1394).
- [19] R. T. Rockafellar: Convex Analysis, Princeton University Press, Princeton, 1972.
- [20] R. T. Rockafellar: Conjugate duality and optimization, CBMS-NSF Regional Conf. Ser. in Appl. Math. 16, SIAM, Philadelphia (1974).
- [21] Z. Shen: Curvature, distance and volume in Finsler geometry, Institute des Hautes Etudes Scientifiques, Preprint (1997).
- [22] L. Simon: Lectures on Geometric Measure Theory, Proc. Centre for Math. Anal., Australian Nat. Univ. 3 (1983).
- [23] M. Valadier: Multi-applications mesurables à valeurs convexes compactes, J. Math. Pures Appl. 50 (1971) 265–297.