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We introduce and study the space of bounded variation functions with respect to a Radon measure p on
RN and to a metric integrand ¢ on the tangent bundle to . We show that it is equivalent to view such
space as the class of p-integrable functions for which a distributional notion of (u, ¢)-total variation is
finite, or as the finiteness domain of a relaxed functional. We prove a quite general coarea-type formula
and then we focus our attention to the problem of finding an integral representation for the (u, ¢)-total
variation.
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1. Introduction

In this paper we define the space of bounded variation functions with respect to a Radon
measure 4, and we study some of its properties. Our approach is inspired by [5], where the
Sobolev-type spaces Wl}’p associated with a measure y are introduced, and the relaxation
of integral functionals on Wl}’p is studied for p > 1. We focus our attention on the
relaxation in LL of integral functionals with respect to p, where the integrand is a sub-
linear function . Following the geometric approach proposed in [1], where RY is viewed
as a Banach space endowed with a Finsler metric, one can look at the integrand ¢ as
a metric: this leads to give, for any v € L} (R"), a natural distributional definition of
(i, p)-total variation |D,ul,. The consistency of our definition with the usual notion of
|Du| when p is the Lebesgue measure and ¢ is the euclidean metric is proved in Section
3 (see Proposition 3.1). We next introduce the space BV, , as the class of all functions
u € L,(RY) with [D,ul, < 4oo0.

In Section 4 we enlighten the interest of our (u, )-total variation by showing a quite ge-
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neral coarea formula in L}L. When applied to particular measures u, this formula clearly
encompasses previous generalizations (see [13], [3], [15], [21]). We stress that our proof
technique, suggested by the use of distributional definitions, is different from the classical
methods based on the approximation with smooth functions [12]; namely we use a com-
mutation argument from [7] between supremum and integral. As a corollary, we show
that the chain rule holds for functions in the Sobolev space WI}’I.

In Section 5 we show that |D,u|, and BV, coincide respectively with the relaxation
on L}L of an integral functional, and with its domain of finiteness (see Theorem 5.1);
furthermore, under suitable regularity assumptions, we prove an integral representation
theorem for |D,ul, on the Sobolev space W' (which is a strict subspace of BV, ).

The problem of extending this type of result out of W is quite delicate (see [6] for the
integral representation in the classical space BV (€2)), and is studied in Section 6. Here we
provide some sufficient conditions in order to have an integral representation for |D,ul,
on BV, ,; we also give a counterexample showing that such a representation does not hold
for a general measure pu.

2. Notation

For a positive integer d, let R¢ be the class of all R%-valued Borel measures with finite
total variation on RY: when d = 1, we simply denote by R the space of signed Borel
measures with finite total variation on RY, and we let R, be the subclass of R given by
all positive and finite Borel measures.

For p € R, we denote by pL E the restriction measure of i to a u-measurable subset E of

RY, and by spt p the support of u. Whenever dealing with integrals with respect to x on

RY, we omit the integration domain. For any k € [0, N), H* denotes the k-dimensional

Hausdorff measure and £” is the Lebesgue measure. If o is a vector-valued measure with

finite total variation, the polar decomposition of « is given by o = 0|a|, where |a| denotes
da

the positive total variation measure of «, and the density 6 := dal has unitary norm |«/|-

a.e. ; by writing o << pu, we mean that |«| is absolutely continuous with respect to u. For
p=1orp=+oo, weset L2 := LP(RY,dy) and (L2)" := (LP(RY,du))"; the subscript p
is omitted when = L£V. The spaces of continuous functions, of continuous vector fields,
and of continuous vector fields vanishing at infinity on RY are denoted respectively by C,
CN, C'. Unless otherwise specified, the symbol of duality (-, -) is used for the pairing
between L7° and L}l, while the euclidean norm and scalar product between two vectors z
and 2’ of RY are denoted by |- | and z - 2’. For a subset E of RY we denote by xp the
characteristic function of F.

We set
X, ={oe (LX) : divion) € LY} ; (2.1)

in (2.1) we call div(op) the distribution whose action on a test function ¥ € D := C(RY)
is given by

(div(on), D)=~ [0+ Vudu, 22)
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In other words, an element o of (L°)" belongs to X, if and only if there exists a constant
C € [0,400) such that | [ o-Vy|du < C||9||1 for every ¢ € D. The explicit expression
of div(opu) for a special choice of y is given in (3.5).

Similarly to [5, Section 2], we define the tangent space to u at a point z € RY as

T,(x) == pn — ess U{a(x) o€ Xt

in particular, for any o € X, we have o(z) € T,,(z) for p-a.e. x.

We always assume that 7),(x) is not reduced to zero p-a.e. , and we set
Tu:={(z,2) : v€RY, z€T,(z)}.

When p = LY L, where  is an open subset of RY with Lipschitz continuous boundary,
we have T,(z) = RV for p-a.e. z, while for 4 = H¥L M, where M is a Lipschitz k-
manifold, 7, coincides p-a.e. with the usual tangent space to M. For further properties
of T, we refer to [14].

For ¢ € D and p-a.e. z € RY, the symbol V, ¢ (x) stands for P,(z)[Ve(z)], where
P,(z)[-] is the orthogonal projection of RY onto T),(z).

A Sobolev-type space Wl}’l can be defined, following [5], as the completion of D with
respect to the norm [|9[| 2 +|V,.9|(z1)~ . Thus any function u € W' admits a tangential

gradient V  u € (LL)N , and the following integration by parts formula holds:
—(div(op),u) = /o -Vyudp, ceX,,ueWyt. (2.3)

For the proof of (2.3), which is the same as in the case p > 1, we refer to [5].

If (7;)scs is an arbitrary family of u-measurable closed-valued multifunctions from RY to
RY, we denote by u — ess sup;c; 7; the multifunction 7 from RY to RV characterized (up
to u-negligible sets) by the two properties (see [23]):

(i) mi(x) Cn(z) for p-ae. z ,Viel;

(ii) » is minimal with respecto to inclusion p-a.e. (i.e. for any other p-measurable and

closed-valued multifunction # such that, for every i € I, n;(z) C 6(z) for p-a.e. x,
there holds n(z) C 6(z) for p-a.e. x).

We say that a function ¢ : Ty — [0, +00) is a metric integrand, and we write ¢ € M, if
the following conditions are satisfied:
for any 2 € RV | the map x — ¢(z, P,()[2]) is y-measurable on RY ;

for p-a.e. z € R | the map z — ¢(z, 2) is convex on T),(z) ;
there exists C' > 0 such that ¢(z,2) < C|z| for (z,2) € Tu ;
o(z,tz) = to(x, 2) for (x,2) € T, t>0.

—~ o~~~
-~ O Ot
~— — — ~—

We associate with ¢ the dual metric ¢° defined on the dual bundle 7%y of T'u as

¢ (z,2") ==sup{z-2" : z€T,(x), o(z,z) <1}.
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Notice that z - 2* < ¢(z, 2) ¢°(, %) for any z € T, (z), 2* € T;(x), and that ¢* = ¢.

Furthermore, the metric ¢° still enjoys properties (2.4), (2.5), and (2.7) on T*u (see for
instance [10]).

Finally, we recall that, if J is a proper functional defined on a Banach space X with
values in R U {+oc}, the relaxed functional J of J is defined as the greatest lower semi-
continuous functional less than or equal to J on X (see [9]), while the Fenchel con-
jugate functional J* of J is defined on the dual space of X (see [19]) by J*(z*) :=
sup{(z, z*) — J(z) : z € X}.

3. The (u, p)-total variation

Some generalized notions of bounded variation functions have been proposed in the li-
terature: for instance the theory of perimeters on a smooth manifold has been studied
in [17], while more recently the class of BV functions over rectifiable currents has been
introduced in [3]. Our definition reads as follows.

Let € Ry and ¢ € M. For every function u € L, we define the (u, )-total variation
|D,u|, of u as

|Dyul, :=sup {—(div(op),u) :0 € X,, ¢’(z,0(z)) <1 for p-a.e. z} (3.1)

and we set

BV, :={ue L, : |Dyul, < +oo} .
In particular, if E is a pu-measurable subset of RY such that x, € Lb, we define the
(i, p)-perimeter P, ,(E) of E as P, ,(E) := |D,Xg|, -

It immediately follows that the functionals v — |D,ul, and E — P, ,(FE) are lower
semicontinuous with respect to the convergence in L}L. Notice also that, whenever ¢
satisfies a coercivity-type condition of the form

p(,2) > C 2|, (2,2) €Tp, (3.2)

the space BV, , is independent of ¢; in particular, when ¢(z,2) = |z|, BV, , will be
denoted by BV,,.

Let us now show that, if y = LY Q and ¢(z, z) = |2, then |D,ul, and BV, , reduce to
the usual notions |Du|(€2) and BV (), respectively.

To this aim, we recall (see [2], Theorem 1.9 with p = N and ¢ = N/(N — 1)) that, if
Q) C RY is a bounded open set with Lipschitz boundary, u € BV (Q), and o € (L*°(Q))¥
with dive € LY (), then it is possible to define, in a natural way, a real valued measure
(0, Du) satisfying [, (o, Du) < ||o]|ze(e)|Dul(£2), and a trace [0 - v] € L®(9) on 9N of
the normal component of o, such that the following Gauss-Green formula holds:

/ udivo dz + /(0, Du)= [ [o-v]judH ™! (3.3)
Q Q a9
(here v is the outward unit normal to 0€2).

Proposition 3.1. Let Q C RY be a bounded open set with Lipschitz boundary, let p =
LYLQ and ¢(x,2) == |z|. Then |Dyul, = |Du|(Q) for every u € L, = L'(Q), hence
BV, , = BV(Q).
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Proof. Given o € (L*(Q2))" with dive € L*(Q), and % € D, (3.3) yields:

mwwmwmmnz—/

Q

o-wdx:/szdivada:—/m[a-ywd%fv—l.

In order to have o € X, the right hand side member needs to be controlled by the norm
of ¥ in L*(Q2). This yields [o - v] = 0 H" ! a.e. on 0. Therefore

X,={oeL®Q)N : divo € L®(Q), [o-v]=0 H" '-ae. on 90} . (3.4)

The inclusion (CH(2))Y C X, and the fact that ¢°(z,z) = |z| imply that |D,ul, >
|Dul(€2), hence BV, , C BV (). It remains to prove that |D,u|, < [Du|(€2). For any
u € BV (Q) and 0 € X, by (3.3) and (3.4) we have

~(div(on),u) = |

udivada::/(a,Du).
Q Q

Hence, if ||o|[(zeoo)y < 1, we get —(div(op),u) < [Du|(S2) . Passing to the supremum
over o, we deduce |D,ul, < |Du|(2). As a consequence, BV, , = BV (Q). O

Example 3.2. A natural case to be considered is when y = aH*¥L M, where M is a
smooth connected k-manifold and ¢ is a continuous metric integrand on the tangent
bundle to M. If the density a is a positive function in L N C" with Vlega € (L)Y,
and o is a C! tangent field to M, one can easily check, using the divergence theorem on
a smooth manifold (see for instance [22]), that o € X, as

div(op) = (div, o+ 0 - Vioga)u (3.5)

where div, o := Y.~ (V,0%);. Moreover, essentially due to the smoothness of spt u, we
will show in Section 6 that, as in the classical case p = LV (), there exists a vector valued
measure D,u which allows to give an integral representation of the (, ¢)-total variation
on the whole space BV, ,.

Example 3.3. We point out that the choice

N N 1/2
W= W’%()\l- . ..-/\N)’% exp (—fo/&) LY oo(z) = (anzf) ,
i=1 i=1

where \;, n;,2 =1,..., N, are suitable positive real numbers, could relate, when N — +o0,
the space BV, ,to a theory of perimeters in infinite-dimensional Hilbert spaces (see [11]
and [16]).

4. Coarea formula

Several generalizations of the classical coarea—formula for BV functions [12, Section 5.5]
have been proposed in the literature (see for instance [13, 3.2.22], [3, Proposition 2.13],
[15, Theorem 2.3.5], [21, Theorem 17.1]). We now present a coarea-type formula, which
holds on L}L for any 4 € R, and any ¢ € M, provided one adopts the distributional
definition of (u, ¢)-total variation introduced in the previous section. As a consequence
we obtain the stability of BV, under composition (see Corollary 4.2 below). We let
{u>t}:={zeR" :u(z) >t}
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Theorem 4.1. Let p € Ry and ¢ € M. Then for any u € L, the map t — P, ,({u >
t}) is Lebesgue-measurable and the following coarea-type formula holds:

Dutly = [ Pugllu> eyt (4.1)
Proof. Define
K:={ceX, : ¢(x,0(x)) <1 for p-a.e. z} . (4.2)
Let us fix u € L, and define for every o € K
£a(0) = ~(Xogediviom) . tER.

The function ¢ — p ({u > t}) is bounded and non-increasing on R, hence continuous at
all t € R\ D, with D at most countable. Then f, is also continuous on R\ D for any
o € X,. Applying the Lindel6f’s Theorem to the family of continuous functions f, on
R\ D, there exists a countable sequence {0, } C K such that

sup{f,(t) :0 € K} = L' —ess sup{f,(t) : 0 € K} = sup f,,(t) , Vte R\ D . (4.3)

Therefore

P, ,({u>t}) =sup f,,(t) , L'-ae teR, (4.4)

which entails the measurability statement of the theorem.

Notice now that, for any ¢ € X, there holds
—(u, div(op)) = —(u*, div(op)) + (u”, div(op))

+o00 0
= _/O (X{usty, div(op) dt+/ — X{ustp, div(op)) dt (4.5)

- /R fo(t)dt | )

where we used Fubini’s theorem and the fact that (1,div(ou)) = 0 for any o € X,.
If we pass to the supremum over o € K in (4.5), using (4.3) and (4.4), we get

|Dyul, < /RPu,w({u > t})dt, u € Li :

It remains to prove the difficult part of (4.1), namely

D], > /R Po,(u>1t))dt, well. (4.6)

First, we observe that to prove (4.6) it is enough to verify that

/90(:6, V,u)dp > /RPu,w({“ > t})dt, ueD. (4.7)
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Indeed, by Theorem 5.1 below, given u € L}L there exists a sequence {u,} C D converging
to u in L such that

| Dyul, = nl_l)Ij{l@/gO(:E, V) dp

Possibly passing to a subsequence (still denoted by {us}), we have x;, -, = X{y5y in L,

for £'-a.e. t € R. Then applying (4.7) to every u,, and passing to the limit as n — +o0,
by the L}L—lower semicontinuity of the (u, ¢)-perimeter and Fatou’s Lemma we have

/ Poo(fu> 1)) dt < / lim inf B, ({u, > 1)) dt < lim inf / Py (fun > 1)) dt

—+o0 n—+oo

< 1 =
nhrf o(z, V,u,) dp = |Dyul,
that is (4.6).

We are thus reduced to prove (4.7). Let u € D. We introduce the following subset C(u)
of L'(R):

C(u) := {iaifm‘ , 0; €K, a; € D(R;[0,1]), i%‘:l, mEN} .

=1 1=1
We claim that
/gp(aj, V,u)dp > sup /gdt . (4.8)
geC(u) JR

Indeed, let g = Y 1", @ify; € C(u), where 0; € K, o; € D(R;[0,1]), and > " oy = 1.
Define A;(t) := f_too a;(s)ds for t € R, i = 1,...,m. Then we have the chain rule
identity V,(A;ou) = a;(u)V  u. Using Fubini’s theorem and noticing that ¢(z, V u(x)) >
V,u(z) - o(x) for p-a.e. x whenever o belongs to K, we get

m

JLo@dt= [ =0 3 s divions) de = 3 (o divioun)

=1

=Z/V (Ajou)-o;dy = Z/ozZ Vuu-o;du
Z/ oz, V,u)dp = /go(x,V,Lu)d,u,

which proves the claim (4.8).

By construction, the family C(u) enjoys the following property (stability by partitions of

unity): for [ € N, if ¢1,..., g belong to C(u) and (i, ..., [ are functions in D(R; [0, 1])
!

with Z B; =1, then there holds Z B;g; € C(u). This enables us to apply an argument
7j=1 7j=1
about commutation between supremum and integral (see [7, Theorem 1]) which entails

sup /gdt = / L' —esssupg | dt .
gec(u) JR R geC(u)
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Since C(u) contains {f, : 0 € K}, by (4.8) and (4.4) we deduce

/ (x,V,u)dp > sup /gdt /( — ess supg) dt
g€eC(u gec(
> / <£1 — ess sup f(,) dt
R oek

Finally, one can check directly by the definition of p-essential supremum that the choice
of the family {o,} C K in (4.3) entails

(4.9)

P.,({u>t})=L"—esssupf, . (4.10)
ogeK
From (4.9) and (4.10) we get (4.7), and this completes the proof of (4.1). O

Corollary 4.2. Let A : R = R be a Lipschitz function. Then for every u € BV, ,, it
holds Aow € BV, ,. Moreover if A is monotone non decreasing, we can write

DA Wl = [ at) Puslu> 1))t (411)

where a(t) denotes the a.e. defined derivative of A.

Proof. Let us assume first that A is monotone non decreasing. Set B(t) := sup{s :
A(s) < t}; then B(t) is a non decreasing function in BV},.(R) such that Bo A(t) =t and
{Aou >t} ={u> B(t)} for a.e. t. Applying (4.1) to A(u) , we deduce

DA Wl = [ Pupllu> Bl dt.

We deduce (4.11) by noticing that the functions f(s) := fA(S) P, ,({u > B(t)})dt and

—0oQ
= [° . Puo({u > t})a(t) dt are absolutely continuous, non decreasing and have a.e.
the same derlvatlve Therefore they coincide and have the same limit as s — +o0o that is

[ Pl > BODdt = [ Pugllu> hiate)a

R

Since a(t) is bounded, it follows that for v € BV, ,, |[D(Aou)|,, < +00 and so Aowu
belongs to BV, ,. This implication can be extended to the general case, by writting
Aou = (A;ou) — (A_ ou) where A; and A_ denote primitives of the positive and of

the negative parts of a(t). O

Remark 4.3. In light of Section 5, the left hand side of (4.11) can be written in an
integral form with respect to s when u € W', Indeed the chain rule V,(Aou) = a(u)Vu
applies, see Theorem 5.4. Thus, due to Theorem 5.3, when p and ¢ satisfy suitable
regularity assumptions (see Theorem 5.7), (4.11) becomes:

[ @V aw = [ alt) Pulin > e
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5. Relaxation on BV, , and integral representation on Wl}’l

Let u€ Ry, o € M, and let J: L}L — [0, +00] be the functional defined by

olx,Vyu)du ifueD
J(U,): f ( ,U) ‘ .
+oo ifue L,\D.

In this section, we consider the relaxed functional of J defined by

n—-+0o

J(u) = inf {lim inf J(u,) : u, = v in LL} .

The next theorem relates J to the distributional notion (3.1) of (u, ¢)-total variation.

Theorem 5.1. Let p € Ry, ¢ € M, and let J be defined as in (5.1). Then for every
u € L, we have J(u) = |Dyul,; in particular BV, is the finiteness domain of .J.

Proof. It is useful to extend ¢ to a metric integrand ® defined on RY x RY by setting

®(z,2) == p(z, Pu(z)[2]) - (5-2)

For any 2z € RY, the map z — ®(z,2) is u-measurable, and ® satisfies (2.5), (2.6), and
(2.7) on RY x RY. Moreover, if we identify T*u with Ty through the canonical scalar
product on RY and we use the homogeneity of ®, it turns out that the Fenchel conjugate
&*(x,-) of &(x,-) is

O*(x,2%) = , (z,2*) e RN x RV . (5.3)

0 if 2* € Ty (), ¢°(z,2*) <1
400 otherwise

In terms of the integrand @, the functional (5.1) can be written as J(u) = [ ®(z, Vu) du
if u € D, and J(u) = 400 if u € L, \ D. Then we can use such expression for .J in order

to compute J: this allows to closely follow the proof of [6, Theorem 3.1], to which we
refer for the details. Since J is convex, there holds J = J** [20, Theorem 5], where J** is
defined as the double Fenchel transform of J in the duality between Lt and L.

Let A be the densely defined linear operator from L, to (L,)" given by A(u) = Vu with
domain D(A) := D; denoting by A* the adjoint of A, we have D(A*) = X, C (L)Y,
A*: D(A*) 5 0 — —div(op) € L. Hence, by [5, Theorem 5.1] we have

J*(v) =inf{/<1>*(:c,a)du roeX,, A*azv} , veLy.
Arguing exactly as in the proof of Theorem 3.1 of [5], we get
J*(u) = sup {—(div(a,u),u) —/(P*(x,a) du : o € Xu} , uel,.

Therefore taking into account (5.3), and recalling (4.2), we have for every u € L}L

J(u) = sup {—(div(op),u) :0 € K} =|D,ul, .
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Remark 5.2. Notice that J = J' for any functional J' with J < J' < J on L,. This in
particular applies for

J’(U,) — f 90(3:’ vuu) d/J, ifue Wl}’l
: +00 iquLlli\Wﬁ,l _

Indeed J' < J. Moreover, since J'(u) > [ oV, udp = —(div(op), u) for any u € W'

and o € K, passing to the supremum over ¢ € K and using Theorem 5.1 we get J' > J.

We next give an integral representation result for the (u, ¢)-total variation on the Sobolev
space Wil Let p € Ry, ¢ € M and K be given by (4.2). We define a new integrand
h:RN x RYN — [0,+00) by

h(z,z) := u—ess sup {o(x) - z} . (5.4)

o€
It is easy to check that the restriction of h to T’y belongs to the class M; in view of
Lemma 5.5 below, this restriction coincides with ¢ under suitable regularity assumptions.

Theorem 5.3. Let p € Ry, o € M, and let h be defined by (5.4). Then the following
representation formula of the (u, ¢)-total variation holds:

|D,ul, = /h(z,Vuu) du, uweWwp'. (5.5)

Proof. By applying Theorem 5.1 and using (2.3) , we get

oek ceK

J(u) = sup {—(div(op),u)} = sup{/a-vuud,u} ,  ueWpl. (5.6)

We notice that the subset S(u) of L, defined by S(u) := {0 -V,u : o € K} is stable by
smooth partitions of unity. Indeed let o1, 09, ..., 0; be elements of K and let oy, s, ...,
belong to D, with «; > 0 and 2221 «; = 1. By the convexity of ¢°(z,-), 0 := Zé:l Q; 0;
still satisfies °(z, o (z)) < 1 p-a.e.; moreover, since div(o u) = S20_, o div(oyu) + (Vo -
o;)it], we have also o € X,,. Applying the commutation result between supremum and

integral proved in [7, Theorem 1], and taking into account (5.6) and (5.4), we conclude,
for u € Wﬁ’l,

J(u) = /,u —ess sup{o -V, u} dy = /h(x,V“u) du ,
oek

that is (5.5). m

As a consequence of Theorem 5.3, we get the following chain rule formula on Wﬁ’l.

Theorem 5.4. Let p € Ry and u € Wﬁ’l. Then for any L'- negligible set N C R it
holds

Vuu=0 p-a.e. onu '(N) ; (5.7)
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moreover, for any a € L®(R), setting A(t) := fot a(s)ds, Aowu belongs to Wl}’l, and the
following chain rule holds:

Vu(Aou)=a(u)V,u p-a.e. . (5.8)

Proof. We first prove that Aou belongs to W' and that (5.8) holds under the assumption
A € C*(R). Let {u,} C D be a sequence converging to v in Wp'. Then Aowu, € D
for every n, and projecting onto the tangent space to p the usual chain rule, we get
V(Ao u,) = a(u,)Vuy,; since a(u,)Vyu, — a(u)V,u in measure p, and since a is
bounded, by Vitali’s convergence criterion we get that V,(A4 o u,) — a(u)V,u in L.
This implies by definition that Aowu € W' and that V,(A o u) = a(u)V ,u.

Let ¢(z,z) := |z|, and let h be the function defined in (5.4) associated with . Then,
using Theorem 5.3, we get

/a(u)h(x, V,u)dp = /h(x,Vu(Aou))d,u
(5.9)

— D(Aow)|,, = /R a(t) Py ({u > 1)) dt .

One can check that (5.9) still holds if we replace the C* function a by the characteristic
function of a Borel subset N C R: indeed N can be approximated from the exterior and
from the interior respectively by open and compact sets, which in turn can be approxi-
mated respectively by an increasing or a decreasing sequence of smooth functions.

In particular, let us take a = xx in (5.9), where N C R is £L!-negligible. We get

/ h(z, V) dp = / Puy(fu>t})di=0.

u~1(N) N

Then, recalling the definition (5.4) of h, it follows that V,u(z) € T, (z) for p-a.e. = €
u'(N). As by construction V,u(z) € T,(z) for p-a.e. z, this implies (5.7).

It remains to prove that (5.8) holds for any a € L*°(R). Let {a,} be a sequence of C*
functions bounded in L*(R) and converging to a £L'-a.e. . Then A, ocu — Aow in L.
Let N be a negligible subset of R such that a,(t) — a(t) for every t € R\ N. We have
an(u) = a(u) p-a.e. on RY \ u=!(N), which implies by (5.7) that a,(v)V,u — a(u)V,u
p-a.e. . Since we know that V,(A4, o u) = a,(u)V,u for every n, it follows from the
completeness of W' that the sequence {Aowu,} converges in W', hence its limit is Aou
and (5.8) holds. O

Our aim now is to compare the integrands h and ¢. We will adopt the notation h; < hy
(or equivalently hy(x, z) < ho(z,2)) and hy = hsy to denote the following relations between
metric integrands of the class M:

hi=hy <=  hi(z,2) < hy(z,2) forallz € RY \ E, with u(E) =0, z € T, () ;
hi = hy <<— hi < hy and he < hy .

Next, we associate with ¢ a lower semicontinuous regularization (with respect to y) by
setting

D, 2) == sup{(b(a:) z:0elN, p(x)-2 X p(z,2), P,op e Xu} ) (5.10)
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It is easy to check that B, belongs to the class M when restricted to T'u (note however
that the equality i, = +00 will occur mostly on the complement of Tu).

The following comparison result holds.

Lemma 5.5. Let p € Ry, ¢ € M, and let h, P, be defined by (5.4) and (5.10) respec-
tively. Then

Py 2 h 2. (5.11)
Proof. Let K be defined by (4.2) and set

Cpo={Puod : €C", PogpeX,, é(z) 2z 2 ¢(z,2)},
1

Ku={oe LX) : o(x) € Tu(z), ¢’(z,0(z)) <1 for p-ae z}.

Note that a field o in K, is not necessarily in X, since in the definition of X, we have
skipped the (non local) condition on div(o p).

Since C, C K C K, we have, for p-a.e. z in RV and for all z € T,(z):

©,(x,2) = p—ess sup{o(wr) - 2} < p—ess sup{o(z) - z} = h(z, 2)
oeCy gek

< p—esssup{o(z) -z} =sup{z-2" : 2" €T,(z), ¢°(z,2") <1}
0EK,

= p(z, Pu(x)[z])-
This completes the proof of (5.11). O

Remark 5.6. The following examples, in which we have ©, = h, show that the equiva-
lence h = ¢ may not hold, due to the lack of regularity either of ¢ or of u.

(i) Let N=1,let p=L'L(0,1),let F C (0,1) be a closed set with empty interior such
that £L'(F) > 0 and let us set

(2,2) = |z| ifzeF
AP0 ifa g F

Then one can check that K is reduced to {0}, hence h = 0, while ¢ is by definition
nonzero on a set of positive measure p.
(i) Let N =1,let p(x,2) = |z|, let F be as in the example i), and let p = a(x)L*L(0, 1),

where
2 ifzekF
a(x) == .
1 ifze(0,1)\F.

For any 0 € K, we have |ac| < 1 on (0,1) : indeed ao is continuous, because
4 (ac) € L>=(0,1), and it holds |ac| < 1 on the dense set (0,1)\ F. Hence |o| < a™
p-a.e. for any o € K; moreover, for any constant A < 1, the function o(z) :=
A(a(z))~! belongs to K. By definition (5.4) it follows that h(z,z) = a(z)!|z|, and

in particular that we do not have h = .
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In order to avoid the pathological-type behaviours described in Remark 5.6, we are led to
introduce the following assumption on p:

V,i={p€C) : P,ope X, }isdensein(C) . (5.12)

This condition will also be useful in Section 6, and it can be shown that it is related to
the regularity of the mean curvature vector H(u) := div(P,u) of p [4].

Theorem 5.7. Let p € Ry satisfy (5.12), and let ¢ € M be a lower semicontinuous
metric on Ty such that (3.2) holds. Then @, = ¢. In particular, it holds

|D,ul, = /gp(a:, V,u)dy, ue Wyt

Proof. By Lemma 5.5, it is enough to show that ¢ < @,. Let t < 1, and let ¢ € CV
such that ¢(z) - z < ty(z,2). Then by (5.12) there exists a sequence {¢,} C V, which
converges uniformly to ¢. For n large enough, we have ||¢,, — ¢||oc < (1 —1¢)C~!, where C
is the positive constant appearing in (3.2); thus, there exists 7 such that, for n > 7,

On(2) - 2 2 ||bn — Ollocl2| + |D(2) - 2|
< (1 =t)C7 2| + to(x, 2) < (x, 2) -

By definition (5.10), we deduce

then, using also the lower semicontinuity assumption on ¢, we get (see for instance [9,
Lemma 2.2.3])

tp(z,2) = sup {o(z) 2 : pECY | $(2) 2 < to(w,2)} < Pl 7).
Since ¢ < 1 was arbitrary, it follows ¢ < . O

6. Integral representation on BV,

The natural generalization of Theorem 5.3 would be an integral representation for the
(i, )-total variation ot the type

|D,ul, = /h(x,Duu) , u€ BV,,, (6.1)

for some metric integrand h and some element D,u € R". Here and in the following, the
notation must be intended in the usual sense of integration theory, namely

/h(x,DNu) _ /h(x,l/;j(m))d|Duu| ,

where |D,u| is the total variation measure of D,u, and v} is the density of D,u with
respect to |D,ul.
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In order to have (6.1), we ask whether it is possible to find a vector measure D,u which
yields such an integral representation. This question turns out to be quite delicate, and
we will prove in Example 6.4 that it has, in general, a negative answer. In fact, as we will
show, this problem is directly related to the possibility of finding a closed extension T of
the (densely defined) linear operator 7" defined by

T:L,—»RY , DT):=Wp' , Tu:=(Vuu)u,

where R” is endowed with the weak star topology. Recall that T, if it exists, is unique
and its graph coincides with the closure G(T) in L, x RY of the graph G(T) of T.
Unfortunately, the closability of T is not satisfied for a general measure u (see again
Example 6.4 below, where the closure of the graph of T fails to be a graph). The following
lemma gives a necessary and sufficient condition on pu for the closability of 7.

Lemma 6.1. Let p € Ry. Then T is closable if and only if (5.12) holds. In this case,
Tu s the vector-valued measure determined by

(Tu, O)(rv ey = —(u, div[(P,o)p]) pEV,, (6.2)

and we have BV, C D(T).

Proof. Recalling that R” is endowed with the weak star topology, the adjoint operator
T* : €)' — L has domain D(T*) = V, and is defined by T*¢ := — div[(P,¢)u] for all

¢ € V,. Since G(T) = [T (G(T*))]*, where J : L), x RN 3 (u,A) = (=\u) € RN x L,
[8, I1.6], we have

GT) = {(u,) € L x RY + (A, @)rn e = —(w, div[(Bug)l) , 6 €V} (63)

Thus, G(T) is a graph if and only if the linear subspace of R" given by {\ € RV
(0,A) € G(T)} =V, reduces to {0}, that is if and only if V, is dense in C3'. In this case,

G(T) coincides with the graph of the operator T given by (6.2). Whenever u € BV,
applying (3.1) (with ¢(z,2) = |z|), we find that there exists a positive constant C' such
that

[ div[(Pd)ul) | < Ol Publlugmy < Clldllugs . 6€ Vi

Therefore BV,, C D(T). O

Given p € Ry satisfying (5.12) and u € BV, we set D,u := Tu. Notice that D,u =
(V,u) i whenever u € Wl}’l. Then we can derive the following

Lemma 6.2. Let u € Ry satisfy (5.12) and let {u,} be a sequence in W' such that
Uy = u i Ly sup/\VMun|du < 400 .
n

Then u € BV, and (V,un) p — D,u weakly star in RY.
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Proof. The sequence {(un, (V,un) ,u)} is precompact in L}L x RYN and, by definition of T,

any of its cluster points (u, ) belongs to G(T). Therefore the whole sequence converges
to (u,Tu). It remains to check that u belongs to BV, which follows from the lower
semicontinuity of the (u, ¢)-total variation when ¢(x, z) = |z| and from Remark 5.2. We
have indeed

< Timi o .
|D,ul, < 17111—13-112(){‘|Duun‘(‘0 lrllgli&f/ |V | dp < 400
U

Let p € R, satisfy (5.12). We are going to prove that, for any smooth and coercive
¢ € M, (6.1) holds with h = ¢ provided the following additional regularity assumption
on 4 is fulfilled:

sup { (u, div [(Puo)u]) = 6 €V, , I <1} =

(6.4)
sup {(u, diviop)) : c€ X, , |o| <1 ,u-a.e.} :

Notice that conditions (5.12) and (6.4) are both satisfied when we take y = aH* L M as
in Example 3.2. Indeed in that case (5.12) is satisfied because V, contains C°(RY;RY)
(which happens whenever p has mean curvature in (LZO)N , see also Remark 5.6), while
(6.4) can be checked by using local coordinates and approximation by convolution.

Theorem 6.3. Let u € R such that (5.12) and (6.4) hold. Assume that p € M satisfies
the coercivity condition (3.2) and admits a continuous extension on the whole of RN x RY .
Then

D), = /(p(a;,Duu) . uweBv,. (6.5)

Proof. Denote by G(u) the right hand side of (6.5). Let us first show that |D,ul, > G(u).
We can assume that |D,u|, is finite. By Theorem 5.1, there exists a sequence {u,} C D
such that u, — u € L, and [ o(x,V,u,) dp — [Dyul,. By Lemma (6.2), we deduce that
u € BV, and (V,u,) p — D,u weakly star in RY. By the continuity of (the extension
of) ¢, we can apply Reshetnyak’s lower semicontinuity theorem [18, Theorem 2], which
gives the claimed inequality:

Dyl = lim_ [ ol V) ds> [ ola, D) = Glw).

In order to show the converse inequality, let us fix v € BV, and divide the proof into in
two steps. As a first step, we show that (6.5) holds when ¢(z, 2) := |z|. Indeed, by (6.4),
(6.2), and (5.12), we get:

|Dyu]p=|.| = sup {(u, diviop)) : o€ X, ,lo| <1 u—a.e.}

=sup{<u,div [(Pud)u]) : dEV,, |6 < 1} :/|Duu|.
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As a second step, we pass to consider the case of a general metric ¢ € M as in the
assumptions. By the first step, we can choose a suitable sequence {u,} C D such that
up = u € L, and [ |V, up|dp — [ |Dyul. By the lower semicontinuity of the (u, ¢)-total
variation, and by Reshetnyak’s continuity theorem [18, Theorem 3|, we infer

|D,ul, < lrilr_xggf/(p(x,vuun) dp = /gp(x,Duu) =G(u) .

Finally, let us give an example of measure p for which condition (5.12) is not satisfied (and
in fact the closure of the graph of the operator 7" is not a graph). The measure p under
consideration is the one dimensional Hausdorff measure on a Lipschitz (but not C') curve
S in R?. We find that, if F is a set whose boundary (in S) meets the singular part of S, the
explicit expression for the (u, ¢)-perimeter of E (see formula (6.6)) is not compatible with
an integral representation of the form [Djul, = [ ¢(z, o), for a vector-valued measure
. Indeed, in order to have such an integral representation, the map ¢ +— |D,ul, needs
to be linear for any u € BV, ,, while (6.6) shows that this is not the case for u = xz.

Example 6.4. Let N = 2 and p := H'L S, where
S:=8,uUS , S :={tt) :te0,1]}, S :={(t~-t) :te][-1,0]} .

Clearly the tangent space T),(z) is p-a.e. one-dimensional and it is determined by the
direction v(z) = vy respectively for x € Sy \ {O}, where O is the origin of R? and
vy == (1/V2, £1/v/2). Let ¢ € M not depend explicitly on z, i.e. ¢(,2) = ¢(z) for
z € S\ {0} and z € Ry(x).

We claim that, if we take E := S, there holds

P,y (E) = min{p(v2) , o(v-)} - (6.6)

Let us prove (6.6). Let v : I := [—v/2,4/2] = S be a parametrization by arc-length of
S\ {O} such that y(£v/2) := A* := (£1,1) and 7(0) = O. A measurable vector field &
such that o(z) € T,(z) for p-a.e. = can be written as

o(z)=6(y (@) v(x), 2€S\{0},

where & is a scalar function defined £'-a.e. on I. One can check that o € X, if and only
if & belongs to W, °(I) and in that case div(ou) = (6' 0o y~!) i where &' coincides with
the L'-a.e. defined derivative of the Lipschitz function &.

Let u = xg. Recalling (3.1), letting @ such that v = 4o~~!, and integrating by parts, we
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get
P,,(E):= sup{ (div(op),u) : 0 € X,, ¢°(o(x)) <1 for p-a.e. x}
V2
= sup{ / V&' (s)ds : 6 € Wy (I), ¢°(6(s)v) < 1 for L-ae. s € I}
\/5
=sup{ (0) : Wy (1), ¢°(6v) <1 for Ll-a.e. SEI}

AeR : max{g®(\vy), °(Av_)} < 1}

— min {go(zm, pv)} .

We conclude the paper with three further observations concerning Example 6.4.

()

(iii)

The formula (6.6) seems rather disconcerting. The key point is that the condition
o € X, allows the existence of tangent fields o whose norm is continuous but whose
direction jumps at the corner O. Computing the concentration of energy at O for a
given u leads to individuate the optimal jump of o.

By Theorem 5.1, we have P, ,(E) = J(xg), hence there exists a sequence {u,} C
Wt converging to xg in L), such that P, ,(F) = lim, 4 J(u,). For instance we
can take u, := v, oy !, where {v,} is any sequence of non decreasing functions in
WHL(I) such that v,(—v2) = 0, v,(v/2) = 1, v, = xpo~vy L-a.e. on I and v,(0) = 1
if p(vy) > ¢(v_) and v,(0) = 0 otherwise.

The closure in Cj of the subspace V, associated with u defined in (5.12) is given here
by

={¢eC; : ¢(0) eR(1,0)} . (6.7)

This can be derived from the fact that, if we ask that ¢ € X, when ¢ is a tangent
vector field in (C*(S\{0}))?, we find the necessary condition $(O*)-v; = ¢(0O~)-v_,
where ¢(OF) := limg, 5,0 #(z). Thus, by (6.7), V,, is a strict closed subspace of C2

and therefore the operator T is not closable, or equivalently G(T) is not a graph. In
fact, one can check by using (6.3) and (6.7) that (xg, (t,1/v/2) 6o) belongs to G(T)
for any real ¢.
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