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The biological stimulus to multidimensional data

analysis

John GOWER1

Introduction

In the following, I shall try to summarise developments over the past 100 years that have

led to the current interest in data analysis and more particularly in multidimensional data

analysis (see the Conclusion section for a discussion of these terms). Necessarily, my

views are coloured by my own experience but I hope that some points of general interest

will emerge.

Developments may be divided into three periods: Prehistory (up to about 1950), The

Early Computer Age (up to about 1980), and the current Later Computer Age. I shall

concentrate on developments made during the first two periods and how they have

influenced current practice. I conclude with some more general comments.

Prehistory

The first half of the twentieth century was an era in which many statistical methods and

ideas were developed. We begin at the start of the 20
th

century, by when the Biometric

School was well-established at University College, London, under Karl Pearson in the

Galton Chair of Eugenics; a little later in 1911, he became the first U.K. professor of

statistics. Pearson had a special interest in anthropometry and developed many ideas that

remain in use or underpin more recent work. Of special interest to us are the Analysis of

Mixtures (Pearson, 1894), Principal Components Analysis (1901) and the Coefficient of

Racial Likeness (1926), later leading to Mahalanobis Distance (1936). A basic statistical

tool was the multinormal distribution with its linear regressions and correlation

parameters. Some early similarity coefficients belong to this period.
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R. A. Fisher developed methods for analyzing field experiments based on the Gauss

linear model, with dummy variables defining additive main effects and interactions. He

also explored (Fisher and Mackenzie, 1923) the possibility of expressing two-way

interaction multiplicatively; this, the first example of a biadditive model, required

eigenvalue calculations. Much later, Fisher’s multiplicative/biadditive model was taken

up by plant breeders interested in genotype-environment interaction and the first steps

taken into developing multiplicative models for higher order interactions.

Eigenvalue methods for determining optimal scores for the levels of categorical variables

were developed independently by Fisher (1940) and Guttman (1941); these may be seen

as forerunners of Multiple Correspondence Analysis (see Gower, 1990). Hirschfeld

(1935), later better known as H. O. Hartley, asked what scores should be given to the

levels of two categorical variables to maximize their correlation. This was an early

manifestation of the Correspondence Analysis of a two-way contingency table and a

precursor to Hotelling’s (1936) Canonical Correlation Analysis. Canonical variate

analysis, also a form of canonical analysis based on the two-sided eigenvalue problem,

with links to discriminant analysis, Mahalanobis distance and, at a formal level, with

canonical correlation, was suggested by C. R. Rao. Another Hotelling (1933) innovation

was his reformulation of principal components analysis as a method for the factor

analysis of a correlation matrix; in my opinion, this influential paper has been at the heart

of much subsequent misunderstanding and confusion. Effectively, Karl Pearson had been

concerned with approximating a data matrix X whereas Hotelling was concerned with

approximating the derived matrix X'X, give or take a normalisation/standardisation or

two. The two problems are underpinned by shared algebra, leading to similar

computations but the statistical interpretations are very different. The singular value

decomposition plays an important part in unravelling the interrelations between all these

methods and it does not help that the SVD of X is commonly computed by first

calculating the eigenstructure of X'X (see Gower, 2006 for a detailed discussion).

Although the SVD was known in an algebraic context from the 1880s, it was Eckart and

Young (1936), publishing in the first issue of Psychometrika, who established its

property, already implicit in Pearson’s work, of giving a low-rank least-squares

approximation to X.

Computational resources were very limited, so extensive use of eigenvalue and matrix

inverse calculations was prohibitive. Consequently, much of the work developed in the

first half of the twentieth century had little immediate impact on applications. Following

the computer revolution, many of the methods developed in this period came into their

own and are routinely used today, becoming the springboard for further advances.

Perhaps the greatest intellectual achievement of this period was, starting with the Wishart

(1928) distribution of the sample covariance matrix of a multinormal distribution, the

derivation of increasingly difficult functional forms for the distributions of other

multivariate statistics, mostly based on eigenvalues. Impressive as these results are, they

seem to have had little influence on subsequent developments, many arguing that they
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provide tools for testing irrelevant hypotheses. In general, formal inferential methods

have not found a place in most forms of data analysis.

The Early Computer Age

By the mid 1950s primitive electronic computers permitted the practical exploitation of

the methods that had been suggested earlier. In 1955, I myself was fortunate to be

appointed to a post at Rothamsted Experimental Station where an early electronic

computer, the Elliott-NRDC 401 had recently been installed (see Gower, 1986). This

small prototype machine had fewer than 2000 32-bit words of memory and a bizarre

machine code; nevertheless it was capable of serious work. Part of the justification for

getting this machine was to see if electronic computers might be useful in agricultural-

research statistics. As part of this remit, Frank Yates, then Head of the Rothamsted

Statistics Department, initiated what he called The Agricultural Statistics Research

Service, which encouraged collaboration with scientists throughout Britain who might

have a computational need. Applications should have agricultural or at least biological

interest, but this restriction was interpreted very broadly. On my arrival I found that work

was already in progress on a canonical variate analysis to use tooth measurements to

discriminate between populations of fossil and modern apes. At that time, it was

necessary to develop all one’s own subroutines, including those for reading and printing

numbers in decimal form, basic functions such as division, square root and logarithms, let

alone major algorithms for evaluating matrix inverses and eigenstructure.

Taxonomy

Peter Sneath’s (1958) use of the single-linkage algorithm for microbial hierarchical

classification encouraged many young taxonomists, anxious to try out the new method.

Several came to me through the Agricultural Statistics Research Service. The first was

from the Low Temperature Research Institute (food storage temperatures), followed by

several from the British Museum of Natural History, Kew, University of Oxford, and

Linguistics from Uppsala. My first program for cluster analysis could cope with up to 32

units but only by packing four similarity coefficients into each of 128 32-bit words; this

gave an accuracy of about 0.5per cent to each coefficient, good enough for most

applications. Space was insufficient to store both the program for evaluating the

similarities and the values themselves, so as soon as it was calculated, each similarity was

output to paper tape. This tape was reread by a program that performed the actual cluster

analysis and did ancillary things, such as printing trees and calculating average cluster

values.

It was clear from the outset that one had to distinguish between characters that could be

“present” or “absent” from characters that could have two (or more) comparable states

such as “red” and “yellow”. Further, “known absence” should be distinguished from

“missing” or “not known“. With slight modifications, the Jaccard and Simple Matching

similarity coefficients could cope with the simpler situations but with the wide ranging

set of taxonomic application areas, it soon became clear that these coefficients needed to

be supplemented, by developing a general coefficient of similarity that could handle the

many different types of measurement used by taxonomists. My colleagues, publishing in
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taxonomic journals, wished to cite a paper describing the general similarity coefficient

but I had written nothing, thinking that the topic was of insufficient interest, and it did not

occur to me to seek joint authorship. Eventually, I derived some mildly interesting

properties of the coefficient and in 1967 submitted a paper for publication (Gower, 1971);

I cannot recall what prompted the four year delay but it reflects a more leisurely age,

especially when one notes that the original work was done about 1960.

Plant ecologists too were ready to exploit computers. My main link was with W.T.

Williams, then Professor of Botany in the University of Southampton, later to be Chief of

the CSIRO Division of Tropical Agriculture. Working with N. J. Lambert, who was

interested in the origins and ecology of the peat bogs of the Norfolk Broads in the east of

England, Williams and Lambert (1959) had developed Association Analysis, using a chi-

squared coefficient to measure the association between pairs of quadrats as a function of

presence and absence of species. Later, Williams’ main collaborative colleague on

numerical ecology was G. N. Lance, who became Chief of the CSIRO Computing

Division and set up one of the world’s first large-scale (pan Australian) computing

networks. Originally, ecologists were concerned with one-dimensional “ordination”,

identified with ecological clines, but were becoming interested in two-dimensional (or

more) descriptions. Williams had noticed that a “Principal Components Analysis” of an

association matrix (i.e. its eigenvectors) gave acceptable two-dimensional ordinations.

The justification turned out to be that a distance proportional to the square-root of

dissimilarity was being approximated, leading to Principal Coordinates Analysis (Gower,

1966); compare the parallel psychometric development from scaling to multidimensional

scaling, with the development of Classical Scaling. An interesting reaction to the

justification of what had been a purely empirical observation was the notion that

whatever might be done by non-statisticians could expect eventual statistical validation.

Another very influential paper at this period, also emanating from the taxonomic world,

was that of Sokal and Michener (1958), which introduced the Unweighted Pair-Group

method of clustering. Gower (1967) compared this with other methods, including

Association Analysis, showing that several methods were variants of progressively

minimizing weighted sums-of squares within groups. Variant methods hinged on how

similarity between groups was recalculated after one pair had merged. Several general

formulae became available, controlled by parameters that allowed a whole range of

clustering procedures to be accommodated within a single program. The Rothamsted

programs soon fell into this class, thus allowing not only for a wide range of similarity

coefficients but also a wide range of clustering algorithms. The situation was becoming

anarchic, with taxonomists being able to select the combination of coefficient and cluster

method that best satisfied their prejudices. So, it seemed welcome, if a little curious,

when Jardine and Sibson (1967, 1971) showed that the single linkage method uniquely

satisfied a set of plausible axioms. Disappointingly, although a nice result in

mathematics, it seemed that the axioms were too stringent. Of concern to me was that the

result implied that the single linkage method was acceptable, however unsuitable the data

might be for hierarchical representation, a consequence that could be interpreted as a

strong reason for not using single linkage. Actual data might very well conform to the

axioms with a whole range of clustering methods, so we were not much further forward.
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The statistical reaction

As we have seen, much of this early work in the general area of classification was

initiated by non-statisticians and indeed by people who would not claim to have a

mathematical background. It was not always well-received by professional statisticians,

as might be perceived by reading Cormack’s (1971) review of work to that date and the

following discussion. In my opinion there were two general areas of potential

misapprehension (i) the meaning to be given to the term classification and (ii) the role of

probability. To the statistical world, ever since Fisher’s formulation of discriminant

analysis, classification meant assignment of samples to previously established classes and

this was done in a stochastic framework that could be expressed (though not by Fisher

himself) in terms of the probabilities of correct and incorrect classification. Like the

statisticians, the taxonomic world is also interested in assignment to classes, termed by

them identification, and ever since the 17
th

century had successfully used non-stochastic

hierarchical identification keys for the purpose (see Gower and Payne, 1986 for a

discussion of algorithms developed for identifying yeasts). However, taxonomists, unlike

statisticians, were equally concerned with the establishment of the classes themselves –

species, genera, families etc. - and reserved the term classification for this activity.

Forming classifications of biological populations could be expressed in a non-stochastic

framework by, so far as possible, choosing categorical characteristics that did not change

within populations - easily achievable, except for closely related populations where

quantitative variables become important and taking into account stochastic intra-

population variation is unavoidable. To some statisticians, used to handling within-

population variable quantitative variates, the proper approach to forming classes was that

of disentangling mixtures of populations, first studied in univariate form by Pearson at

the end of the nineteenth century; computers now allowed multivariate mixture problems

to be tackled. Such problems certainly exist but they are not in the mainstream of what is

meant by a taxonomic classification; further, they tend to have unpleasant statistical and

computational properties.

As I see it, the concept of the multivariate data matrix tends to blur important distinctions

that fuel confusion. To some, especially statisticians, a data matrix represents a sample of

size n from a single multivariate distribution of p usually quantitative stochastic

variables; to others, especially taxonomists, it represents n distinct populations described

by p usually non-stochastic categorical variables. The intermediate situation where the n

samples are divided into k recognized groups is very common; in the case of mixtures,

the k groups are initially undifferentiated and have to be recognized. More elaborate

structure might be imposed on the samples and we may also impose structure on the

variables, but shall not pursue that here. A further source of confusion is between a data

matrix, as just discussed, and a two-way table as used for example in correspondence

analysis or when fitting a biadditive model. The root of the problem is that these things

are all two-way arrays that cannot be distinguished by a computer and so are open to

invalid methods of analyses. The computer, or package, user has to be aware of the

different structures and what methods of analysis are appropriate to their data.
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Gower and Ross (1998) discuss further the relationships between stochastic and non-

stochastic classification methods. The lack of a stochastic element was not the only

criticism made by statisticians but also the nature of the methods based on algorithmic

recipes with no clearly stated objective model, let alone a criterion for fitting it. This is

not only a feature of classification analysis but is to be found in other areas of data

analysis to which I shall return below.

What is classification for?

Both identification trees and taxonomic classifications were expressed as tree structures.

A source of much, sometimes heated, discussion among the taxonomists themselves,

divided into the pheneticists and the cladists, was to what extent these tree structures

corresponded to evolutionary trees; special methods were developed for constructing

evolutionary trees, some of a stochastic nature and some not. Of course, it would be nice

if phenetic, cladistic and identification trees were all the same and, indeed, it is very

likely that the three are far from independent; things that look alike often, but not

necessarily, share a common evolutionary lineage; things sharing a common lineage or

which look alike will share characters useful for identification. Fundamentally,

pheneticists and cladists had different objectives and it surprised me that it was not

accepted that these might demand different classifications. What really underlies the

phenetic-cladistic controversy is that there is more than one reason for forming a

classification. When one moves beyond biological taxonomy, reasons for classification

can have no concern with evolutionary desiderata. One good general reason for forming

classes is so that they have the property that assigning new objects to these classes is

optimal in some manner. Gower (1974) developed the non-stochastic method of Maximal

Predictive Classification to form classes with the property that with assignment of an

object to a class, one could predict correctly the greatest number of properties of that

object; the class predictors are optimal for identification. Similarly, it can be shown that

classes given by mixture models are optimal for future (stochastic) discrimination. In this

way, forming classes and assigning to classes may be closely interlinked.

This dual relationship between class-formation and class-assignment seems also to be at

the root of controversies over the role of correlation between variables in classification

problems. Broadly speaking, a set of highly correlated variables are redundant in

discriminatory problem; any one will do as well as the others, so all but one may be

discarded. Yet, it is the very correlation between variables that leads us to form classes,

because it is natural to put things together that share many properties. Indeed, this is the

notion behind Maximal Predictive Classes that successfully permit the prediction of sets

of associated characters. Thus, it seems to me that when forming classes we need to

recognize correlated sets but once classes are formed, independent characters are better

for assignment. An early manifestation of this issue was the controversy over the relative

merits of Pearson‘s Coefficient of Racial Likeness, which ignores correlation, and

Mahalanobis’ D-squared, which downgrades correlated characters (see, Fisher, 1936).

The whole issue is complicated by when and how to differentiate between inter and intra

class correlation.
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Although taxonomists form classes of populations on the basis of non-stochastic

variables, there is no reason why statisticians should not form classes from populations

described by stochastic variables but this problem seems to have been neglected. When

forming classes of populations, the degree of overlap between populations may not be the

only relevant information. To see this, consider three, say, populations, two with similar

means, very different from the mean of the third population. If the third population is

much more variable than the other two, then it might be regarded as being stochastically

more similar to the first two than each of these is to the other. Nevertheless, it may be

better to place the first two populations together in a class separately from the third. In

the limit, when there is no overlap, assignment to a population may be made with

certainty but still there may be good reasons for grouping populations with similar,

though non-overlapping, measurements.

Measures of fit

Few would hold that the impressive work of the 1930s and 1940s on the functional forms

of the distributions of various multivariate statistics has been of much value in

classification work, or in other areas of data analysis, except possibly in the field of

discriminant analysis. In practice, the common tools for assessing results are the

bootstrap, jackknife and permutation tests. These are all appropriate when the milieu is of

a stochastic nature, but as we have seen in taxonomy, often it is not. Then we have two

possibilities (a) there may be a stochastic element in the choice of characters, rather than

samples, used as the basis of a classification and (b) we may be more concerned with

approximation rather than with stochastic error. Different choices of similarity

coefficients will give different results and the effects of such choices might usefully be

investigated by bootstrap-like techniques, now omitting variables rather than samples.

Approximation, is a familiar and useful idea from 18
th

century mathematics, in which

polynomials (Legendre, Laguerre,…) are used to approximate more complicated

mathematical functions. The difference between the exact function and the polynomial

approximation is systematic and nobody would claim it to have any stochastic

interpretation. It seems to me that many taxonomic classifications and matrix

approximations are often better interpreted in this way. For example, depending on the

type of data matrix (see above), a two-dimensional PCA approximation, using Eckart and

Young’s theorem, may be sometimes better interpreted as an approximation to an exact

fit in higher dimensional space, rather than one of minimizing a sum-of-squares of

stochastic residuals. I think we should more often consider returning to the 18
th

century.

One might add here that sensitivity analysis, the effect of outliers and robustness of fit are

not necessarily the prerogatives of stochastic formulations.

Many methods developed by those with a biological background were of an algorithmic

nature with no clearly expressed model or loss-function to define the best fit. To provide

a more formal framework for classification, the ultrametric property of trees, and later the

notion of additive trees, were proposed as models to be fitted by least squares. In the

early 70’s, noting that ultrametric trees could be embedded in Euclidean space, I

measured fit by the best least-squares rotation of a tree to the unconstrained Euclidean

representation of the data (later reported by Gower and Banfield, 1975). Ideally, one
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would like to minimise this criterion but this seems an even more intractable problem

than the more popular alternative of minimising the ultrametric stress criterion.

Procrustes analysis, asymmetry and biplots

Using rotations to measure the fit of trees was the start of my interest in Procrustes

analysis and it seemed to be a dead-end. Then, Alan Bilsborough from Cambridge came

to me with data on populations of fossil skulls, based on sets of variables defined by

different regions of the skull, including the jaw bone. The different parts of the skull each

gave a canonical variate analysis whose configurations represented the populations.

These configurations could be compared in pairs by Procrustes analysis to give an

association matrix for the different skull regions. In turn, these could be analysed by

MDS or other established methods to map how each part of the skull contributed to the

separation between populations (Gower, 1971). Later, it became apparent that

Procrustean methods were useful for comparing the performance of judges’ assessments

of meat carcasses, a problem I had been consulted on by the Meat Research Institute. I

developed Generalised Procrustes Analysis to compare the simultaneous performance of

several judges (Gower, 1975). This methodology is particularly useful when different

judges use different variables of their own choice, so-called free choice profiling.

Procrustes Analysis is now important in the analysis of biological shape and many further

applications and developments have emerged (see Gower and Dijksterhuis, 2006 for

further references).

Multidimensional scaling and hierarchical classification methods may be viewed as

methods for approximating a symmetric matrix of distances, dissimilarities or

similarities. Square non-symmetric tables with rows and columns labelled by different

modes of similar concepts (e.g. import/export, father/son,…) are common. Often

asymmetry was ignored by analysing the symmetric elements aij + aji but could there be

useful information in the skew-symmetric component aij - aji? Gower (1977) and

Constantine and Gower (1978) developed the necessary algebra and associated

visualisations for a least-squares approximation; Gower (1980) gave some biological

applications. The non-Euclidean geometry developed to interpret skew-symmetry in

terms of triangular areas is interesting. Other methods are available for analysing

asymmetry, including those that ignore the square nature of the table, but I think that

different mechanisms often underlie symmetry and departures from symmetry, so it can

be useful to separate the components and then examine whether there may be links

between the two parts.

I had long been aware of Ruben Gabriel’s (1971) work on biplots for PCA and biadditive

models. In PCA, this allows information on the variables to be represented as vectors,

together with the usual display of the approximate relative distances between the

samples. I had always regarded PCA as a multidimensional scaling method, so it was

natural to consider how similar information could be supplied for other MDS methods.

Gower and Harding (1988) showed how this could be done with nonlinear biplots for

quantitative variables in classical scaling, which like PCA is a projection method; Gower

(1992) showed how categorical variables could be included and later extended the
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methodology to general methods of metric and nonmetric multidimensional scaling (see

chapter 3 of Gower and Hand, 1996). It became apparent that biplot axes were axes that

could be calibrated in the same way as familiar coordinate axes, the various

generalisations depending on notions of generalisations of coordinate axes to calibrated

nonlinear and labelled convex category-regions. For categorical variables, the

calibrations are nominal, possibly ordered on a linear or nonlinear axis. These generalised

axes are used by finding the nearest marker or label to a sample point, which of course

gives normal projection for axes that form a continuum and, in particular, orthogonal

projection for linear axes. It turns out that in approximations, separate sets of axes are

required for predicting the values to be associated with a sample from those for

interpolating, or positioning, a new sample. In exact representations both sets of axes

coincide, as in classical usage. In PCA and Correspondence Analysis, based as they are

on the SVD, it is usual to interpret displays by using the inner product but the use of

projection onto calibrated axes amounts to the same thing and is easier to use – it also

allows the axes to be moved around for convenience whereas inner products depend on a

fixed origin.

Influences on the Present
Rather than trying to describe present-day data analysis, I shall make some general

remarks on how I see the work prior to 1980 has influenced current trends.

As computers developed, they became more reliable and they could handle larger sets of

data with more samples and more variables. Increasing speeds encouraged the

development of complex models that hitherto had been beyond reach, together with

iterative algorithms for fitting them, and allowed intensive data sampling methods, such

as the bootstrap and jackknife, to be used on a routine basis. Further, newly available

computer graphics technology made it possible to develop helpful graphical displays.

Personal computers arrived in the 1980s and we were freed from the sometimes

stultifying effects of the centralised computer service with its batch mode operation and

efforts to control computer use. The door was open to universal access to computing and

computing costs became so cheap that interactive usage was within grasp. I like to think

that we have returned to the days when Fisher could say he learned all his statistics at the

calculator.

Data analysis

Data Analysis was born from this computing revolution. Data Analysis, including

Exploratory, Confirmatory and Initial Data Analysis, were terms introduced by John

Tukey to describe techniques made practicable by the increased computing power of the

1960s. Tukey’s Data Analysis was concerned mainly with small samples and with few

variables. To some extent, coining the new term Data Analysis was a reaction to using

the term Statistics, which had been subsumed by Mathematical Statistics, itself becoming

increasingly remote from analysing data. Nevertheless, I regard Data Analysis as a

synonym for Statistics. Multivariate Data Analysis was concerned with the analysis of

many variables, though there was disagreement as to whether the variables concerned had

to be random variables or not. Thus, some did not regard Multiple Regression as a

multivariate method because in the Gauss Linear model, only the dependent variable is a
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random variable. Similarly, most analyses of tabulated data based on Linear Models or

Generalised Linear Models would not be regarded as multivariate methods. Neither

would biadditive models or Correspondence Analysis, even though both give

multidimensional representations of their respective models. Yet PCA, which uses very

similar algebra, is generally regarded as a genuine multivariate method as is its

categorical variable equivalent, Multiple Correspondence Analysis. To cut through these

semantic quibbles, I prefer to join those who refer to Multidimensional Data Analysis to

distinguish that part of statistics which has been the topic of this paper and, I believe, this

entire publication. Analyse de Donnees cannot be translated as Data Analysis as it seems

to be a special part of Multidimensional Data Analysis/Statistics concerned especially

with Clustering methods and Correspondence Analysis - both of a two-way contingency

table and Multiple Correspondence Analysis of several categorical variables. My

preference is to use the term Statistics whenever possible, but when we especially want to

refer to multidimensional displays, as in my title, then use Multidimensional Data

Analysis.

Complex models

One thing that has emerged in recent years is that there is now an increase in the types of

term that may be included in models. Thus, we may wish to include distances or

ultrametrics or any other function that has attractive interpretational properties. Often,

such terms are included in stand alone form but hybrid models have been around for over

twenty years though they await adoption by GLMs or GAMs, or other recently developed

classes of model. Specified transformations (e.g. the link function of GLMs) are included

in these models but in nonmetric MDS the transformations are derived by the

methodology, trading reduced dimensionality for a complicated transformation. One

manifestation of the increase in complexity, is the way interactions may be modelled.

Additive interaction parameters have long been included in linear models and we have

seen that multiplicative biadditive interactions were considered, but little-used, as long

ago as the 1920s. Nowadays, triple-product (or higher order) interactions may be fitted in

a variety of forms. Unfortunately, from the statistical outlook, such model terms are not

readily combined with main effect and two-factor interaction terms because they are

rarely consistent with simple linear reparamaterisations, as was already shown by Gower

(1977). If one holds with the view that high order interactions usually imply the

occurrence of lower-order interaction and main effects, then triple products are seriously

flawed to be considered as valid interaction terms. Although triple-product models may

sometimes be useful in stand-alone form, they do not have the same status in more

extended models as do additive interaction and biadditive parameters. Another difficulty

is that it is quite difficult to interpret triple product terms. Extensions to three-way

interaction is just one example where generalisation of well-understood simple models

may be less useful than at first sight; my inclination is to keep things simple.

Apart from allowing increased model complexity, modern computing power allows one

to handle vast amounts of data; hence the interest in large data sets and in data-mining.

Automatic instrumentation ensures that there is no lack of large data sets. This is

something new but I sometimes think that we are getting perilously close to the search for

the philosophers stone. If only we could find the right recipe, great truths would be
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revealed by analysing vast masses of data. My feeling is that it is at least as important to

be careful about the quality of the data, something that seems to be more neglected than

in the past, except perhaps in the conduct of clinical trials.

Conclusion
New fields of study and technological advances have always stimulated statistical

developments. Indeed, this is the background to much of what has been described above.

It continues today as new forms of measurement are developed including, among others,

microarrays, DNA sequences, spatial data, pixels, satellite imagery, tomography, shape.

Although not a form of measurement, the technology of the VDU screen has been a

valuable addition to the armoury of statisticians. It may be used to display long

established forms of diagrams as well as stimulating new forms. The use of colour

enhances the possibilities. Fast computing speeds allow dynamic graphics, showing how

configurations change as parameter values change. The VDU screen has revolutionised

interactive computing, especially in our field of multidimensional data analysis. But the

news is not all good. Software packages bring new methodology within the reach of all.

This is good but on reading research papers written by the users of these packages one

wonders whether researchers always understand what methods are suitable for their

research and whether they know how to interpret the computer output. We have a major

communications problem.

There was a time when a problem was modelled in algebraic form, some criterion such as

maximum likelihood or least squares specified to fit the model and then a good algorithm

found to do the computations. The properties of the model, parameter estimates, the

fitting criterion and of the algorithm could be studied. With luck, the problem would have

a solution in closed form meaning that it could be fitted in terms of known functions. A

known function was one whose properties had been studied and which could be

computed and either tabulated or computed in terms of other known functions. The

classical problem of this kind is given by the linear model, fitted by least-squares with

matrix inversion algorithms; this has been studied since the late eighteenth century, and

continues to be a source of interesting research problems. We have already remarked how

things changed from the very beginning of the computer age. Commonly, no model was

specified and, as with clustering algorithms, only an algorithm was specified, the whole

notion of closed form solutions becoming irrelevant. As more and more complex

algorithms were developed, themselves using other possibly recently developed

algorithms, the class of available functions greatly increased. With few exceptions the

properties of these algorithmically defined functions were little known and they could not

be regarded as known functions. Even when a function had an explicit form, little was

known of its properties – did it have a unique solution or were there multiple roots, was it

continuous etc. When only an algorithm was specified, a new form of research developed

with the objective of trying to determine what objective function might be suggested by

the algorithm. When an objective function is available, one can develop different

algorithms for its calculation and study their properties such as speed and accuracy. Many

new functions are confounded with software and it seems to me that much work is

needed to evaluate and assess their properties.
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My closing paragraphs may appear to have a negative aspect, drawing attention to

problems. I am aware that in the twenty-first century we are not supposed to have

problems, merely challenges. Perhaps, some of my problems may be regarded as

challenges but I suspect that others really are problems
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