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Résumé
Nous étudions l’histoire du test statistique de la somme des rangs pour un double échantillon. Alors
que la plupart des textes attribuent sa création à Wilcoxon (1945) ou/et à Mann et Whitney (1947),
le test a été développé indépendamment par au moins six chercheurs à la fin des années 1940 et
au début des années 1950. En complément de Wilcoxon et Mann et Whitney, Festinger (1946),
Whitfield (1947), Haldane and Smith (1948), et van der Reyden (1952) ont publié de façon autonome
des versions équivalentes, quoique différant par leur méthodologie, du test du rang. Dans cet article,
nous décrivons et comparont le développement de ces six approches.

Abstract
The historical development of the two-sample rank-sum test is explored. While most textbooks
and journal articles attribute the origin of the two-sample rank-sum test to Wilcoxon (1945) and/or
Mann and Whitney (1947), the test was independently developed by at least six researchers in the
late 1940s and early 1950s. In addition to Wilcoxon and Mann and Whitney, Festinger (1946),
Whitfield (1947), Haldane and Smith (1948), and van der Reyden (1952) autonomously published
methodologically distinct, but equivalent versions of the two-sample rank-sum test. In this article
the historical development of the six approaches are described and compared.
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1 Introduction
In the 1930s and 1940s it was widely recognized that when extreme values (outliers) were
present in sets of data, the assumption of normality underlying conventional parametric tests
such as t tests, analysis of variance, and correlation was untenable and the results were there-
fore questionable (cf. Vankeerberghen, Vandenbosch, Smeyers-Verbeke, & Massart, 1991). In
response, a number of non-parametric distribution-free counterparts to existing parametric tests
were developed, typically based on converting raw measurements to rank values, notwithstand-
ing the potential loss of information in reducing numerical values to ranks. Rank tests such as
Kendall’s measure of rank correlation (Kendall, 1938), Friedman’s two-way analysis of vari-
ance by ranks (Friedman, 1937), and the Kruskal–Wallis one-way analysis of variance by ranks
(Kruskal & Wallis, 1952) are very robust to outliers (Potvin & Roff, 1993). The non-parametric
counterpart to the two-sample t test is the two-sample rank-sum test based on the sums of
the ranks in the two samples, independently developed by Wilcoxon (1945), Festinger (1946),
Mann and Whitney (1947), Whitfield (1947), Haldane and Smith (1948), and van der Reyden
(1952).

The logic underlying the two-sample rank-sum test is straightforward. The data consist
of two independent samples drawn from identically distributed populations. Let x1, x2, . . . , xn

denote the first random sample of size n and let y1, y2, . . . , ym denote the second random sample
of size m. Assign the ranks 1 to n + m to the combined observations from smallest to largest
without regard to sample membership and let Rk denote the rank assigned to the n +m obser-
vations for k = 1, . . . , n + m. Let Tx and Ty denote the sums of the ranks from the first and
second samples, respectively, and let T = Tx. Finally, note that

Tx + Ty =
(n+m)(n+m+ 1)

2
.

The null hypothesis simply states that each of the possible arrangements of the n + m
observations to the two samples with n values in the first sample and m values in the second
sample occurs with equal probability. The exact lower (upper) one-sided probability value of an
observed value of T , To, is the proportion of all possible

(
n+m
n

)
T values less (greater) than or

equal to To.
For example, consider n + m = 10 graduate students in a graduate seminar with n = 5

males and m = 5 females. Fig. 1 contains the raw data where xi and yj represent current ages
in years. Fig. 2 lists the numerical ages, sex (M, F), and associated ranks of the n + m = 10

Males: 20, 22, 23, 28, 32
Females: 24, 25, 27, 30, 45

Fig. 1: Current ages of n = 5 male and m = 5 female graduate students.

graduate students based on the data in Fig. 1. For the data in Fig. 2, To = Tx = 22, Ty = 33,
and only 39 (224) of the

(
n+m

n

)
=

(n+m)!

n!m!
=

(5 + 5)!

5! 5!
= 252

2
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n+m

n
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Age: 20, 22, 23, 24, 25, 27, 28, 30, 32, 45
Sex: M, M, M, F, F, F, M, F, M, F
Rank: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10

Fig. 2: Age, sex, and corresponding rank of n = 5 male and m = 5 female graduate students.

Table 1: Listing of the 39 combinations of ranks with T values less than or equal to To = 22.

Number Ranks T Number Ranks T Number Ranks T

1 1 2 3 4 5 15 14 1 2 3 5 9 20 27 1 3 4 6 7 21
2 1 2 3 4 6 16 15 1 2 3 6 8 20 28 2 3 4 5 7 21
3 1 2 3 4 7 17 16 1 2 4 5 8 20 29 1 2 3 6 10 22
4 1 2 3 5 6 17 17 1 2 4 6 7 20 30 1 2 3 7 9 22
5 1 2 3 4 8 18 18 1 3 4 5 7 20 31 1 2 4 5 10 22
6 1 2 3 5 7 18 19 2 3 4 5 6 20 32 1 2 4 6 9 22
7 1 2 4 5 6 18 20 1 2 3 5 10 21 33 1 2 4 7 8 22
8 1 2 3 4 9 19 21 1 2 3 6 9 21 34 1 2 5 6 8 22
9 1 2 3 5 8 19 22 1 2 3 7 8 21 35 1 3 4 5 9 22

10 1 2 3 6 7 19 23 1 2 4 5 9 21 36 1 3 4 6 8 22
11 1 2 4 5 7 19 24 1 2 4 6 8 21 37 1 3 5 6 7 22
12 1 3 4 5 6 19 25 1 2 5 6 7 21 38 2 3 4 5 8 22
13 1 2 3 4 10 20 26 1 3 4 5 8 21 39 2 3 4 5 7 22

possible values of T are less (greater) than or equal to To = 22. For clarity, the 39 T values less
than or equal to To = 22 are listed in Table 1. Thus, for the data in Figs. 1 and 2, the exact lower
(upper) one-sided probability of To = 22 is 39/252 .

= 0.1548 (224/252 .
= 0.8889).

2 Development of the Two-sample Rank-sum Test
Stigler’s law of eponymy states that “[n]o scientific discovery is named after its original discov-
erer” (Stigler, 1999, p. 277). Stigler observed that names are not given to scientific discoveries
or inventions by historians of science, but by the community of practicing scientists, most of
whom have no historical expertise. Moreover, the award of an eponym must be made on the
basis of the scientific merit of originality and not upon personal friendship, national affiliation,
or political pressure (Stigler, 1999, pp. 280–281).

The two-sample rank-sum test, commonly referenced with the eponym “Wilcoxon–Mann–
Whitney test,” was invented and reinvented by a number of researchers in the late 1940s and
early 1950s (considering co-authors as a single contributor): F. Wilcoxon in 1945, L. Festinger
in 1946, H. B. Mann and D. R. Whitney in 1947, J. W. Whitfield in 1947, J. B. S. Haldane and
C. A. B. Smith in 1948, and D. van der Reyden in 1952. Because Festinger (1946) published
his version of the two-sample rank-sum test in Psychometrika, Haldane and Smith (1948) pub-
lished their version in The Annals of Eugenics, and van der Reyden (1952) published his version
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in The Rhodesia Agricultural Journal, their work was largely overlooked by statisticians at the
time. Although Whitfield (1947) published his version in Biometrika, which was widely read by
statisticians, the article contained no references to earlier work on the two-sample rank-sum test
and was, in fact, simply an examination of rank correlation between two variables, one dichoto-
mous and one ranked, utilizing a pairwise procedure previously developed by M. G. Kendall
(1938).

The development of the two-sample rank-sum test has never been adequately documented.
In 1957 Kruskal (1957) published a short note titled “Historical notes on the Wilcoxon unpaired
two-sample test” that discussed early contributions by Deuchler (1914), Lipmann (1908), Whit-
field (1947), Gini (1916/1959), and Ottaviani (1939), most of which appeared many years prior
to Wilcoxon’s seminal article in 1945. What is missing from the literature is a detailed treatment
of the six major developers of the two-sample rank-sum test, each of which used a different ap-
proach to generate exact frequency distributions, and four of which have been largely ignored
in the literature. The six contributors are Wilcoxon (1945), Festinger (1946), Mann and Whit-
ney (1947), Whitfield (1947), Haldane and Smith (1948), and van der Reyden (1952), and the
neglected four are, of course, Festinger, Haldane and Smith, Whitfield, and van der Reyden.

The history of the development of the two-sample rank-sum test provides an opportunity
to give the six contributors their due recognition. Prior to the age of computers, researchers
relied on innovative and, oftentimes, very clever methods for computation. Each of these six
investigators developed very different alternative computational methods that are interesting
both from a statistical and a historical perspective. A common notation, detailed descriptions,
and example analyses will hopefully provide researchers with an appreciation of the rich, but
neglected, history of the development of the two-sample rank-sum test.

3 Wilcoxon’s Rank-sum Test
Frank Wilcoxon earned a B.Sc. degree from Pennsylvania Military College in 1917, a M.S. de-
gree in chemistry from Rutgers University in 1921, and a Ph.D. in chemistry from Cornell Uni-
versity in 1924. Wilcoxon spent most of his life as a chemist working for the Boyce Thompson
Institute for Plant Research, the Atlas Powder Company, and the American Cyanamid Com-
pany. While at the Boyce Thompson Institute, Wilcoxon, together with chemist William John
(Jack) Youden and biologist F. E. Denny led a group in studying Fisher’s newly published
Statistical Methods for Research Workers (Fisher, 1925). This introduction to statistics had a
profound effect on the subsequent careers of Wilcoxon and Youden as both became leading
statisticians of the time. Wilcoxon retired from the American Cyanamid Company in 1957 and
moved to Florida. Three years later, at the invitation of Ralph Bradley, Wilcoxon joined the
faculty at Florida State University where he helped to develop the Department of Statistics. As
Bradley related, he and Wilcoxon had met several times at Gordon Research Conferences, and
in 1959 Bradley was recruited from Virginia Polytechnic Institute to create and head a new
department of statistics at Florida State University in Tallahassee. Since Wilcoxon was living
in Florida, Bradley persuaded Wilcoxon to come out of retirement and join the department.
Wilcoxon agreed to a half-time position as he wanted time off to kayak and ride his motorcycle
(Hollander, 2000). Wilcoxon died on 18 November 1965 after a brief illness at the age of 73
(Bradley, 1966, 1997; Bradley & Hollander, 2001).
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In 1945 Wilcoxon introduced a two-sample test statistic, W , for rank order statistics.1 The
stated purpose was to develop methods in which ranks 1, 2, 3, . . . are substituted for the actual
numerical values in order to obtain a rapid approximation of the significance of the differences
in two-sample paired and unpaired experiments (Wilcoxon, 1945, p. 80). In this very brief paper
of only three pages, Wilcoxon considered the case of two samples of equal sizes and provided a
table of exact probabilities for values of the lesser of the two sums of ranks for both two-sample
paired and two-sample unpaired experiments. In the case of the two-sample unpaired test, a table
provided exact probability values for 5 to 10 replicates in each sample. Bradley has referred to
the unpaired and paired rank tests as the catalysts for the flourishing of non-parametric statistics
(Hollander, 2000, p. 88).

Wilcoxon (1945) showed that in the case of unpaired samples with rank numbers from 1
to 2q, where q denotes the number of ranks (replicates) in each sample, the minimum sum of
ranks possible is given by q(q + 1)/2, where W is the sum of ranks in one sample, continuing
by steps up to the maximum sum of ranks given by q(3q + 1)/2. For example, consider two
samples of q = 5 measurements ranked from 1 to 2q = 10. The minimum sum of ranks for
either group is {1 + 2 + 3 + 4 + 5} = 5(5 + 1)/2 = 15 and the maximum sum of ranks is
{6+7+8+9+10} = 5[(3)(5)+1]/2 = 40. Wilcoxon explained that these two values could be
obtained in only one way, but intermediate sums could be obtained in more than one way. For
example, the sum of T = 20 could be obtained in q = 5-part seven ways, with no part greater
than 2q = 10: {1, 2, 3, 4, 10}, {1, 2, 3, 5, 9}, {1, 2, 3, 6, 8}, {1, 2, 4, 5, 8}, {1, 2, 4, 6, 7},
{1, 3, 4, 5, 7}, and {2, 3, 4, 5, 6}. The number of ways each sum could arise is given by the
number of q-part, here 5-part, partitions of T = 20, the sum in question.2

This was not a trivial problem to solve, as calculating the number of partitions is quite
difficult, even today with the availability of high-speed computing. In general, the problem is
known as the “subset-sum problem” and requires a generating function to solve. The difficulty
is in finding all subsets of a set of distinct numbers that sum to a specified total. The approach
that Wilcoxon took was ingenious and is worth examining, as the technique became the basic
method for other researchers as well as the basis for several computer algorithms in later years.
Wilcoxon showed that the required partitions were equinumerous with another set of partitions,
r, that were much easier to enumerate. He defined r as the serial number of T in the possi-
ble series of sums, beginning with 0, i.e., 0, 1, 2, . . . , r. This was a technique that Wilcoxon
apparently came across while reading a book on combinatorial analysis by Percy Alexander
MacMahon (MacMahon, 1916). MacMahon’s monumental two-volume work on Combinatory
Analysis, published in 1916, contained a section in Volume II, Chapter III, on “Ramanujan’s
Identities” in which MacMahon demonstrated the relationship between the number of q-part
unequal partitions without repetitions with no part greater than 2q and the number of partitions
with repetitions with no part greater than q (MacMahon, 1916, pp. 33–48).

For example, consider as previously, q = 5 replications of measurements on two samples

1Most textbooks and articles use the letter W to indicate the Wilcoxon two-sample rank-sum test statistic.
Actually, Wilcoxon never used W in either his 1945 or 1947 articles; he always used T to indicate the total (sum)
of the ranks.

2Wilcoxon’s use of the term “partitions” here is a little misleading. These are actually sums of T = 20, each
sum consisting of five integer values between 1 and 2q = 10 with no integer value repeated e.g., {1, 2, 3, 4, 10} =
20 which consists of five non-repeating integer values, but not {5, 7, 8} = 20 which consists of only three integer
values, nor {1, 3, 3, 5, 8} = 20 which contains multiple values of 3.
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Table 2: Illustrative table comparing the q = 5-part partitions of T = 20 with the corresponding
partitions of r = 5.

Partition
Number q = 5, T = 20 r = 5

1 1 2 3 4 10 1 1 1 1 1
2 1 2 3 5 9 1 1 1 2
3 1 2 3 6 8 1 2 2
4 1 2 4 5 8 1 1 3
5 1 2 4 6 7 2 3
6 1 3 4 5 7 1 4
7 2 3 4 5 6 5

and assign ranks 1 through 2q = 10 to the data: {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}. Recall that the
lowest possible sum is 15 and the highest possible sum is 40. Then the question is: In how
many ways can a total of T = 20 be obtained, i.e., how many unequal q = 5-part partitions of
T = 20 exist, having no part greater than 10 and no repetition of values? As shown in Table
2, there are seven such partitions. Now, 20 is sixth in the possible series of totals, as shown
in Fig. 3. Therefore, r = 5 and the total number of partitions that sum to T = 20 is equiv-

T : 15, 16, 17, 18, 19, 20, 21, 22, 23, . . . , 40
r: 0, 1, 2, 3, 4, 5, 6, 7, 8, . . . , 25

Fig. 3: Values of T up to and including T = 23 with corresponding values of r.

alent to the total number of partitions with repetitions that sum to 5 with no part greater than
q = 5; specifically, {5}, {1, 4}, {2, 3}, {1, 1, 3}, {1, 2, 2}, {1, 1, 1, 2}, and {1, 1, 1, 1, 1}.3

Wilcoxon capitalized on the relationship between the subset-sum problem with T = 20 and the
partition problem with r = 5, to enumerate the partitions of r = 5 from an available table of
partitions by Whitworth (1942), which then corresponded to the more difficult enumeration of
the 5-part partitions of T = 20.

The exact lower one-sided probability (P ) value of T = 20 is given by

P =

{
1 +

r∑
i=1

q∑
j=1

Pi
j −

r−q∑
k=1

[
(r − q − k + 1)Pq−2+k

q−1

]}/
(2q)!

(q!)2
, (3.1)

where P i
j represents the number of j-part partitions of i; r is the serial number of possible rank

totals, 0, 1, 2, . . . , r; and q is the number of replicates (Wilcoxon, 1945, p. 82). If q ≥ r, the

3These are, of course, true partitions consisting of one to five integer values between 1 and 5, summing to 5
with repetitions allowed.
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summation
∑r−q

k=1 is assumed to be zero. For the example data, Eq. 3.1 is

P =

{
1 +

5∑
i=1

5∑
j=1

Pi
j −

5−5∑
k=1

[
(5− 5− k + 1)P5−2+k

5−1

]}/
10!

(5!)2
,

and the exact lower one-sided probability value is

P = {1 + 1 + 2 + 3 + 5 + 7− 0} /
[
3,628,800/(120)2

]
= 19/252 = 0.0754.

The equivalence between the number of unequal q-part partitions of T with no part greater
than 2q and the number of partitions of r with no part greater than q used by Wilcoxon greatly
reduced the calculations required.

4 Festinger’s Rank-sum Test
Leon Festinger earned his B.Sc. degree in psychology from City College of New York in
1939, then moved to the University of Iowa to earn his Ph.D. in psychology in 1942 under
the renowned social psychologist Kurt Lewin. Festinger is best known for his work in social
psychology and, especially, his theory of cognitive dissonance, but he was also an accom-
plished statistician, working in the area of non-parametric statistics. After earning his Ph.D.,
Festinger worked as a Research Associate at the University of Iowa, then joined the University
of Rochester as a senior statistician in 1943. In 1945, Festinger moved to the Massachusetts
Institute of Technology, the University of Michigan in 1948, the University of Minnesota in
1951, Stanford University in 1955, and finally to the New School for Social Research (now,
New School University) in 1968 where he remained until his death from liver cancer on 11
February 1989 at the age of 69 (Moscovici, 1989).

In 1946 Festinger introduced a statistical test of differences between two independent
means by first converting raw scores to ranks, then testing the difference between the means of
the ranks (Festinger, 1946). The stated purpose of the new test was the need for a statistic that
could be applied without making any assumption concerning the distribution function in the par-
ent population (Festinger, 1946, p. 97). Festinger provided tables for tests of significance based
on exact probabilities for the 0.05 and 0.01 confidence levels for n = 2, . . . , 15, the smaller
of the two samples, and m = 2, . . . , 38, the larger sample. Apparently, Festinger’s solution to
the two-sample rank problem was developed independently of Wilcoxon’s solution; moreover,
Festinger’s tables considered both equal and unequal sample sizes, whereas Wilcoxon’s method
allowed for only m = n (Wilcoxon, 1945). In addition, the approach that Festinger took was
quite different from that of Wilcoxon. While both approaches generated all possible permuta-
tions of outcomes, Festinger’s procedure was considerably simpler to implement and was based
on a unique and ingenious recursive generation method.

Consider two independent samples x1, x2, . . . , xm and y1, y2, . . . , yn with n ≤ m. Com-
bining the samples x and y and assigning ranks to each case from 1 to m + n structures the
question as to the probability of obtaining any specified difference between sample ranks if
both samples are drawn at random from the same population. Stated in terms of sums of ranks:
What is the probability of obtaining any specified sum of ranks of n cases selected at random
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from the total of m + n cases? The problem for Festinger was to generate exact probability
distributions for sums of ranks for specified values of m and n.

For simplicity, consider first m = 2 and n = 2. The possible combinations of m + n =
2 + 2 = 4 considered n = 2 at a time are {1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, and {3, 4},
yielding sums of 3, 4, 5, 5, 6, and 7, respectively. Thus, the frequency distribution of the sums
is 3(1), 4(1), 5(2), 6(1), and 7(1), where the frequencies are enclosed in parentheses. If each
case is independent of every other case and equally likely to be drawn, then each combina-
tion is equiprobable. However, as Festinger showed, there is an alternative way to generate
this frequency distribution of sums. The frequency distribution of sums for

(
m+n
n

)
can be con-

structed from the frequency distributions of sums for
(
m+n−1

n

)
and

(
m+n−1
n−1

)
, as illustrated in

Table 3.4 The frequency distribution of
(
m+n−1

n

)
=

(
2+2−1

2

)
=

(
3
2

)
is listed in Column 1 of Table

3 and the frequency distribution of sums for
(
m+n−1
n−1

)
=

(
2+2−1
2−1

)
=

(
3
1

)
is listed in Column 2

of Table 3. Note that the frequency distribution of sums for
(
3
1

)
is offset from the frequency

distribution of sums for
(
3
2

)
. Since the sum of ranks below the value 5 would not be affected by

the addition of a 4th case to the ranks of
(
3
2

)
, only the totals of 5, 6, and 7 would be augmented

by one or more possibilities. In general, the starting value for frequency distribution
(
m+n−1
n−1

)
is

given by n(n + 1)/2 + m; in this case, 2(2 + 1)/2 + 2 = 5. Thus, the frequency distribution
of sums for

(
m+n
n

)
=

(
4
2

)
in Column 3 is constructed from the frequency distributions of sums

for
(
m+n−1

n

)
=

(
3
2

)
and

(
m+n−1
n−1

)
=

(
3
1

)
in Columns 1 and 2 in Table 3, respectively, by simply

adding across Columns 1 and 2 to obtain the frequency distribution of sums for
(
4
2

)
in Column

3.
Once the exact frequency distributions of sums for m+n ranks considered n = 2 at a time

are established, it is relatively straightforward to construct exact frequency distributions of sums
for m + n ranks considered n = 3 at a time, using the same approach. This method allowed
Festinger to recursively generate exact frequency distributions of sums for any combination of
m+ n and n.

Finally, Festinger proposed a convenient alternative for summarizing and presenting the
frequency distributions of sums. He replaced the sums of ranks of the smaller of the two samples
with the absolute deviation (d ) of the mean of the ranks of the smaller sample from the mean
of the ranks of the total group, using

d =

∣∣∣∣
∑n

i=1 Ri

n
− m+ n+ 1

2

∣∣∣∣ , (4.1)

where n is the number of cases in the smaller sample, m + n is the number of cases in both
samples combined, and

∑n
i=1 Ri is the sum of the ranks of the cases in the smaller of the two

samples. The last term in Eq. 4.1 is, of course, the mean of the m + n ranks. Festinger then
presented two tables containing the d values necessary for tests of significance at the 0.01 and
0.05 levels of confidence. For values of n from 2 to 12, the Festinger tables listed values of d
from m = 2 to m = 38.

4The decomposition
(
n
r

)
=

(
n−1
r

)
+

(
n−1
r−1

)
has been well known since Blaise Pascal’s Traité du triangle

arithmétique was published in 1665, three years after his death (Pascal, 1665/1959). Thus, considering any one
of n objects,

(
n−1
r−1

)
gives the number of combinations that include it and

(
n−1
r

)
the number of combinations that

exclude it.

8



Journ@l électronique d’Histoire des Probabilités et de la Statistique/ Electronic Journal for 
History of Probability and Statistics . Vol.8, Décembre/December 2012

from the total of m + n cases? The problem for Festinger was to generate exact probability
distributions for sums of ranks for specified values of m and n.

For simplicity, consider first m = 2 and n = 2. The possible combinations of m + n =
2 + 2 = 4 considered n = 2 at a time are {1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, and {3, 4},
yielding sums of 3, 4, 5, 5, 6, and 7, respectively. Thus, the frequency distribution of the sums
is 3(1), 4(1), 5(2), 6(1), and 7(1), where the frequencies are enclosed in parentheses. If each
case is independent of every other case and equally likely to be drawn, then each combina-
tion is equiprobable. However, as Festinger showed, there is an alternative way to generate
this frequency distribution of sums. The frequency distribution of sums for

(
m+n
n

)
can be con-

structed from the frequency distributions of sums for
(
m+n−1

n

)
and

(
m+n−1
n−1

)
, as illustrated in

Table 3.4 The frequency distribution of
(
m+n−1

n

)
=

(
2+2−1

2

)
=

(
3
2

)
is listed in Column 1 of Table

3 and the frequency distribution of sums for
(
m+n−1
n−1

)
=

(
2+2−1
2−1

)
=

(
3
1

)
is listed in Column 2

of Table 3. Note that the frequency distribution of sums for
(
3
1

)
is offset from the frequency

distribution of sums for
(
3
2

)
. Since the sum of ranks below the value 5 would not be affected by

the addition of a 4th case to the ranks of
(
3
2

)
, only the totals of 5, 6, and 7 would be augmented

by one or more possibilities. In general, the starting value for frequency distribution
(
m+n−1
n−1

)
is

given by n(n + 1)/2 + m; in this case, 2(2 + 1)/2 + 2 = 5. Thus, the frequency distribution
of sums for

(
m+n
n

)
=

(
4
2

)
in Column 3 is constructed from the frequency distributions of sums

for
(
m+n−1

n

)
=

(
3
2

)
and

(
m+n−1
n−1

)
=

(
3
1

)
in Columns 1 and 2 in Table 3, respectively, by simply

adding across Columns 1 and 2 to obtain the frequency distribution of sums for
(
4
2

)
in Column

3.
Once the exact frequency distributions of sums for m+n ranks considered n = 2 at a time

are established, it is relatively straightforward to construct exact frequency distributions of sums
for m + n ranks considered n = 3 at a time, using the same approach. This method allowed
Festinger to recursively generate exact frequency distributions of sums for any combination of
m+ n and n.

Finally, Festinger proposed a convenient alternative for summarizing and presenting the
frequency distributions of sums. He replaced the sums of ranks of the smaller of the two samples
with the absolute deviation (d ) of the mean of the ranks of the smaller sample from the mean
of the ranks of the total group, using

d =

∣∣∣∣
∑n

i=1 Ri

n
− m+ n+ 1

2

∣∣∣∣ , (4.1)

where n is the number of cases in the smaller sample, m + n is the number of cases in both
samples combined, and

∑n
i=1 Ri is the sum of the ranks of the cases in the smaller of the two

samples. The last term in Eq. 4.1 is, of course, the mean of the m + n ranks. Festinger then
presented two tables containing the d values necessary for tests of significance at the 0.01 and
0.05 levels of confidence. For values of n from 2 to 12, the Festinger tables listed values of d
from m = 2 to m = 38.

4The decomposition
(
n
r

)
=

(
n−1
r

)
+

(
n−1
r−1

)
has been well known since Blaise Pascal’s Traité du triangle
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Table 3: Generation of frequency arrays for 3, 4, 5, 6, and 7 objects considered n = 2 at a time.

Column
1 2 3 4 5 6 7 8 9

Sum
(
3
2

) (
3
1

) (
4
2

) (
4
1

) (
5
2

) (
5
1

) (
6
2

) (
6
1

) (
7
2

)

3 1 1 1 1 1
4 1 1 1 1 1
5 1 1 2 2 2 2
6 1 1 1 2 2 2
7 1 1 1 2 1 3 3
8 1 1 1 2 1 3
9 1 1 1 2 1 3

10 1 1 1 2
11 1 1 1 2
12 1 1
13 1 1

5 Mann and Whitney’s Rank-sum Test
Henry Berthold Mann received his Ph.D. in mathematics from the University of Vienna in
1935, then emigrated from Austria to the United States in 1938. In 1942 he was the recipient
of a Carnegie Fellowship for the study of statistics at Columbia University where he had the
opportunity to work with Abraham Wald in the Department of Economics, which at the time
was headed by Harold Hotelling. This likely would have put him in contact with other members
of the Statistical Research Group (SRG) at Columbia University such as W. Allen Wallis, Jacob
Wolfowitz, Milton Friedman, Jimmie Savage, Frederick Mosteller, and Churchill Eisenhart.

In 1946 Mann accepted a position at The Ohio State University, remaining there until his
retirement in 1964, at which point he moved to the U.S. Army’s Mathematics Research Center at
the University of Wisconsin. In 1971, Mann moved again to the University of Arizona, retiring
from there a second time in 1975. Mann remained in Arizona until his death on 1 February 2000
at the age of 94 (Olson, c. 2000).

While Mann was at The Ohio State University, one of his graduate students was Donald
Ransom Whitney. Whitney had earned his B.A. degree in mathematics from Oberlin College
in 1936 and his M.S. degree in mathematics from Princeton University in 1939. After service
in the Navy during World War II, Whitney enrolled in the Ph.D. program at The Ohio State
University in 1946, where eventually he came to work under Henry Mann. After receiving
his Ph.D. in mathematics in 1949, Whitney remained at The Ohio State University, eventually
becoming Chair of the newly established Department of Statistics in 1974. Whitney retired from
The Ohio State University in 1982, whereupon he received the University Distinguished Service
Award. Whitney died on 16 August 2007 at the age of 92 (Willke, 2008).

In 1947 Mann and Whitney, acknowledging the previous work by Wilcoxon on the two-
sample rank sum test (Wilcoxon, 1945), proposed an equivalent test statistic, U , based on the
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relative ranks of two samples denoted by {x1, x2, . . . , xn} and {y1, y2, . . . , ym} and for which
they computed exact probability values (Mann & Whitney, 1947). Like Festinger, Mann and
Whitney utilized a recurrence relation involving n and m and, using this relation, computed
tables of exact probability values for U up to n = m = 8, many more, they noted, than the few
probability values provided by Wilcoxon. As Mann and Whitney explained, let the measure-
ments {x1, x2, . . . , xn} and {y1, y2, . . . , ym} be arranged in order and let U count the number
of times a y precedes an x. For example, given n = 4 x values and m = 2 y values, consider the
sequence {x, y, x, x, y, x} where U = 4: the first y precedes three x values and the second y
precedes one x value; thus, U = 3 + 1 = 4. Also, let the Wilcoxon statistic, W , be the sum of
the m rank order statistics {y1, y2, . . . , ym}. The relationship between Wilcoxon’s W statistic
and Mann and Whitney’s U statistic can be expressed as

U = mn+
m(m+ 1)

2
−W

and 0 ≤ U ≤ mn. Mann and Whitney noted that since Wilcoxon only considered the case of
n = m, it seemed worthwhile to extend this important work to n �= m and larger values of n
and m, apparently unaware of the 1946 article by Festinger who also considered n �= m.

Consider again the ordered sequences of n x and m y values, replace each x with a 0 and
each y with a 1, let U denote the number of times a 1 precedes a 0, and let p̄n,m(U) represent the
number of sequences of n 0s and m 1s in each of which a 1 precedes a 0 U times. For example,
suppose the sequence is {1, 1, 0, 0, 1, 0}, then U = 7 as the first 1 precedes three 0 values, the
second 1 precedes the same three 0 values, and the third 1 precedes only one 0 value. Mann and
Whitney then developed the recurrence relation:

p̄n,m(U) = p̄n−1,m(U −m) + p̄n,m−1(U) , (5.1)

where p̄n−1,m(U −m) = 0 if U ≤ m.
An example of the recurrence relation illustrates the Mann–Whitney procedure. Table 4

lists all the sequences of 0s and 1s and corresponding values of U for p̄n,m(U), p̄n−1,m(U−m),
and p̄n,m−1(U) for n = 4 and m = 2. There are

(
m+n
m

)
=

(
2+4
2

)
= 15 values of U in the

first sequence of 0s and 1s in Table 4,
(
m+n−1

m

)
=

(
2+4−1

2

)
= 10 values of U in the second

sequence of 0s and 1s, and
(
m−1+n
m−1

)
=

(
2−1+4
2−1

)
= 5 values of U in the third sequence of 0s

and 1s.5 To illustrate the recurrence procedure with U = 3, p̄n,m(3) = 2, as there are two
occurrences of U = 3 (in Rows 4 and 7) in the leftmost column of sequences in Table 4. Then,
p̄n−1,m(U − m) = p̄4−1, 2(3 − 2) = 1, as there is only a single occurrence of U = 1 (in Row
2) in the middle column of sequences in Table 4, and p̄n,m−1(U) = p̄4, 2−1(3) = 1, as there is
only a single occurrence of U = 3 (in Row 4) in the rightmost column of sequences in Table 4.
Then, following Eq. 5.1, 2 = 1 + 1.

Given that under the null hypothesis each of the (n+m)!/(n! m!) sequences of n 0s and
m 1s is equally likely, let pn,m(U) represent the probability of a sequence in which a 1 precedes
a 0 U times. For example, for U = 3 in Table 4,

pn,m(U)× n! m!

(n+m)!
= p4, 2(3)×

4! 2!

(4 + 2)!
=

2

15
= 0.1333 .

5Here, the decomposition is identical to that of Festinger (1946).
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Table 4: Sequences of n = 4 0s and m = 2 1s for p̄n,m(U), p̄n−1,m(U −m), and p̄n,m−1(U).

p̄n,m(U) p̄n−1,m(U −m) p̄n,m−1(U)

Row Sequence U Sequence U Sequence U

1 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 0 1 0
2 0 0 0 1 0 1 1 0 0 1 0 1 1 0 0 0 1 0 1
3 0 0 1 0 0 1 2 0 1 0 0 1 2 0 0 1 0 0 2
4 0 1 0 0 0 1 3 1 0 0 0 1 3 0 1 0 0 0 3
5 1 0 0 0 0 1 4 0 0 1 1 0 2 1 0 0 0 0 4
6 0 0 0 1 1 0 2 0 1 0 1 0 3
7 0 0 1 0 1 0 3 1 0 0 1 0 4
8 0 1 0 0 1 0 4 0 1 1 0 0 4
9 1 0 0 0 1 0 5 1 0 1 0 0 5

10 0 0 1 1 0 0 4 1 1 0 0 0 6
11 0 1 0 1 0 0 5
12 1 0 0 1 0 0 6
13 0 1 1 0 0 0 6
14 1 0 1 0 0 0 7
15 1 1 0 0 0 0 8

Mann and Whitney also provided a recurrence relation for the probability values of U given by

pn,m(U) =
n

n+m
pn−1,m(U −m) +

m

n+m
pn,m−1(U) ,

where

pn−1,m(U −m) = p̄n−1,m(U −m)× (n− 1)! m!

(n+m− 1)!

and

pn,m−1(U) = p̄n,m−1(U)× n! (m− 1)!

(n+m− 1)!
.

Thus, for U = 3 in Table 4,

p4,2(3) =
4

4 + 2
p4−1, 2(3− 2) +

2

4 + 2
p4, 2−1(3)

2

15
=

(
4

6

)(
1

10

)
+

(
2

6

)(
1

5

)

2

15
=

1

15
+

1

15
.

Mann and Whitney used this recurrence relation to construct tables of exact probability values
up to and including n = m = 8. Finally, from the recurrence relation Mann and Whitney
derived explicit expressions for the mean, variance, and various higher moments for U , and
noted that the limit of the distribution is normal if min(n,m) → ∞ (Mann & Whitney, 1947).
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It should be noted that in 1914 Gustav Deuchler suggested an approach that was essen-
tially the same as that used by Mann and Whitney in their treatment of the two-sample rank
sum test (Deuchler, 1914). Deuchler’s work in this area seems to have been neglected, but
W. H. Kruskal attempted to redress this neglect in a 1957 article on “Historical notes on the
Wilcoxon unpaired two-sample test” in the Journal of the American Statistical Association
(Kruskal, 1957). In their 1952 article W. H. Kruskal and W. A. Wallis provided a list of in-
dependent discoveries of the Wilcoxon two-sample test (Kruskal & Wallis, 1952) and this 1957
article is, in part, an attempt to update that list. Also mentioned in the 1957 article, but omitted
in the 1952 article, was a 1947 article by J. W. Whitfield (1947) who essentially independently
discovered the Mann–Whitney test.

6 Whitfield’s Rank-sum Test
Little is known about John W. Whitfield other than that for most of his career he was attached to
the Applied Psychology Research Unit (Medical Research Council) at the University of Cam-
bridge. In 1947 Whitfield proposed a measure of rank correlation between two variables, one of
which was ranked and the other dichotomous (Whitfield, 1947). While not presented as a rank-
sum test per se, the article by Whitfield is of historical importance as it is occasionally cited as
an independent discovery of the two-sample rank-sum test (e.g., Kruskal, 1957, pp. 358–359).

Whitfield considered the dichotomous variable as a ranking composed entirely of two
sets of tied rankings. An example will illustrate the procedure. Following Whitfield, consider
the ranked data in Fig. 4, where the − and + signs indicate the dichotomous variable and the
ranks are from 1 to 6. Let m = 2 denote the number of ranks in the + group and let n = 4

1 2 3 4 5 6
− + − − − +

Fig. 4: Rankings of a dichotomous variable.

denote the number of ranks in the − group.
Now consider the n = 4 ranks in the group identified by a − sign: 1, 3, 4, and 5. Beginning

with rank 1, in this case with a − sign, there are no ranks with a + sign to the left of rank 1 and
two ranks with a + sign to the right of rank 1 (ranks 2 and 6); so compute 0− 2 = −2. For rank
3 with a − sign, there is one rank to the left of rank 3 with a + sign (rank 2) and one rank to the
right of rank 3 with a + sign (rank 6); so compute 1− 1 = 0. For rank 4 with a − sign, there is
one rank to the left of rank 4 with a + sign (rank 2) and one rank to the right of rank 4 with a +
sign (rank 6); so compute 1 − 1 = 0. Finally, for rank 5 with a − sign, there is one rank to the
left of rank 5 with a + sign (rank 2) and one rank to the right of rank 5 with a + sign (rank 6);
so compute 1− 1 = 0. The sum of the differences is S = −2+0+0+0 = −2. In this manner,
Whitfield’s approach incorporated unequal sample sizes with m �= n as well as tied ranks.

Since the number of possible pairs of m+n consecutive integers is given by (m+n)(m+
n− 1)/2, Whitfield defined and calculated his test statistic as

τ =
2S

(m+ n)(m+ n− 1)
=

2(−2)

(2 + 4)(2 + 4− 1)
=

−4

30
= −0.1333 .
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the Applied Psychology Research Unit (Medical Research Council) at the University of Cam-
bridge. In 1947 Whitfield proposed a measure of rank correlation between two variables, one of
which was ranked and the other dichotomous (Whitfield, 1947). While not presented as a rank-
sum test per se, the article by Whitfield is of historical importance as it is occasionally cited as
an independent discovery of the two-sample rank-sum test (e.g., Kruskal, 1957, pp. 358–359).

Whitfield considered the dichotomous variable as a ranking composed entirely of two
sets of tied rankings. An example will illustrate the procedure. Following Whitfield, consider
the ranked data in Fig. 4, where the − and + signs indicate the dichotomous variable and the
ranks are from 1 to 6. Let m = 2 denote the number of ranks in the + group and let n = 4

1 2 3 4 5 6
− + − − − +

Fig. 4: Rankings of a dichotomous variable.

denote the number of ranks in the − group.
Now consider the n = 4 ranks in the group identified by a − sign: 1, 3, 4, and 5. Beginning

with rank 1, in this case with a − sign, there are no ranks with a + sign to the left of rank 1 and
two ranks with a + sign to the right of rank 1 (ranks 2 and 6); so compute 0− 2 = −2. For rank
3 with a − sign, there is one rank to the left of rank 3 with a + sign (rank 2) and one rank to the
right of rank 3 with a + sign (rank 6); so compute 1− 1 = 0. For rank 4 with a − sign, there is
one rank to the left of rank 4 with a + sign (rank 2) and one rank to the right of rank 4 with a +
sign (rank 6); so compute 1 − 1 = 0. Finally, for rank 5 with a − sign, there is one rank to the
left of rank 5 with a + sign (rank 2) and one rank to the right of rank 5 with a + sign (rank 6);
so compute 1− 1 = 0. The sum of the differences is S = −2+0+0+0 = −2. In this manner,
Whitfield’s approach incorporated unequal sample sizes with m �= n as well as tied ranks.

Since the number of possible pairs of m+n consecutive integers is given by (m+n)(m+
n− 1)/2, Whitfield defined and calculated his test statistic as

τ =
2S

(m+ n)(m+ n− 1)
=

2(−2)

(2 + 4)(2 + 4− 1)
=

−4

30
= −0.1333 .
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Whitfield’s S is directly related to the U statistic of Mann and Whitney (1947) and, hence, to the
W statistic of Wilcoxon (1945).6 Compare statistic S with the U statistic of Mann and Whitney.
There are m = 2 + signs and n = 4 − signs in Fig. 4, so considering the lesser of the two (the
m = 2 + signs), the first + sign (rank 2) precedes three − signs (ranks 3, 4, and 5) and the
second + sign precedes no − signs, so U = 3+0 = 3. The relationship between Whitfields’s S
and Mann and Whitney’s U is given by S = 2U −mn (Jonckheere, 1954; Kruskal, 1957); thus,
S = 2(3)− (2)(4) = 6− 8 = −2. For the example data in Fig. 4, the Wilcoxon test statistic for
the smaller of the two sums (with the m = 2 + signs) is W = 2 + 6 = 8 and the relationship
with S is given by S = m(m+n+1)− 2W ; thus, S = 2(2+4+1)− (2)(8) = 14− 16 = −2.

As Whitfield noted, the calculation of S was fashioned after a procedure first introduced
by Kendall in 19457 and Whitfield was apparently unaware of the work by Wilcoxon, Festinger,
and Mann and Whitney, as they are not referenced in the Whitfield article. Kendall (1945)
considered the number of concordant (C) and discordant (D) pairs, of which there are a total
of (m + n)(m + n − 1)/2 pairs when there are no ties in the m + n consecutive integers. For
the example data in Fig. 4 there are (2 + 4)(2 + 4 − 1)/2 = 15 pairs. Table 5 numbers and
lists the 15 pairs, the concordant/discordant classification of pairs, and the pair values, where
concordant pairs (−,− and +,+) are given a value of 0, and discordant pairs (+,− and −,+)
are given values of +1 and −1, respectively. The sum of the pair values in Table 5 for the 15
pairs is S = −5 + 3 = −2.

Today it is well known, although poorly documented, that when one classification is a
dichotomy and the other is ordered, with or without tied values, the S test of Kendall is equiva-
lent to the Mann–Whitney U test (Burr, 1960; Moses, 1956). Whitfield was apparently the first
to discover the relationship between S, the statistic underlying Kendall’s τ correlation coeffi-
cient, and U , the Mann–Whitney statistic for two independent samples. However, it was Jon-
ckheere that was the first to make the relationship explicit (Jonckheere, 1954, p. 138). Because
the Jonckheere–Terpstra test, when restricted to two independent samples, is mathematically
identical in reverse application to the Wilcoxon and Mann–Whitney tests (Leach, 1979, p. 183;
Randles & Wolfe, 1979, p. 396), the two-sample rank-sum test is sometimes referred to as the
Kendall–Wilcoxon–Mann–Whitney–Jonckheere–Festinger test (Moses, 1956, p. 246).

Whitfield concluded his article with derivations of the variances of S for both untied and
tied rankings and included a correction for continuity. For untied ranks the variance of S, as
given by Kendall (1945), is σ2

S = {(m + n)(m + n − 1)[2(m + n) + 5]}/18 and the desired
probability value is obtained from the asymptotically N(0, 1) distribution when min(m,n) →
∞. For the example data listed in Fig. 4, the variance of S is σ2

S = {(2 + 4)(2 + 4 − 1)[2(2 +
4) + 5]}/18 = 28.3333 and τ = S/σS = −2/

√
28.3333 = −0.3757, with an approximate

lower one-sided probability value of 0.3536.
An example will serve to illustrate the approach of Whitfield. It is common today to

transform a Pearson correlation coefficient between two variables (rxy) into Student’s pooled t

6Kraft and van Eeden show how Kendall’s τ can be computed as a sum of Wilcoxon W statistics (Kraft & van
Eeden, 1968, pp. 180–181).

7Whitfield lists the date of the Kendall article as 1946, but the article was actually published in Biometrika in
1945.
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Table 5: Fifteen paired observations with concordant/discordant (C/D) pairs and associated
pair values.

Number Pair C/D Value Number Pair C/D Value
1 1–2 −,+ −1 9 2–6 +,+ 0
2 1–3 −,− 0 10 3–4 −,− 0
3 1–4 −,− 0 11 3–5 −,− 0
4 1–5 −,− 0 12 3–6 −,+ −1
5 1–6 −,+ −1 13 4–5 −,− 0
6 2–3 +,− +1 14 4–6 −,+ −1
7 2–4 +,− +1 15 5–6 −,+ −1
8 2–5 +,− +1

test for two independent samples and vice-versa, i.e.,

t = rxy

√
m+ n− 2

1− r2xy
and rxy =

t√
t2 +m+ n− 2

,

where m and n indicate the number of observations in Samples 1 and 2, respectively. It appears
that Whitfield was the first to transform Kendall’s rank-order correlation coefficient τ into Mann
and Whitney’s two-sample rank-sum statistic U for two independent samples. Actually, since

τ =
2S

(m+ n)(m+ n− 1)
,

Whitfield established the relationship between the variable part of τ , Kendall’s S, and Mann
and Whitney’s U . To illustrate just how Whitfield accomplished this, consider the data listed in
Fig. 5. The data consist of m = 12 adult ages from Sample A and n = 5 adult ages from Sample
B, with associated ranks. The sample membership of the ages/ranks is indicated by an A or a
B immediately beneath the rank score. Now, arrange the two samples into a contingency table

Age: 20 20 20 20 22 23 23 24 25 25 25 25 27 29 29 35 35

Rank: 21
2

21
2

21
2

21
2

5 61
2

61
2

9 101
2

101
2

101
2

101
2

13 141
2

141
2

161
2

161
2

Sample: A A A A B A A B A A A A B A A B B

Fig. 5: Listing of the m+ n = 17 raw age and rank scores from Samples A and B.

with two rows and columns equal to the frequency distribution of the combined samples, as in
Fig. 6. Here the first row of frequencies in Fig. 6 represents the runs in the list of ranks in Fig. 5
labeled as A, i.e., there are four values of 21

2
, no value of 5, two values of 61

2
, no value of 9, four

values of 101
2
, and so on. The second row of frequencies in Fig. 6 represents the runs in the list

of ranks in Fig. 5 labeled as B, i.e., there is no value of 21
2

labeled as B, one value of 5, no value
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of 61
2
, one value of 9, and so on. Finally, the column marginal totals are simply the sums of

the two rows. This contingency arrangement permitted Whitfield to transform a problem of the
difference between two independent samples into a problem of correlation between two ranked
variables.

A 4 0 2 0 4 0 2 0 12
B 0 1 0 1 0 1 0 2 5

4 1 2 1 4 1 2 2 17

Fig. 6: Contingency table of the frequency of ranks in Fig. 5.

Denote by X the r × c table in Fig. 6 with r = 2 and c = 8 and let xij indicate a cell
frequency for i = 1, . . . , r and j = 1, . . . , c. Then, S can be expressed as the algebraic sum of
all second-order determinants in X (Burr, 1960):

S =
r−1∑
i=1

r∑
j=i+1

c−1∑
k=1

c∑
l=k+1

(xikxjl − xilxjk) .

Thus, for the data listed in Fig. 6 there are c(c − 1)/2 = 8(8 − 1)/2 = 28 second-order
determinants:

S =

∣∣∣∣
4 0
0 1

∣∣∣∣ +

∣∣∣∣
4 2
0 0

∣∣∣∣ +

∣∣∣∣
4 0
0 1

∣∣∣∣ +

∣∣∣∣
4 4
0 0

∣∣∣∣ +

∣∣∣∣
4 0
0 1

∣∣∣∣ +

∣∣∣∣
4 2
0 0

∣∣∣∣ +

∣∣∣∣
4 0
0 2

∣∣∣∣ + · · ·+
∣∣∣∣
2 0
0 2

∣∣∣∣ .

Therefore,

S = (4)(1)− (0)(0) + (4)(0)− (2)(0) + (4)(1)− (0)(0) + (4)(0)− (4)(0)

+ (4)(1)− (0)(0) + (4)(0)− (2)(0) + (4)(2)− (0)(0) + (0)(0)− (2)(1)

+ (0)(1)− (0)(1) + (0)(0)− (4)(1) + (0)(1)− (0)(1) + (0)(0)− (2)(1)

+ (0)(2)− (0)(1) + (2)(1)− (0)(0) + (2)(0)− (4)(0) + (2)(1)− (0)(0)

+ (2)(0)− (2)(0) + (2)(2)− (0)(0) + (0)(0)− (4)(1) + (0)(1)− (0)(1)

+ (0)(0)− (2)(1) + (0)(2)− (0)(1) + (4)(1)− (0)(0) + (4)(0)− (2)(0)

+ (4)(2)− (0)(0) + (0)(0)− (2)(1) + (0)(2)− (0)(1) + (2)(2)− (0)(0)

and S = 4 + 0 + 4 + · · ·+ 4 = 28.
Alternatively, as Kendall (1948) has shown, the number of concordant pairs is given by

C =
r−1∑
i=1

c−1∑
j=1

xij

(
r∑

k=i+1

c∑
l=j+1

xkl

)

and the number of discordant pairs is given by

D =
r−1∑
i=1

c−1∑
j=1

xi,c−j+1

(
r∑

k=i+1

c−j∑
l=1

xkl

)
.
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Thus for X in Fig. 6, C is calculated by proceeding from the upper-left cell with frequency
x11 = 4 downward and to the right, multiplying each cell frequency by the sum of all cell
frequencies below and to the right, and summing the products, i.e.,

C = (4)(1 + 0 + 1 + 0 + 1 + 0 + 2) + (0)(0 + 1 + 0 + 1 + 0 + 2)

+ (2)(1 + 0 + 1 + 0 + 2) + (0)(0 + 1 + 0 + 2)

+ (4)(1 + 0 + 2) + (0)(0 + 2) + (2)(2)

= 20 + 0 + 8 + 0 + 12 + 0 + 4 = 44 ,

and D is calculated by proceeding from the upper-right cell with frequency x18 = 0 downward
and to the left, multiplying each cell frequency by the sum of all cell frequencies below and to
the left, and summing the products, i.e.,

D = (0)(0 + 1 + 0 + 1 + 0 + 1 + 0) + (2)(1 + 0 + 1 + 0 + 1 + 0)

+ (0)(0 + 1 + 0 + 1 + 0) + (4)(1 + 0 + 1 + 0)

+ (0)(0 + 1 + 0) + (2)(1 + 0) + (0)(0)

= 0 + 6 + 0 + 8 + 0 + 2 + 0 = 16 .

Then, as defined by Kendall, S = C −D = 44− 16 = 28.
To calculate Mann and Whitney’s U for the data listed in Fig. 5, the number of A ranks

to the left of (less than) the first B is 4; the number of A ranks to the left of the second B is
6; the number of A ranks to the left of the third B is 10; and the number of A ranks to the
left of the fourth and fifth B are 12 each. Then U = 4 + 6 + 10 + 12 + 12 = 44. Finally,
S = 2U −mn = (2)(44)− (12)(5) = 28. Thus Kendall’s S statistic, as redefined by Whitfield,
includes as special cases Yule’s Q test for association in 2×2 contingency tables and the Mann–
Whitney U test for larger contingency tables.

It is perhaps not surprising that Whitfield established a relationship between Kendall’s S
and Mann and Whitney’s U as Mann published a test for trend in 1945 that was identical to
Kendall’s S, as Mann noted (Mann, 1945). The Mann test is known today as the Mann–Kendall
test for trend where for n values in an ordered time series x1, . . . , xn,

S =
n−1∑
i=1

n∑
j=i+1

sgn (xi − xj) ,

where

sgn(·) =




+1 if xi − xj > 0 ,

0 if xi − xj = 0 ,

−1 if xi − xj < 0 .

7 Haldane and Smith’s Rank-sum Test
John Burton Sanderson Haldane was educated at Eton and New College, University of Oxford,
and was a commissioned officer during World War I. At the conclusion of the war, Haldane was

16



Journ@l électronique d’Histoire des Probabilités et de la Statistique/ Electronic Journal for 
History of Probability and Statistics . Vol.8, Décembre/December 2012

Thus for X in Fig. 6, C is calculated by proceeding from the upper-left cell with frequency
x11 = 4 downward and to the right, multiplying each cell frequency by the sum of all cell
frequencies below and to the right, and summing the products, i.e.,

C = (4)(1 + 0 + 1 + 0 + 1 + 0 + 2) + (0)(0 + 1 + 0 + 1 + 0 + 2)

+ (2)(1 + 0 + 1 + 0 + 2) + (0)(0 + 1 + 0 + 2)

+ (4)(1 + 0 + 2) + (0)(0 + 2) + (2)(2)

= 20 + 0 + 8 + 0 + 12 + 0 + 4 = 44 ,

and D is calculated by proceeding from the upper-right cell with frequency x18 = 0 downward
and to the left, multiplying each cell frequency by the sum of all cell frequencies below and to
the left, and summing the products, i.e.,

D = (0)(0 + 1 + 0 + 1 + 0 + 1 + 0) + (2)(1 + 0 + 1 + 0 + 1 + 0)

+ (0)(0 + 1 + 0 + 1 + 0) + (4)(1 + 0 + 1 + 0)

+ (0)(0 + 1 + 0) + (2)(1 + 0) + (0)(0)

= 0 + 6 + 0 + 8 + 0 + 2 + 0 = 16 .

Then, as defined by Kendall, S = C −D = 44− 16 = 28.
To calculate Mann and Whitney’s U for the data listed in Fig. 5, the number of A ranks

to the left of (less than) the first B is 4; the number of A ranks to the left of the second B is
6; the number of A ranks to the left of the third B is 10; and the number of A ranks to the
left of the fourth and fifth B are 12 each. Then U = 4 + 6 + 10 + 12 + 12 = 44. Finally,
S = 2U −mn = (2)(44)− (12)(5) = 28. Thus Kendall’s S statistic, as redefined by Whitfield,
includes as special cases Yule’s Q test for association in 2×2 contingency tables and the Mann–
Whitney U test for larger contingency tables.

It is perhaps not surprising that Whitfield established a relationship between Kendall’s S
and Mann and Whitney’s U as Mann published a test for trend in 1945 that was identical to
Kendall’s S, as Mann noted (Mann, 1945). The Mann test is known today as the Mann–Kendall
test for trend where for n values in an ordered time series x1, . . . , xn,

S =
n−1∑
i=1

n∑
j=i+1

sgn (xi − xj) ,

where

sgn(·) =




+1 if xi − xj > 0 ,

0 if xi − xj = 0 ,

−1 if xi − xj < 0 .

7 Haldane and Smith’s Rank-sum Test
John Burton Sanderson Haldane was educated at Eton and New College, University of Oxford,
and was a commissioned officer during World War I. At the conclusion of the war, Haldane was

16

awarded a fellowship at New College, University of Oxford, and then accepted a readership in
biochemistry at Trinity College, University of Cambridge. In 1932 Haldane was elected a Fel-
low of the Royal Society and a year later, became Professor of Genetics at University College,
London. In 1956, Haldane immigrated to India where he joined the Indian Statistical Institute
at the invitation of P. C. Mahalanobis. In 1961 he resigned from the Indian Statistical Institute
and accepted a position as Director of the Genetics and Biometry Laboratory in Orissa, India.
Haldane wrote 24 books, including science fiction and stories for children, more than 400 sci-
entific research papers, and innumerable popular articles (Mahanti, 2007). Haldane died on 1
December 1964, whereupon he donated his body to Rangaraya Medical College, Kakinada.

Cedric Austen Bardell Smith attended University College, London. In 1935, Smith re-
ceived a scholarship to Trinity College, Unniversity of Cambridge, where he earned his Ph.D.
in 1942. In 1946 Smith was appointed Assistant Lecturer at the Galton Laboratory, University
College, London, where he met J. B. S. Haldane. In 1964 Smith accepted an appointment as
the Weldon Professor of Biometry at University College, London. Cedric Smith clearly had
a sense of humor and was known to occasionally sign his correspondence as “U. R. Blanche
Descartes, Limit’d,” which was an anagram of Cedric Austen Bardell Smith (Morton, 2002).
Over his career, Smith contributed to many of the classical topics in statistical genetics, includ-
ing segregation ratios in family data, kinship, population structure, assortative mating, genetic
correlation, and estimation of gene frequencies (Morton, 2002).8 Smith died on 10 January
2002, just a few weeks shy of his 85th birthday (Edwards, 2002; Morton, 2002).

In 1948 Haldane and Smith introduced an exact test for birth-order effects (Haldane &
Smith, 1948). They had previously observed that in a number of hereditary diseases and ab-
normalities, the probability that any particular member of a sibship had a specified abnormality
depended in part on his or her birth-rank (Haldane & Smith, 1948, p. 117). Specifically, they
proposed to develop a quick and simple test of significance of the effect of birth-rank based on
the sum of birth ranks of all affected cases in all sibships. In a classic description of a permu-
tation test, Haldane and Smith noted that if in each sibship the numbers of normal and affected
siblings were held constant, then if birth-rank had no effect, every possible order of normal and
affected siblings would be equally probable. Accordingly, the sum of birth-ranks for affected
siblings would have a definite distribution, free from unknown parameters, providing “a ‘condi-
tional’ and ‘exact’ test for effect of birth-rank” (Haldane & Smith, 1948, p. 117). Finally, they
observed that this distribution would be very nearly normal in any practically occurring case
with a mean and variance that were easily calculable.

Consider a single sibship of k births, h of which are affected.9 Let the birth-ranks of the
affected siblings be denoted by a1, a2, . . . , ah and their sum by A =

∑h
r=1 ar. Then, there are

(
k

h

)
=

k!

h!(k − h)!

equally-likely ways of distributing the h affected siblings. Of these, the number of ways of
distributing them, Ph, k(A), so that their birth-ranks sum to A is equal to the number of partitions

8Cedric Smith, Roland Brooks, Arthur Stone, and William Tutte met at Trinity College, University of Cam-
bridge, and were known as the Trinity Four. Together they published mathematical papers under the pseudonym
Blanche Descartes, much in the tradition of the putative Peter Ørno, John Rainwater, and Nicolas Bourbaki.

9Haldane and Smith used k for the number of births and h for the number of affected births, instead of the
more conventional n and r, respectively.
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of A into h unequal parts, a1, a2, . . . , ah, no part being greater than k. Given this, the probability
ph, k(A) of obtaining a sum A is given by

ph, k(A) = Ph, k(A)

/(
k

h

)
. (7.1)

Dividing these partitions into two classes according to whether the greatest part is or is not k,
yields

Ph, k(A) = Ph, k−1(A) + Ph−1, k−1(A− k) . (7.2)

Haldane and Smith observed that from the relation described in Eq. 7.2 they could readily
calculate Ph, k(A) for small samples of h and k.

Since (k+1−a1), (k+1−a2), . . . , (k+1−ah) must be a set of h integers, all different,
not greater than k, and summing to h(k + 1)− A, they showed that

Ph, k(A) = Ph, k[h(k + 1)− A] . (7.3)

Haldane and Smith went on to note that, similar to the affected siblings, in any sibship the
unaffected siblings would all have different birth-ranks, none exceeding k, but summing to
k
2
(k + 1)− A. Thus,

Ph, k(A) = P k−h, k

[
k
2
(k + 1)− A

]
. (7.4)

An example will serve to illustrate the recursive process of Haldane and Smith.10 Con-
sider a sibship of k = 6 siblings with h = 2 of the siblings classified as affected (a) and
k − h = 6 − 2 = 4 of the siblings classified as normal (n), with birth-order indicated by sub-
scripts: n1, a2, n3, n4, a5, n6. Thus, the affected siblings are the second and fifth born out of
six siblings and yield a sum of A = a2 + a5 = 2 + 5 = 7. Table 6 lists the partitions and
associated frequency distributions for h = 2 and k = 6 in the first set of columns, h = 2 and
k − 1 = 6− 1 = 5 in the second set of columns, h− 1 = 2− 1 = 1 and k − 1 = 6− 1 = 5 in
the third set of columns, and k − h = 6− 2 = 4 and k = 6 in the fourth set of columns. It can
be seen in Table 6 that Ph, k(A) = P 2, 6(7) = 3 since there are three ways of placing an affected
sibling yielding a sum of A = 7, i.e, {1, 6}, {2, 5}, and {3, 4}. As there are a total of

(
k

h

)
=

k!

h!(k − h)!
=

6!

2!(6− 2)!
= 15

equally probable ways of placing the h = 2 affected siblings, the probability of obtaining a sum
of A = 7 as given in Eq. 7.1 is

p 2, 6(7) = P 2, 6(7)/15 = 3/15 = 0.20 .

Dividing the partitions into two classes as in Eq. 7.2 yields

P 2, 6(7) = P 2, 6−1(7) + P 2−1, 6−1(7− 6) ,

3 = P 2, 5(7) + P 1, 5(1) ,

3 = 2 + 1 ,

10It should be noted that while the decomposition in Eq. 7.4 is different than that employed by Mann and
Whitney (1947) in Eq. 5.1, it is similar to the decomposition used by Festinger (1946).
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of A into h unequal parts, a1, a2, . . . , ah, no part being greater than k. Given this, the probability
ph, k(A) of obtaining a sum A is given by

ph, k(A) = Ph, k(A)

/(
k

h

)
. (7.1)

Dividing these partitions into two classes according to whether the greatest part is or is not k,
yields

Ph, k(A) = Ph, k−1(A) + Ph−1, k−1(A− k) . (7.2)

Haldane and Smith observed that from the relation described in Eq. 7.2 they could readily
calculate Ph, k(A) for small samples of h and k.

Since (k+1−a1), (k+1−a2), . . . , (k+1−ah) must be a set of h integers, all different,
not greater than k, and summing to h(k + 1)− A, they showed that

Ph, k(A) = Ph, k[h(k + 1)− A] . (7.3)

Haldane and Smith went on to note that, similar to the affected siblings, in any sibship the
unaffected siblings would all have different birth-ranks, none exceeding k, but summing to
k
2
(k + 1)− A. Thus,

Ph, k(A) = P k−h, k

[
k
2
(k + 1)− A

]
. (7.4)

An example will serve to illustrate the recursive process of Haldane and Smith.10 Con-
sider a sibship of k = 6 siblings with h = 2 of the siblings classified as affected (a) and
k − h = 6 − 2 = 4 of the siblings classified as normal (n), with birth-order indicated by sub-
scripts: n1, a2, n3, n4, a5, n6. Thus, the affected siblings are the second and fifth born out of
six siblings and yield a sum of A = a2 + a5 = 2 + 5 = 7. Table 6 lists the partitions and
associated frequency distributions for h = 2 and k = 6 in the first set of columns, h = 2 and
k − 1 = 6− 1 = 5 in the second set of columns, h− 1 = 2− 1 = 1 and k − 1 = 6− 1 = 5 in
the third set of columns, and k − h = 6− 2 = 4 and k = 6 in the fourth set of columns. It can
be seen in Table 6 that Ph, k(A) = P 2, 6(7) = 3 since there are three ways of placing an affected
sibling yielding a sum of A = 7, i.e, {1, 6}, {2, 5}, and {3, 4}. As there are a total of

(
k

h

)
=

k!

h!(k − h)!
=

6!

2!(6− 2)!
= 15

equally probable ways of placing the h = 2 affected siblings, the probability of obtaining a sum
of A = 7 as given in Eq. 7.1 is

p 2, 6(7) = P 2, 6(7)/15 = 3/15 = 0.20 .

Dividing the partitions into two classes as in Eq. 7.2 yields

P 2, 6(7) = P 2, 6−1(7) + P 2−1, 6−1(7− 6) ,

3 = P 2, 5(7) + P 1, 5(1) ,

3 = 2 + 1 ,

10It should be noted that while the decomposition in Eq. 7.4 is different than that employed by Mann and
Whitney (1947) in Eq. 5.1, it is similar to the decomposition used by Festinger (1946).
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Table 6: Partitions (P ), sums (A), and frequencies (f ) for Ph, k(A) = P 2, 6(7), Ph, k−1(A) =
P 2,5(7), Ph−1, k−1(A− k) = P 1, 5(1), and P k−h, k[

k
2
(k + 1)− A] = P 4,6(14).

P 2, 6(7) P 2, 5(7) P 1, 5(1) P4, 6(14)

P A f P A f P A f P A f

1, 2 3 1 1, 2 3 1 1 1 1 1, 2, 3, 4 10 1
1, 3 4 1 1, 3 4 1 2 2 1 1, 2, 3, 5 11 1
1, 4 5 2 1, 4 5 2 3 3 1 1, 2, 3, 6 12 2
1, 5 6 2 1, 5 6 2 4 4 1 1, 2, 4, 5 13 2
1, 6 7 3 2, 3 7 2 5 5 1 1, 2, 4, 6 14 3
2, 3 8 2 2, 4 8 1 1, 2, 5, 6 15 2
2, 4 9 2 2, 5 9 1 1, 3, 4, 5 16 2
2, 5 10 1 3, 4 1, 3, 4, 6 17 1
2, 6 11 1 3, 5 1, 3, 5, 6 18 1
3, 4 4, 5 1, 4, 5, 6
3, 5 2, 3, 4, 5
3, 6 2, 3, 4, 6
4, 5 2, 3, 5, 6
4, 6 2, 4, 5, 6
5, 6 3, 4, 5, 6

as illustrated in Table 6, where P2, 6(7) in the first set of columns is associated with a frequency
of 3, P 2,5(7) in the second set of columns is associated with a frequency of 2, and P1, 5(7−6) =
P 1, 5(1) in the third set of columns is associated with a frequency of 1; thus, 3 + 2 + 1. Note
that once again, the decomposition observed in the discussion of Festinger and the two-sample
rank sum test appears wherein

(
k

h

)
=

(
k − 1

h

)
+

(
k − 1

h− 1

)
,

(
6

2

)
=

(
6− 1

2

)
+

(
6− 1

2− 1

)
,

(
6

2

)
=

(
5

2

)
+

(
5

1

)
,

15 = 10 + 5 .

This decomposition can be observed in Table 6, where the column of frequencies for P 2, 6(A)
in the first set of columns sums to 15, the column of frequencies for P 2, 5(A) in the second set
of columns sums to 10, the column of frequencies for P 1,5(A − k) in the third set of columns
sums to 5, and 15 = 10 + 5.

From Eqs. 7.3 and 7.4, Haldane and Smith were able to construct a table of values of
Ph, k(A) and

(
k
h

)
, giving the exact distribution for all values of k up to and including 12, noting

that values not explicitly given in the table could readily be derived by the use of Eqs. 7.3
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and 7.4. Additionally, Haldane and Smith investigated the approximate distribution of A. They
found it more efficient to test 6A instead of A and showed that the theoretical mean of 6A was
3h(k+1) and the theoretical variance was 3h(k+1)(k−h), and thus provided a table of means
and variances for h = 1, . . . , 18 and k = 2, . . . , 20. They observed that since A is made up
of a number of independent components, the distribution of A would be approximately normal
and, therefore, if an observed value of A exceeded the mean by more than twice the standard
deviation, siblings born later were most likely to be affected, but if the observed value of A
fell short of the mean by the same amount, siblings born earlier were most likely to be affected
(Haldane & Smith, 1948, p. 121). They concluded the paper with an example analysis based on
data from Munro on phenylketonuria from forty-seven British families (Munro, 1947).

8 van der Reyden’s Rank-sum Test
Little is known about D. van der Reyden other than that he was a statistician for the Tobacco
Research Board of Southern Rhodesia.11 In 1952 van der Reyden independently developed a
two-sample rank-sum test equivalent to the tests of Wilcoxon (1945), Festinger (1946), Mann
and Whitney (1947), Whitfield (1947), and Haldane and Smith (1948), although none of these is
referenced; in fact, the article by van der Reyden contains no references whatsoever. The stated
purpose of the proposed test was to provide a simple exact test of significance using sums of
ranks in order to avoid computing sums of squares (van der Reyden, 1952, p. 96). In a novel
approach, van der Reyden utilized a tabular format involving rotations of triangular matrices to
generate permutation distribution frequencies and published tables for tests of significance at
the 0.05, 0.02, and 0.01 levels (van der Reyden, 1952).

Table 7 illustrates the van der Reyden tabular procedure with values of n = 1, 2, 3,
m = 1, . . . , 6, and sums of frequencies from T = 1 to T = 15. Looking first at the column
headed n = 1 in Table 7, note that when m = 1 and n = 1, T = 1; when m = 2 and n = 1,
T = 1 or 2; when m = 3 and n = 1, T = 1, 2, or 3; and when m = 4 and n = 1, T = 1,
2, 3, or 4. Simply put, taking all samples of one item from m items, all values of T will have
a frequency of 1. In this case, each T has a frequency of 1 and each frequency sums to

(
m
n

)
,

e.g., for m = 4 and n = 1 the frequency distribution is {1, 1, 1, 1} with a sum of 4, which is(
4
1

)
= 4. To obtain the frequencies for samples of n = 2 items, rotate all frequencies for n = 1

clockwise through 45◦, shifting the whole distribution downward to

T =

(
n+ 1

2

)
=

n(n+ 1)

2
.

Thus in Table 7, the frequencies obtained for n = 1 are transposed with the first row now
constituting the fourth column, the second row constituting the third column, and so on. Then
this transposed matrix is shifted downward so it begins at T = n(n + 1)/2 = 2(2 + 1)/2 = 3.
Finally, the frequencies are added together horizontally in the same manner as Festinger (1946),
as follows.

Consider the frequency distributions listed under n = 2 in Table 7. There are two sets
of frequency distributions under n = 2, one on the left and one on the right, both labeled

11Southern Rhodesia was shortened to Rhodesia in 1965 and renamed the Republic of Zimbabwe in 1980.

20



Journ@l électronique d’Histoire des Probabilités et de la Statistique/ Electronic Journal for 
History of Probability and Statistics . Vol.8, Décembre/December 2012

and 7.4. Additionally, Haldane and Smith investigated the approximate distribution of A. They
found it more efficient to test 6A instead of A and showed that the theoretical mean of 6A was
3h(k+1) and the theoretical variance was 3h(k+1)(k−h), and thus provided a table of means
and variances for h = 1, . . . , 18 and k = 2, . . . , 20. They observed that since A is made up
of a number of independent components, the distribution of A would be approximately normal
and, therefore, if an observed value of A exceeded the mean by more than twice the standard
deviation, siblings born later were most likely to be affected, but if the observed value of A
fell short of the mean by the same amount, siblings born earlier were most likely to be affected
(Haldane & Smith, 1948, p. 121). They concluded the paper with an example analysis based on
data from Munro on phenylketonuria from forty-seven British families (Munro, 1947).

8 van der Reyden’s Rank-sum Test
Little is known about D. van der Reyden other than that he was a statistician for the Tobacco
Research Board of Southern Rhodesia.11 In 1952 van der Reyden independently developed a
two-sample rank-sum test equivalent to the tests of Wilcoxon (1945), Festinger (1946), Mann
and Whitney (1947), Whitfield (1947), and Haldane and Smith (1948), although none of these is
referenced; in fact, the article by van der Reyden contains no references whatsoever. The stated
purpose of the proposed test was to provide a simple exact test of significance using sums of
ranks in order to avoid computing sums of squares (van der Reyden, 1952, p. 96). In a novel
approach, van der Reyden utilized a tabular format involving rotations of triangular matrices to
generate permutation distribution frequencies and published tables for tests of significance at
the 0.05, 0.02, and 0.01 levels (van der Reyden, 1952).

Table 7 illustrates the van der Reyden tabular procedure with values of n = 1, 2, 3,
m = 1, . . . , 6, and sums of frequencies from T = 1 to T = 15. Looking first at the column
headed n = 1 in Table 7, note that when m = 1 and n = 1, T = 1; when m = 2 and n = 1,
T = 1 or 2; when m = 3 and n = 1, T = 1, 2, or 3; and when m = 4 and n = 1, T = 1,
2, 3, or 4. Simply put, taking all samples of one item from m items, all values of T will have
a frequency of 1. In this case, each T has a frequency of 1 and each frequency sums to

(
m
n

)
,

e.g., for m = 4 and n = 1 the frequency distribution is {1, 1, 1, 1} with a sum of 4, which is(
4
1

)
= 4. To obtain the frequencies for samples of n = 2 items, rotate all frequencies for n = 1

clockwise through 45◦, shifting the whole distribution downward to

T =

(
n+ 1

2

)
=

n(n+ 1)

2
.
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this transposed matrix is shifted downward so it begins at T = n(n + 1)/2 = 2(2 + 1)/2 = 3.
Finally, the frequencies are added together horizontally in the same manner as Festinger (1946),
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Table 7: Generation of frequency arrays for n = 1, n = 2, and n = 3 as described by van der
Reyden.

n = 1 n = 2 n = 3

T/m 1 2 3 4 2 3 4 5 2 3 4 5 3 4 5 6 3 4 5 6
1 1 1 1 1
2 1 1 1
3 1 1 1 1 1 1 1
4 1 1 1 1 1
5 1 1 1 2 2
6 1 1 1 2 1 1 1 1 1
7 1 1 1 2 1 1 1 1
8 1 1 1 1 1 2 2
9 1 1 1 1 1 1 2 3

10 2 1 2 3
11 1 2 1 3
12 1 2 1 3
13 2 2
14 1 1
15 1 1

m = 2, 3, 4, 5. So, for example, to create the frequency distribution listed under n = 2, m = 3
on the right, add together the frequency distribution listed under n = 2, m = 2 on the right and
the frequency distribution under n = 2, m = 3 on the left. To create the frequency distribution
listed under n = 2, m = 4 on the right, add together the frequency distribution listed under
n = 2, m = 3 on the right and the frequency distribution under n = 2, m = 4 on the left.
To create the frequency distribution listed under n = 2, m = 5 on the right, add together the
frequency distribution listed under n = 2, m = 4 on the right and the frequency distribution
under n = 2, m = 5 on the left. The process continues in this manner, recursively generating
the required frequency distributions.

For a final example, consider the frequency distributions listed under n = 3 in Table 7.
Again there are two sets of frequency distributions, one on the left and one on the right. The
distribution on the left is created by rotating the distribution created under n = 2 on the right,
and shifting it downward so it begins at T = n(n + 1)/2 = 3(3 + 1)/2 = 6. To create the
frequency distribution listed under n = 3, m = 6 on the right, add together the frequency
distribution listed under n = 3, m = 5 on the right and the frequency distribution under n =
3, m = 6 on the left. The frequency distributions of sums in Table 7 can be compared with the
frequency distributions of sums in Table 3 that were generated with Festinger’s method. In this
recursive manner van der Reyden created tables for T from n = 2, . . . , 12 and m = 10, . . . , 30
for the α = 0.05, 0.02, and 0.01 levels of significance.
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9 Further Developments
It would be remiss not to mention a later contribution by S. Siegel and J. W. Tukey. In 1960
Siegel and Tukey developed a non-parametric two-sample test based on differences in variability
between the two unpaired samples, rather than the more conventional tests for differences in
location (Siegel & Tukey, 1960). The Siegel–Tukey test was designed to replace parametric F
tests for differences in variances that depended heavily on normality, such as Bartlett’s F and
Hartley’s Fmax tests for homogeneity of variance (Bartlett, 1937; Hartley, 1950). Within this
article Siegel and Tukey provided tables of one- and two-sided critical values based on exact
probabilities for a number of levels of significance.

Let the two sample sizes be denoted by n and m with n ≤ m and assign ranks to the
n + m ordered observations with low ranks assigned to extreme observations and high ranks
assigned to central observations. Since the sum of the ranks is fixed, Siegel and Tukey chose to
work with the sum of ranks for the smaller of the two samples, represented by Rn. They also
provided a table with one- and two-sided critical values of Rn for n ≤ m ≤ 20 for various
levels of α.

Siegel and Tukey noted that their choice of ranking procedure, with low ranks assigned
to extreme observations and high ranks assigned to central observations, allowed the use of the
same tables as were used for the Wilcoxon two-sample rank-sum test for location. Thus, as
they explained, their new test “[might] be considered a Wilcoxon test for spread in unpaired
samples” (Siegel & Tukey, 1960, p. 432). Alternatively, as they noted, the Siegel–Tukey tables
were equally applicable to the Wilcoxon (1945), Festinger (1946), Mann–Whitney (1947), and
White (1952) rank-sum procedures for relative location of two unpaired samples, and were
appropriate linear transformations of the tabled values presented by Auble (1953).

In addition, a number of tables of exact probability values and/or tests of significance
were explicitly constructed for the two-sample rank-sum test in succeeding years, all based
on either the Wilcoxon or the Mann–Whitney procedure. By 1947 Wilcoxon had already pub-
lished extended probability tables for the Wilcoxon W statistic (Wilcoxon, 1947). In 1952 C.
White utilized the “elementary methods” of Wilcoxon to develop tables for the Wilcoxon W
statistic when the numbers of items in the two independent samples were not necessarily equal
(White, 1952). In 1953 D. Auble published extended tables for the Mann–Whitney U statistic
(Auble, 1953) and in 1955 E. Fix and J. L. Hodges published extended tables for the Wilcoxon
W statistic (Fix & Hodges, 1955). In 1963 J. E. Jacobson published extensive tables for the
Wilcoxon W statistic (Jacobson, 1963) and in 1964 R. C. Milton published an extended table
for the Mann–Whitney U statistic (Milton, 1964).

There were a number of errors in several of the published rank-sum tables that were
corrected in later articles; see especially the 1963 article by L. R. Verdooren (Verdooren, 1963)
that contained corrections for the tables published by White (White, 1952) and Auble (Auble,
1953), and an erratum to the 1952 article by Kruskal and Wallis (Kruskal & Wallis, 1952) that
corrected errors in the tables published by White (White, 1952) and van der Reyden (van der
Reyden, 1952). By the mid-1960s tables of exact probability values were largely supplanted by
efficient computer algorithms.
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