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On	  Two	  Historical	  Aspects	  of	  Buffon's	  Needle	  Problem	  

PRAKASH GORROOCHURN* AND BRUCE LEVIN† 

Résumé 

Deux aspects du problème de l'aiguille de Buffon sont discutés. Premièrement, nous montrons que, 

contrairement à ce qui est habituellement défendu, Buffon n'a pas en fait utilisé l'expérience de l'aiguille 

pour estimer la valeur de . Deuxièmement, et plus important, des précisions sont proposées sur le 

raisonnement suivi par Buffon pour déduire la probabilité d'intersection. 

Abstract 

Two aspects of Buffon’s needle problem are discussed. First, it is argued that, contrary to common lore, 

Buffon did not in fact use the needle experiment to estimate the value of . Second, and more 

importantly, further clarification of Buffon’s actual reasoning in deriving the probability of intersection is 

offered. 

1 Introduction  

 George-Louis Leclerc, Comte de Buffon (1707-1788) was born in Montbard, 

France, and was a major figure of the Enlightenment. Although he is known today 

foremost as a naturalist, Buffon showed interest in mathematics from an early age. He 

reportedly discovered the binomial theorem when he was 20 [Hanks, L., 1966, p. 17], 

unaware that Newton had already made the discovery in 1665. In that same year, he 

became friends with the illustrious Swiss mathematician Gabriel Cramer (1704-1752) 

who undoubtedly influenced his mathematical growth and development. At that time, 
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Buffon was a student while Cramer, only three years his elder, was already a professor. 

In his later Essai d’Arithmétique Morale, about which we shall have more to say later, 

Buffon said of Cramer: 

…a man who has given us proof of his talent in all of the mathematical sciences, & to whose 

memory I do this justice, with even more pleasure since it is with the exchange and friendship of 

this Scholar that I have owed part of my first knowledge of this type… [Buffon, G.-L. L., 1777, p. 

78]  

Weil reports that both men were very passionate about mathematics [Weil, F., 

1961]. In the letters that were exchanged between them, one thus finds enthusiastic 

discussions on indeterminate forms, algebra, geometry, and the St Petersburg Problem.  

Buffon had a vast number of other scientific interests which were evidenced in his 

monumental Histoire Naturelle, spanning 15 volumes between 1749 and 1767, and 

rivaling Diderot’s Encyclopédie. However, it is his mathematical activities that concern 

us here.  

Buffon lived in a period of intense mathematical activity. A century earlier, 

Newton and Leibniz had independently revolutionized the mathematical world through 

the discovery of the calculus. Newton had gone one step further: through the Principia, 

he had shown how the calculus could be used to understand our solar system and 

physical world. However, many continental mathematicians were still grappling with the 

idea of infinitesimal changes. Moreover, Newton’s concept of gravitational force raised 

many questions.  What was the nature of such a force and how could it obey a simple 

mathematical law? In his An Essay Concerning Human Understanding [Locke, J., 

1690], Locke analyzed many of the existing doubts of the period in an attempt to 

understand the capacity of the human mind to comprehend the outside world. Both 

Berkeley’s and Hume’s answers were to express skepticism about the ability of 

mathematics to understand the physical world. Buffon had a keen interest in the type of 

questions Locke was asking, and his work in mathematics was really an attempt to 

clarify these. Thus, in the introductory essay of Histoire Naturelle [Buffon, G.-L. L., 

1749], Buffon asks about the meaning of truth. For him there are different types of truth, 

the first of which are mathematical truths. However, Buffon says these are abstract 



Journ@l électronique d’Histoire des Probabilités et de la Statistique/ Electronic Journal for 
History of Probability and Statistics . Vol.9, Décembre/December 2013

	  

	  

2	  

Buffon was a student while Cramer, only three years his elder, was already a professor. 

In his later Essai d’Arithmétique Morale, about which we shall have more to say later, 

Buffon said of Cramer: 

…a man who has given us proof of his talent in all of the mathematical sciences, & to whose 

memory I do this justice, with even more pleasure since it is with the exchange and friendship of 

this Scholar that I have owed part of my first knowledge of this type… [Buffon, G.-L. L., 1777, p. 

78]  

Weil reports that both men were very passionate about mathematics [Weil, F., 

1961]. In the letters that were exchanged between them, one thus finds enthusiastic 

discussions on indeterminate forms, algebra, geometry, and the St Petersburg Problem.  

Buffon had a vast number of other scientific interests which were evidenced in his 

monumental Histoire Naturelle, spanning 15 volumes between 1749 and 1767, and 

rivaling Diderot’s Encyclopédie. However, it is his mathematical activities that concern 

us here.  

Buffon lived in a period of intense mathematical activity. A century earlier, 

Newton and Leibniz had independently revolutionized the mathematical world through 

the discovery of the calculus. Newton had gone one step further: through the Principia, 

he had shown how the calculus could be used to understand our solar system and 

physical world. However, many continental mathematicians were still grappling with the 

idea of infinitesimal changes. Moreover, Newton’s concept of gravitational force raised 

many questions.  What was the nature of such a force and how could it obey a simple 

mathematical law? In his An Essay Concerning Human Understanding [Locke, J., 

1690], Locke analyzed many of the existing doubts of the period in an attempt to 

understand the capacity of the human mind to comprehend the outside world. Both 

Berkeley’s and Hume’s answers were to express skepticism about the ability of 

mathematics to understand the physical world. Buffon had a keen interest in the type of 

questions Locke was asking, and his work in mathematics was really an attempt to 

clarify these. Thus, in the introductory essay of Histoire Naturelle [Buffon, G.-L. L., 

1749], Buffon asks about the meaning of truth. For him there are different types of truth, 

the first of which are mathematical truths. However, Buffon says these are abstract 

	  

	  

3	  

truths that are not connected to physical reality. In the Essai d’Arithmétique Morale, 

Buffon elaborates on his idea of probability and certainty. He distinguishes between 

physical and moral certainty. The former is based on experience, the latter on analogy. 

Buffon states that, although he has not seen the town of Constantinople, he is as certain 

of its existence as that of the moon, which he has seen many times. This is because of 

the experience of a huge number of witnesses and the corresponding certainty is a 

physical certainty. On the other hand, moral certainly is based on analogy which itself is 

the ‘sum of the relationships of known facts’. Thus, if Buffon was told by a witness that a 

child had been just born in town, he would believe the witness completely. This is 

because the birth of a child has an ‘infinite similarity’ with the birth of all children. Now, if 

Buffon was told that this child had two heads, he would believe the witness again, but 

this time less strongly. Here the reasoning is by analogy to known facts and the 

corresponding certainty is a moral certainty. The latter is always much smaller than 

physical certainty. Buffon’s concept of physical and moral certainty is thus seen to be 

similar to Hume’s two types of truths, namely ‘Relations of Ideas’ and ‘Matters of Fact.’ 

Buffon places moral certainty somewhere between doubt and physical certainty. 

He notes that there should be a number for the probability that represents moral 

certainty, but what is this number?  Buffon proceeds as follows. From the mortality 

tables he finds that the probability of a man of 56 to die within the following 24 hours is 

about 1/10,000. However, an average health man of 56 is not afraid of dying the next 

day, so Buffon takes a probability of less than 1/10,000 as morally impossible and ‘a 

probability of more than 10,000’ as representing moral certainty. 

In spite of his interest in mathematics, Buffon was more of a pragmatist than a 

mathematician per se. For example, his reaction to the St Petersburg problem* is to 

reject the mathematician’s solution of an expected infinite gain for the player, for two 

reasons. First he contends that, because all probabilities less than 1/10,000 should be 

regarded as zero, the player’s “true” expected gain is much less than infinity. Second, 

he contends that, whereas the mathematician assesses the value of money by its 
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
*	  This	  problem	  was	  communicated	  to	  Buffon	  by	  Cramer.	  
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quantity, the ‘moral person’ must gauge its value relative to what he already has. This 

reasoning is based on the concept of expected utility which is usually credited to Daniel 

Bernoulli [1738]. If Buffon’s claim that his solution to the St Petersburg problem dated 

back to 1730 is correct, then he would have anticipated Bernoulli by eight years. 

If Cramer had a big impact on Buffon’s work in mathematics and probability, 

Newton had perhaps an even more profound influence on Buffon’s scientific outlook. 

Newton’s famous ‘Hypotheses non fingo’* found a strong disciple in Buffon† and an 

advocate of the experimental method. Buffon was thus a proponent of the emerging 

empiricism that was to dominate the Enlightenment, and believed that any scientific 

theory should be the result of observable phenomena. Empiricism was characterized 

mainly though the sensation psychology of Locke and the scientific method of Newton. 

It thus represented a marked departure from the previous dominance of Descartes’ 

rationalism where emphasis was placed on reason as a source of all true knowledge. 

Like many of his contemporaries of the Enlightenment, Buffon generally rejected 

metaphysical speculation in the natural sciences; in particular, he denied that God 

intervenes directly in nature. Equipped with a very powerful microscope, Buffon made 

careful studies of the abundant variety of life forms. He catalogued his observations in 

the Histoire Naturelles. He noted that, despite the variety and apparent disorder of life, 

nature is governed by fundamental laws. Buffon developed his own classification of 

living things. He recognized as valid groupings only species which were defined in 

terms of reproductive capacity. This was in marked contrast to the classification system 

of his Swedish contemporary Carolus Linnaeus, which was based on the idea of 

resemblance.   

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
*	  Newton’s	  dictum	  was	  thus	  a	  departure	  from	  Descartes’	  prior	  system	  building.	  	  It	  must	  not	  be	  interpreted	  as	  a	  
complete	  rejection	  of	  hypotheses	  though,	  since	  Newton	  himself	  framed	  several	  hypotheses	  in	  his	  scientific	  

research.	  However,	  he	  was	  against	  the	  speculative	  formulation	  of	  reckless	  hypotheses	  without	  the	  support	  of	  
experiment	  and	  observation.	  

†	  A	  reading	  of	  Buffon’s	  preface	  in	  his	  French	  translation	  of	  the	  English	  version	  of	  Newton’s	  “The	  Method	  of	  Fluxions	  
and	  Infinite	  Series”	  clearly	  shows	  Buffon’s	  thoughts	  on	  Leibniz’s	  claim	  of	  priority	  on	  the	  Calculus:	  “Everybody	  
knows	  that	  Leinbitz	  [sic]	  has	  wanted	  to	  share	  the	  glory	  of	  the	  invention,	  &	  many	  people	  still	  give	  him	  at	  least	  the	  

title	  of	  the	  second	  Inventor…”	  [Buffon,	  G.-‐L.	  L.,	  1740,	  p.	  vi]	  
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In the field of probability, Buffon is usually known for the Needle Problem. This 

was first written in 1733 in the Mémoire sur le jeu du franc-carreau while Buffon was 

trying to gain entrance in the Académie Royale des Sciences. The memoir features the 

Clean Tile Problem and the Needle Problem. In the Clean Tile Problem, a coin is 

dropped at random on a floor paved with tiles of various shapes and the probability of 

intersection with one, two, etc. tiles is sought. In the Needle Problem, a needle or 

“baguette” is thrown at random between two parallel lines and the probability that the 

needle crosses one of the lines is required. Although no solutions are provided, some 

hints are given regarding the Needle Problem and a statement is made that Buffon has 

solved the problem by using the area of a cycloid*. The two problems together with an 

additional problem, namely the Grid Problem†, were later published with their solutions 

in 1777, in the Essai d’Arithmétique Morale. Gouraud reports that the Essai was actually 

written 17 years earlier [Gouraud, C., 1848, p. 54]. Interestingly, Buffon’s solution to 

only the first two problems is correct. 

The Needle Problem is as follows: A needle of length  is thrown at random on 

a plane in which a set of parallel lines separated by a distance  (where ) have 

been drawn (see Fig. 1). What is the probability that the needle will intersect one of the 

lines?  

 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
*	  Defined	  as	  the	  curve	  traced	  by	  a	  point	  on	  the	  circumference	  of	  a	  circle	  which	  rolls	  on	  a	  straight	  line	  without	  
sliding.	  

†	  The	  situation	  here	  is	  the	  same	  as	  in	  the	  Needle	  Problem,	  except	  that	  the	  needle	  is	  now	  thrown	  between	  two	  pairs	  

of	  parallel	  lines.	  
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Figure	  1	  The	  Needle	  Problem 

The problem is usually solved by either of two methods. As we shall soon see, neither 

of them corresponds to Buffon’s own solution in the Essai. In the first method, let the 

distance between the midpoint of the needle to the nearest line be , and the 

acute angle between the needle and the horizontal be . We assume that 

 and that , where  denotes the uniform distribution, and that 

and  are statistically independent. Therefore, is uniform on the rectangle 

. Now, the needle will intersect one of the lines if and 

only if (see Fig. 1). The ‘”favorable space” is then 

. Therefore, the probability of intersection is 

 

Note that the above probability involves the number , whose value can therefore be 

estimated by the experiment above. Thus, if the needle is thrown N times, of which a 

number n result in an intersection, then an appeal to the law of large numbers results in 
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the approximation getting better, as N  increases, with probability approaching one.* In 

fact, the experiment was performed by several scholars such as Wolf, de Morgan, 

Lazzarani, and others [O'Beirne, T. H., 1965; Gridgeman, N. T., 1960; Gorroochurn, P., 

2012]. But was it actually performed by Buffon himself?  We return to this question 

below. 

 A second method of solution to the Buffon problem was later given by Barbier 

[1860].† Barbier finished his mathematical studies in 1860 and in that same year 

published his paper which also contained many other generalizations to the Buffon 

problem.  He mistakenly credits the problem to Laplace’s Théorie Analytique des 

Probabilités, and also acknowledges that the generalizations were taught by Mr Lamé in 

his lectures at the Faculty of Science. Barbier’s solution is as follows. Suppose the 

needle is divided into two parts with arbitrary half-lengths  and . Since a line 

intersects the needle if and only if it intersects either portion, the probability of 

intersection satisfies . The latter equation is satisfied if and only 

if , where k is a constant and . Next imagine a polygonal line (not 

necessarily convex) of total length  is made up of n rectilinear segments of half-

lengths   where each . Each segment j has a probability  

intersecting one of the parallel lines. Let 

 

The total number of intersections is then  

 

and the expectation of T is  

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
*	  It	  is	  to	  be	  noted,	  though,	  that	  such	  a	  method	  is	  inefficient	  since	  the	  rate	  of	  convergence	  to	  the	  true	  value	  of	   	  

can	  be	  shown	  to	  be	   	  [Mantel,	  N.,	  1953]. 

†	  See	  also	  Uspensky	  	  [1937,	  p.	  253]	  and	  Klain	  &	  Rota	  [1997,	  p.	  1]	  



Journ@l électronique d’Histoire des Probabilités et de la Statistique/ Electronic Journal for 
History of Probability and Statistics . Vol.9, Décembre/December 2013

	  

	  

8	  

 

Applying the above formula to a circle with diameter , viewed as a polygonal line with 

an arbitrarily large number of segments, we have  with probability one,  and 

. We can now solve for  and obtain 

 

the same formula as before. 

Although the Needle Problem seems straightforward enough and has been 

widely discussed in the literature, we shall see that there are still misconceptions and 

obscurities about it. In particular, there appears to be a widespread belief among many 

commentators that Buffon actually used his needle experiment to estimate the value of 

. Others have gone even further and claimed that Buffon’s actual intent in performing 

the needle experiment was to be able to estimate the value of . We shall argue that 

there is no evidence for either of these premises. Moreover, ever since Laplace 

popularized the Needle Problem in the Théorie Analytique des Probabilités [Laplace, P.-

S., 1812, p. 360], many texts of probability and statistics have described and solved it 

by one of the two methods described above. However, none has presented Buffon’s 

actual solution, so far as we know. Despite the efforts of writers such as Hanks [1966] 

and Holgate [1981], Buffon’s actual method has escaped a full and altogether 

transparent mathematical explanation. We shall here present Buffon’s exact 

mathematical reasoning by solving the Needle Problem in the way Buffon intended it. 

2 Buffon and the estimation of  

Claims that Buffon actually used the Needle Problem to estimate the value of  occur 

very frequently in textbooks, many of which are otherwise highly reliable. Thus, we can 

read: 
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…The naturalist Buffon tossed a coin 4040 times, resulting in 2048 heads and 1992 tails. He also 

estimated the number  by throwing needles on a ruled surface and recording how many times 

the needles crossed a line… [Grinstead, C. M. and Snell, J. L., 1997, p. 9] 

…He [Buffon] reasoned, therefore, that he could experimentally determine the value of π by 

making repeated trials. [Hamming, R. W., 1974, p. 134]  

Many others have asserted that Buffon actually devised the Needle Problem to be able 

to experimentally determine the value of : 

…Buffon designed the experiment in order to estimate the numerical value of π. [Grimmett, G. 

and Stirzaker, D., 2001, p. 100]  

….In the late eighteenth century, Count de Buffon, French naturalist and avid needle tosser, 

designed this experiment to estimate a numerical value of π. [Olofsson, P., 2012, p. 172]  

Insofar as history books on probability are concerned, none of them, including 

Todhunter [1865], seem to have made such claims, except Maistrov [1974, p. 120]. The 

latter states that Buffon made 2048 tosses to determine the value of . However, the 

2048 tosses (which is wrongly given in Todhunter, p. 346, as 2084 tosses) refer to an 

experiment Buffon alluded to in the Essai whereby he had a child throw coins in the air 

in the context of the St Petersburg Problem, not the Needle Problem.  

 Indeed, nowhere in his writings does Buffon refer to the estimation of  by using 

the Needle Problem, nor is there any indication that he devised the experiment in order 

to estimate this constant. Actually, the symbol  occurs nowhere in the Essai because 

the symbol was not commonly in use in France at that time [Cajori, F., 1928, p. 

12;Hanks, L., 1966, p. 51].* That Buffon never estimated  is perhaps the reason why 

all claims to the contrary have never given any reference to Buffon’s writings where this 

actually occurred.   

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
*	  Cajori	  notes	  that	  the	  symbol	  π	  was	  first	  used	  by	  William	  Jones	  in	  1706.	  In	  the	  middle	  of	  the	  18th	  century	  the	  use	  

of	  the	  symbol	  gradually	  spread	  amongst	  mathematicians	  but	  it	  was	  only	  in	  the	  latter	  part	  of	  that	  century	  that	  it	  
gained	  popularity	  amongst	  French	  mathematicians.	  In	  any	  case,	  the	  symbol	  π	  had	  only	  been	  defined	  as	  the	  ratio	  of	  

the	  circumference	  and	  the	  diameter	  of	  a	  circle,	  so	  it	  is	  not	  surprising	  that	  Buffon	  adopted	  the	  same	  approach. 	  
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Why then did Buffon devise the Needle Problem? Why did he not estimate the 

value of ? And why it is still widely believed that Buffon used the Needle Problem to 

estimate the value of ? For the first question, we refer to Buffon himself: 

Analysis is the only instrument that has been used up-to-now in the science of probabilities to 

determine and to fix the ratios of chance; Geometry appeared hardly appropriate for such a 

delicate matter; nevertheless if one looks at it closely, it will be easily recognized that this 

advantage of Analysis over Geometry is quite accidental, and that chance according to whether it 

is modified and conditioned is in the domain of geometry as well as in that of analysis; to be 

assured of this, it is enough to see that games and problems of conjecture ordinarily revolve only 

around the ratios of discrete quantities; the human mind, rather familiar with numbers than with 

measurements of size, has always preferred them; games are a proof of it because their laws are 

a continual arithmetic; to put therefore Geometry in possession of its rights on the science of 

chance is only a matter of inventing some games that revolve on size and on its ratios or to 

analyse the small number of those of this nature that are already found…[Buffon, G.-L. L., 1777, 

p. 95;Hey, J. D. et al., 2010, p. 275] 

 Buffon’s aim is thus to show that probability can be calculated not only through 

“analysis” using discrete quantities, as had been the practice, but also through geometry 

using continuous measures. This was a major breakthrough, marking the birth of 

geometric probability*, and is testament to Buffon’s often underrated mathematical 

genius. Regarding the second question, in the absence of any evidence, one can only 

speculate that Buffon knew that his Needle Problem would be a rather inefficient way of 

estimating  since several accurate estimates of this constant already existed at the 

time (not to mention Archimedes’ method or the simplicity of approximating  by 

mechanical means). This would also explain why he does not even mention  in his 

derivation, holding forth instead in terms of circumferential arc lengths and areas of 

cycloids. The answer to the third question is not difficult. Given Buffon’s predilection for 

the experimental method, it would seem natural that Buffon would have employed a 

pupil to perform the needle experiment as he did in the St Petersburg experiment.  

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
*	  Which	  later	  developed	  into	  integral	  geometry.	  
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Indeed the suggestion that the Needle Problem could be used to estimate   

was first made by Laplace in the Théorie Analytique des Probabilités [Laplace, P.-S., 

1812, p. 360]. Moreover, Dorrie reports that Wolf in Zurich (1850) was the first to have 

actually performed the experimental estimation by throwing a needle 36 mm long 

between parallels separated by 45 mm a total of 5000 times [Dorrie, H., 1965, p. 77]. He 

found the probability of intersection to be approximately .5064 from which he estimated 

  to be 3.1596. In 1855, a certain Mr Ambrose Smith of Aberdeen made 3204 trails 

with a rod of three-fifths of the distance between the planks, and found [De 

Morgan, A., 1915, p. 283]. Using ‘additional precautions’, a Captain Fox made 1,200 

trials obtaining . Finally, we have the case of the Italian mathematician 

Lazarrini: in 1901, by using 3,408 trials he obtained a value of  accurate up to six 

places of decimal to its true value. Using reasonable assumptions, Coolidge showed 

that the probability of attaining such accuracy by chance alone is about .014 and 

concluded: 

It is much to be feared that in performing this experiment Lazzerini ‘watched his step’. [Coolidge, 

J. L., 1925, p. 82] 

 Indeed, as Kendall and Moran (1963, p. 71) have pointed out, many of the 

accurate approximations to  that were obtained used “optional stopping.” 

3 Buffon’s actual derivation of the probability of intersection 

We previously mentioned that none of the subsequent mathematicians writing on the 

Needle Problem gave Buffon’s original derivation. The reason for this omission is 

simple: Buffon’s derivation is abstruse, even obscure, and may not have been 

completely understood. Although Hanks [1966] and Holgate [1981] attempted to 

delineate Buffon’s method, their efforts were not completely successful in making 

Buffon’s approach transparent. Writers have therefore instead preferred to give one of 

the two methods we provided above, whilst being full of praise regarding Buffon’s 

original method. Thus, we can read from one of the early major researchers in 

geometric probability: 
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The mathematical ability evinced by BUFFON may well excite surprise; that one whose life was 

devoted to other branches of science should have had the sagacity to discern the true 

mathematical principle involved in a question of so entirely novel a character, and to reduce them 

correctly to calculation by means of the integral calculus, thereby opening up a new region of 

inquiry to his successors, must move us to admiration for a mind so rarely gifted. [Crofton, M., 

1868] 

Similarly, without delineating the actual method used by Buffon, the great classical 

probabilist Károly Jordan admits: 

The…problem…was solved by Buffon in a very ingenious way…[Jordan, K., 1972, p. 518] 

Apart from the lack of details, what seems even more baffling in Buffon’s derivation is 

his use of the cycloid to obtain the probability of intersection. However, let us describe 

Buffon’s derivation before giving our explanation of his method. 

	  

Figure	  2	  Buffon’s	  diagram	  of	  the	  Needle	  Problem	  (taken	  from	  the	  Essai	  d’Arithmétique	  Morale	  

[Buffon,	  G.-‐L.	  L.,	  1777,	  p.	  102]) 

Buffon considers a needle (or “baguette”) EF of length 2b (see left of Fig. 2) 

which is thrown between two parallel lines AB and CD, each of length f, and separated 

by a distance 2a. Also the arc length fF (F lying on the horizontal line EF) is denoted by 

c (one quarter the circumference of a circle with radius b).  Buffon first considers the 

case when the centre of the needle is a distance greater than b from each of the parallel 

lines, i.e., within the rectangle abcd. Then the needle cannot possibly intersect either of 

the parallel lines AB and CD. Buffon says that this has probability 

,                                                                       (1) 
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where  is the absolute value of  (Buffon, however, does not make this 

clarification).  

Next Buffon considers the case when the centre of the needle is outside the rectangle 

abcd (see right of Fig. 2). He denotes the arc length along the curve by y and the 

infinitesimal length on  by .  Then Buffon writes for the second case,  

 

Combining both cases, 

.                       (4) 

The above implies that 

. 

Buffon now states that  is the area of part of a cycloid whose generating circle has 

diameter and that “we know that this area is” 

.                                                         (5) 

After this remarkable statement, Buffon is able to obtain the correct answer: 

. 

Buffon’s breathtaking piece of analysis will leave many wondering where exactly Eqs (1) 

to (4) come from. And whence the cycloid? 

 Buffon’s reasoning can be understood as follows. Let us assume that  (as 

Buffon tacitly did) and let the distance between the line AB and the point in Fig. 2 be 
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denoted by x. Then, in Fig. 2, we have  and . Thus, the 

relationship between x and y is  (see Fig. 3). Note that this equation 

was not given by Buffon.  

 

	  

Figure	  3	  The	  favorable	  and	  unfavorable	  areas	  in	  Buffon’s	  analysis 

 

The first case considered by Buffon, namely when the centre of the needle is a distance 

greater than b from each of the parallel lines, is  and corresponds to the area 

 in Fig. 3. But Buffon is thinking in terms of volumes, so we can imagine a 

third axis perpendicular to x and y such that the areas  and  are the cross-

sections of a three-dimensional volume of height  f *. Therefore, multiplying by f, Buffon 

can then write the total unfavorable volume for the first case as in Eq. (1). Although 

Buffon called this a probability, he undoubtedly was referring to an unfavorable space, 

in view of the addition he does in the denominator of Eq. (4). Next the second case 

considered by Buffon is  and corresponds to the area . From Fig. 3, for this 

second case, the favorable area is  and the unfavorable area is 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
*	  The	  length	  f	  is	  redundant	  since	  it	  cancels	  out	  eventually,	  and	  Buffon	  could	  easily	  have	  done	  away	  with	  it.	  
However,	  Buffon	  was	  no	  doubt	  thinking	  geometrically	  in	  terms	  of	  possible	  cases	  (i.e.,	  points	  in	  the	  rectangle	  of	  

length	  f	  and	  width	  2a)	  in	  which	  case	  the	  arc	  length	  y	  varying	  between	  0	  and	  c	  provided	  a	  third	  dimension.	  
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. Again, multiplying by f, these two volumes correspond to Buffon’s Eq. (2) 

and (3), respectively. Now comes the difficult part, namely the cycloid and Eq. (5). In 

view of the fact that , the natural task for Buffon would have been to 

simply integrate it to determine  and hence . However, Buffon does not do the 

integration*, and instead resorts to an ingenious trick involving the cycloid. 

 

Figure	  4	  	  	  Holgate’s	  explanation	  of	  the	  connection	  between	  the	  Needle	  Problem	  and	  the	  cycloid 

 

 But how did Buffon make the connection between the Needle Problem and the 

cycloid? An intuitive answer is provided by Holgate [1981]. Consider Fig. 4 which shows 

an initial point P on the generating circle (with centre C) of the cycloid. As the circle rolls 

toward the right without sliding, P reaches the point Q at some later time, lying on a 

displaced circle with centre C'. Holgate identifies the distance C'N in Fig 4 with the 

distance x that the point  is below the horizontal line AB in Fig. 2. Now RR' = C'N = x. 

Then Holgate reasons that as x is increased by an infinitesimal amount , the 

favorable area increases infinitesimally as shown in the shaded region in Fig. 4. Hence 

the total area is that which is shown shaded in Fig. 5 and gives the favorable space for 

the second case considered by Buffon. This area had previously been identified by 

Hanks [1966, p. 55]. 
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
*	  Nor	  is	  there	  any	  evidence	  that	  he	  would	  have	  been	  able	  to	  perform	  such	  an	  integral.	  
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Figure	  5	  The	  shaded	  area	  under	  the	  cycloid	  is	  equal	  to	  the	  favorable	  area	  for	  the	  second	  case	  considered	  by	  

Buffon 

Would the kind of intuition used by Holgate have been enough for Buffon to state 

so assertively that the favorable area in the second case would be exactly equal to the 

shaded area under the cycloid shown in Fig. 5? We contend that Buffon must have 

used some additional reasoning, likely as follows. Consider the cycloid given in Fig. 5 

with starting point P, located on the top of its generating circle. As the latter rolls to the 

right, suppose P is at P' at some instant, having rotated through an angle . Then  

 and (in modern terms of analytic geometry) the coordinates  of P' are 

and . Therefore, integrating the horizontal lengths with respect to 

,  the shaded area in Fig. 5 is  

. 

Now , so that , implying that the 

shaded area is . But this is precisely the area  

(see Fig. 3) that Buffon sought. Notice that we have not done any actual integration in 

the above, and such geometric reasoning would have certainly been within Buffon’s 

mathematical abilities. 
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  Finally, Buffon seems to be quite confident too that the shaded area in Fig. 5 

should be equal to .  Though it is rather unfamiliar nowadays, this fact must have 

been known to him, as Holgate [1981] effectively argues. That the shaded area equals  

 is a consequence of the fact that, in Fig. 6, the area of the rectangle AB is equal to 

the sum of the areas of the rectangle BC and the shaded section of the cycloid. A proof 

of this classical theorem can be found in Proctor [1878, p. 10]. 

 

Figure	  6	  The	  justification	  for	  why	  the	  shaded	  area	  in	  Fig.	  5	  is	  equal	  to	  b2. 

 

 We previously mentioned the important works of Hanks [1966] and Holgate 

[1981] in deciphering Buffon’s reasoning, and stated that their efforts were not entirely 

successful. Thus, Hanks treatment of Buffon’s solution raises more questions than it 

answers, in particular with the latter’s use of Eqs (1)-(5). However, Hanks is successful 

in correctly identifying the shaded area in Fig. 5 as being the one that Buffon refers to in 

his solution. Similarly, Holgate provides no clear explanation of the exact steps in 

Buffon’s reasoning. He instead provides intuitive reasoning as to how Buffon might have 

made the link between the Needle Problem and the cycloid, and then concludes: 

My conjecture is that Buffon used some such reasoning as this to obtain the number of 

favourable cases…” 
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4 Conclusion 

We have sought to achieve two aims in this paper. First, contrary to many statements 

that continue to be made regarding Buffon’s estimation of 	  in the Needle Problem, we 

have argued there is no evidence within Buffon’s writings that any such attempt was 

made. The fact that Buffon did not estimate  surely does not change anything insofar 

as the theory of probability is concerned, except perhaps to correct an historical 

inaccuracy. Secondly, we have provided details of what we believe were Buffon’s actual 

geometric reasoning in solving the Needle Problem. Although Buffon has often been 

described as mathematically unsophisticated, a detailed analysis of his resolution of the 

Needle Problem reveals a very capable analytical mind. 

Our contention that Buffon never estimated  using his Needle Problem may 

seem overreaching insofar as it is difficult to prove an assertion of non-existence.  

Nevertheless, the likelihood ratio in favor of our "null" hypothesis is currently 

overwhelming (much writing but no evidence).  Yet the balance can be easily reversed 

by a single legitimate citation.  We welcome any such proof of existence. 
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