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“Mathématique Sociale" and Mathematics.

A case study: Condorcet’s effect and medians.

BERNARD MONJARDET
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Résumé

Condorcet a découvert l’ “effet Condorcet”, c’est-à-dire le fait qu’agréger des préférences individuelles

transitives au moyen de la règle de majorité sur les paires de candidate peut conduire à une préférence

collective qui n’est pas transitive. La solution proposée par Condorcet pour pallier cet effet a été interprétée

comme la recherche d’une médiane dans un certain espace métrique. Je parcours dans ce papier les

nombreux domaines de mathématique "pure" ou "appliquée" où la notion de médiane (métrique) est apparue.

S’il y avait réellement besoin d’une preuve que les mathématiques sociales sont bien des mathématiques, le cas

de la médiane en fournirait une convaincante.

Abstract
L’ “effet Condorcet” refers to the fact that the application of the pair-wise majority rule to individual

preference orderings can generate a collective preference containing cycles. Condorcet’s solution to deal with

this disturbing fact has been recognized as the search for a median in a certain metric space. We describe the

many areas of "applied" or "pure" mathematics
2

where the notion of (metric) median has appeared. If it were

actually necessary to give examples proving that “social mathematics” is mathematics, the median case would

provide a convincing example.

1. Introduction
The expression "Mathématique Sociale" has been coined by Condorcet in order

to designate "la science qui a pour objet l'application du calcul aux sciences

politiques et morales" (Tableau general, 1793) and distinguish this science from

1 CES, Université Paris 1 and CAMS, EHESS, Bernard.Monjardet@univ-paris1.fr

2 I don’t believe that there are distinct "pure" and "applied" mathematics. There are mathematics
motivated by internal questions to mathematics and mathematics motivated by questions raised in
other sciences. But, as the present paper will illustrate it, these two kinds of motivations can lead
to very intercrossed mathematics. Another striking example is in [Kuhn, 1976].
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Petty's "Political Arithmetic" and Buffon's "Moral Arithmetic". What Condorcet

meant by "Mathématique Sociale" has been studied by several authors (see, in

particular, [Granger, 1956], [Baker, 1975] and [Crepel and Rieucau, 2005]). Here I

will use this term for the mathematics used in some models or methods of the

human and social sciences, for instance the mathematics used in mathematical

economics, mathematical psychology or mathematical sociology. Observe,

moreover, that one can also include in "Mathématique Sociale" the fact that

mathematics is a social object that can be studied from different points of view by

historians, economists, psychologists or sociologists.3 The point of view of these

social scientists could be useful for explaining the assertion sometimes heard that

"La Mathématique Sociale, c'est pas des maths" (Social Mathematics is not

Mathematics) or some weakened assertions like "it is not interesting mathematics".

Such peremptory and obviously false assertions do not really deserve to be

contradicted. Nevertheless, I will develop in this paper what can be considered as a

counter-example to this kind of judgment. Indeed, I intend to show how

Condorcet’s method (according to Guilbaud and Young) to deal with "l'effet

Condorcet" uses the notion of median, a notion developed in many domains of

"pure" and "applied" mathematics. Moreover, Condorcet’s median procedure has

raised and is still raising interesting mathematical problems.

In section 2, I recall the method used by Condorcet to aggregate preferences,

what "l'effet Condorcet" is and why the Condorcet solution to deal with this effect

leads to a difficult combinatorial optimization problem. In section 3, I define the

notion of median in a metric space and I explain why the Condorcet solution is a

(metric) median. Section 4 sketches a history of the metric median from Fermat to

Birkhoff and later, history in which we meet on the way Jordan, Lebesgue, Weber,

Gini and many other mathematicians. Section 5 skims over the theory of the "good"

discrete metric spaces for medians. In the final section, I come back to Condorcet

by showing that several ways found to avoid the Condorcet effect rely on results

obtained in section 5.

2. Condorcet's solution to deal with "l'effet Condorcet"

First, I recall Condorcet’s method for aggregating (judgments of) preferences.4 I

3 This meaning of "Mathématique Sociale" was well present in the perspectives of Guilbaud
when he created the Centre de Mathématique Sociale (see Monjardet 2005 for the creation of this
Center and its activities in social choice theory).
4 It is worthwhile to recall that Condorcet's aim is much more general. He want to aggregate
coherent opinions: let a set of binary (“yes or no“) questions be logically linked in the sense that
the answers to some imply the answers to others; a coherent opinion of an individual is a set of
answers to these questions respecting their links. In particular a coherent opinion can be the
answers to questions bearing on the culpability of an accused. And one finds in the Essai an
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will use the classical notations of social choice theory. The mathematical model

consists of a set of "voters" each one having a preference on a set of "candidates".

This preference is expressed by a ranking5 and the specification of all these

rankings forms the profile of preferences of the voters. For instance, a profile of

preferences of 7 voters on 4 candidates denoted by a, b, c and d is the following:

1 2 3 4 5 6 7

c c c b b a a

b b b a a d d

a a a d d c c

d d d c c b b

A profile of preferences

In the above profile, voter 1 has the preference c>b>a>d and voter 4 the

preference b>a>d>c. A preference ranking like c>b>a>d expresses six binary

preferences between two candidates: c>b, c>a, c>d, b>a, b>d and a>d.

In the Essai sur l'application de l'analyse à la probabilité des décisions rendues

à la pluralité des voix (henceforth, called simply the Essai) Condorcet uses the

majority rule on these binary preferences to get a collective preference.6 For the

above profile the following table shows the number of votes obtained by each

binary preference i.e., what can be called the support given by the voters to this

preference:

x>y a b c d

a 2 4 7

b 5 2 5

c 3 5 3

d 0 2 4

The binary preferences of the above profile

example of the so-called "doctrinal paradox" rediscovered two hundred years later (see the
Discours préliminaire of the Essai, pages 50-53, and see [Guilbaud, 1951] and [Granger, 1965]
for an analysis of Condorcet's work on the logical problem of aggregation.
5 Here a ranking means a strict linear order i.e., an asymmetric, connected and transitive binary
relation.
6 This method had been already proposed in the thirteenth century by Ramon Llull (see [McLean
and London, 1990] and [McLean, Lorrey and Colomer, 2008])
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One reads in this table that, for instance, a is preferred to c by 4 voters and that

c is preferred to d by 3 voters. The bold figures are those which are greater or equal

to the majority 4.

Condorcet retains these bold figures to get the collective preference a>c, a>d,

b>a, b>d, c>b and d>c. But this preference does not form a ranking since it

contains a cycle b>a>d>c>b. Equivalently, this preference is not transitive.7 This

fact discovered by Condorcet has been called "l'effet Condorcet" par Guilbaud

(1952) and the "paradox of voting" by Arrow8 (1951).

In the Essai Condorcet proposes a procedure for getting a ranking that expresses

the collective preference when the majority rule induces a nontransitive preference.

He writes: "on écartera de l'avis impossible successivement les propositions qui ont

une moindre pluralité et l'on adoptera l'avis résultant de celles qui restent"9 ("one

successively deletes from the impossible opinion the propositions that have the

least plurality, and one adopts the opinion from those that remain").

However Condorcet's sentence is ambiguous (at least when there are more than

three candidates) and can allow for different interpretations (see [Black, 1958]).

Here I adopt the interpretation shared by Guilbaud (1952) and Young (1988).

Guilbaud writes: "Condorcet ne peut se résigner à conclure qu’on ne peut

attribuer aucune opinion cohérente (ordre total) au corps électoral…Il cherche un

moindre mal, c’est-à-dire parmi toutes les opinions cohérentes celles qui est

appuyée par le plus grand nombre de suffrages" ("Condorcet could not resign

himself to conclude that it is impossible to attribute any coherent opinion (ranking)

to the electoral body (......). He looks for lesser evil, that is to say among all the

coherent opinions the one which is supported by the largest possible number of

votes").10

What is the support given by the voters to a ranking that could represent the

collective preference? It is clearly the sum of the supports of the binary preferences

contained in this ranking. For instance, for the above profile the support of

a>b>c>d is 2+4+7+2+5+3 = 23, whereas the support of c>b>a>d is 5+3+3+5+5+7

= 28. One can check that this order c>b>a>d has the strongest support among the

7 When a binary relation is connected and asymmetric it is transitive if and only if it does not
contain cycles.
8 According to Urken the fact that Arrow used the term paradox could be explained by the fact
that he followed Tarski’s teaching in logic. See also [Arrow,1991] and [Suppes, 2005].
9 In this sentence avis (translated below by opinion) means the collective preference obtained by
the majority rule and proposition means binary preference.
10 Page 265 in the English translation of Guilbaud's 1952 paper.
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2411possible rankings on 4 candidates. So, according to Guilbaud, it is the

Condorcet solution to the problem raised by the Condorcet effect encountered in

this profile.

Two observations are necessary. First if the profile does not exhibit a Condorcet

effect the majority rule gives the ranking with the strongest support.12 Second the

Condorcet solution is not necessarily unique: there can exist several rankings

having the strongest support.

I now arrive at Young's analysis of the procedure proposed by Condorcet. He

recalls that for Condorcet there is a true order of merit between candidates. The aim

of the voting procedure is to find this order from those given by the voters and

containing errors. Then Condorcet introduces a probabilistic model for the search

of this true order: the probability for each voter to prefer the best candidate in each

binary comparison is a constant p > 1/2. And Condorcet searches the ranking that is

the most probable combination of propositions in this model i.e., what is now

called the maximum likelihood estimation of the ranking. Now (modulo

independence hypotheses) a simple computation shows that this ranking is "the set

of propositions that contain no cycles and is supported by the largest number of

pairwise votes" i.e., exactly the same ranking as the one given by Guilbaud. So,

later on, I will call Condorcet's solutions or Condorcet's rankings the rankings

having the strongest support.13

How to find this (or these) ranking(s) which is (are) the Condorcet solution(s) to

the problem raised by the Condorcet effect? The answer is obtained by solving a

combinatorial optimization problem. What is such a problem? One has a finite set

of elements (here the elements are all the possible rankings); a numerical value is

assigned to each element (here it is the support of the ranking). And one searches

the element(s) having the greatest value. Such a problem can seem trivial: it is

sufficient to list all the elements while keeping at each step the one with the

greatest value. But it is not at all trivial as soon as the size of the set of elements is

large. In Condorcet's problem the number of possible rankings for m candidates is

m! a number that expands rapidly.14 Combinatorial optimization problems abound

in mathematics for instance in combinatorics, operational research or data analysis.

Many such problems are very difficult –in fact impossible- to solve as soon as their

size is not small. Then the combinatorial optimization theory (a branch of the

optimization theory) has developed many approaches and tools to tackle such

11 The number of different rankings of m candidates is m! = m(m-1)…2.1.
12 At least when the number of voters is odd. When it is even the (strict) majority rule gives a
partial order and all the rankings containing this partial order have the strongest support.
13 See also [Crépel, 1970] for an a analysis of several other less known Condorcet’s texts on the
elections which "confirment plutôt" ("rather confirm") Guibaud’s and Young’s interpretations.
14 For m = 15, m! = 1307674368000 and for m ≥ 25 m! is greater than 10m.
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"insolvable" problems.15 For instance, instead of searching for the exact solution of

the problem, one searches "good" approximate solutions. The search for the

Condorcet rankings is a particular case of a classical "insolvable" problem called

the linear ordering problem (see [Reinelt, 1985]) and it is itself an "insolvable"

problem.16

In the next section we will see that Condorcet’s rankings are also medians in a

certain metric space.

3. Metric spaces and medians
We all know two notions of medians. In geometry, a median of a triangle is a

line that joins a vertex of the triangle to the middle of the opposite side. In

statistics, the median of a statistical distribution is its “middle”: half the values are

above the median and half are below it. Observe that this last sentence gives only

an intuitive idea of what this median is. It must be specified according to the nature

of the distribution and it is not uncommon to find imprecise or erroneous

definitions in many manuals of statistics.17

In fact in order to show that Condorcet rankings are medians we are going to use

a more general notion of median namely the notion of metric median in a metric

space. I begin by saying what is meant by a metric space, a notion introduced by

Maurice Fréchet in his 1904 doctoral dissertation and that is become a fundamental

notion in mathematics.18 A metric space is a set of elements, often called points,

endowed with a distance: a non-negative numerical value d(P,Q) is associated to

any pair {P,Q} of points of this space and d satisfies the following properties:

d(P,Q) = 0 if and only if P = Q

d(P,Q) ≤ d(P,R) + d(R,Q)

P

R

Q

Figure 1

15 There exist many good books on combinatorial optimization, for instance Combinatorial

Optimization by W. J. Cook, W.H. Cunningham, W. R. Pulleyblank and A, Schrijver, Wiley,
1997.
16

One can find a survey on the way to tackle the aforementioned problems in [Charon and

Hudry, 2007].
17

For a correct handling see, for instance, [Hays, 1994].
18 The concept of metric space is due to Fréchet but the name is due to Hausdorff.
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This notion of distance is obviously an abstraction of the usual distance in our

Euclidean space. The second property called the triangular inequality reflects the

fact that in this space the straight line is the shortest path from a point to another

point (Figure 1). Metric spaces are particular topological spaces and their theory is

a part of the foundation of modern mathematical analysis.

Let P1, P2…Pn be n points of a metric space. A point M is a median of these n

points if M is a point of the space minimizing the sum d(M, P1) + d(M, P2) +…+

d(M, Pn) of its distances to the n points.

P1

M

P6

P3

P2

P5

Figure 2 The median of six points

It is interesting to observe that the median of a statistical distribution can be

defined like this. It is a result in [Laplace, 1774]: let F be the cumulative

distribution function of an (absolute continuous) random variable; the median is

defined as the value µ such that F(µ) = 0.5. Laplace proved that µ is also the value

minimizing the average of the absolute deviations, where the deviation between

two values is their L1 (called also Manhattan) distance i.e., the absolute value of

their differences. Laplace called this value "le milieu de probabilité" or "la valeur

probable". The term median has been introduced by Cournot in l’Exposition de la

théorie des chances (1843, p.63 et 120)19.

In order to show that Condorcet's solutions are (metric) medians we have to

introduce a metric space. We consider the set of all possible rankings on the

candidates. For instance, if there are 3 candidates denoted by a,b,c there are 6

rankings shown below:

a b b c c a

b a c b a c

c c a a b b

19 Many terms have been used to name a metric median: Fermat point, Fermat-Torricelli point,
Fermat-Weber point, Steiner point, Lamé point, equiprobable value, minimum distance point,
minimum travel point, proximal point, center, centroid.… The use of some of these terms is
linked to particular contexts where metric medians have appeared (see sections 4 and 5).
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In this space of all the rankings we introduce a very natural distance called the

disagreements' distance. There is a disagreement between two rankings on a pair

{x,y} (of candidates) if they express opposite preferences on these candidates: in

one ranking x is preferred to y and in the other y is preferred to x. The

disagreements' distance between two rankings is the sum of their disagreements on

the pairs. For instance, the distance between the two rankings a>b>c and b>c>a is 2

since they disagree on {a,b} and {a,c}.

It is easy to check that the disagreements' distance is indeed a distance in the

above sense i.e., that it satisfies the triangular inequality.20 One can represent the

metric space of all the rankings by a graph called the permutoèdre graph where the

distance between two rankings equals the distance of the shortest path between the

two vertices representing these rankings. Figures 3 and 4 below show the

permutoèdre graph for 3 and 4 candidates. In these figures a ranking is represented

by a permutation. For instance, abcd represents the ranking a>b>c>d. One sees on

Figure 4 that the distance between, for instance, abcd and bdca is 4.

abc

acb

cab

cba

bac

bca

Figure 3: the permutoèdre graph for 3 candidates.

abcd

bacd

badc

acbd abdc

adbc

adcb dabc

dacb

dcab

dcba

cdba dbca

cbda

cbadbcda

bcad cabd acdb

bdac

bdca dbac

cadb

cdab

20 This distance is nothing else that the half of the well-known distance between binary relations
(more generally between sets) called the symmetric difference distance i.e., the number of
elements that belong to one of these two relations (sets) without belonging to the other. For two
binary relations R,S their symmetric difference distance is thus |R-S| + |S-R|.
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Figure 4: the permutoèdre graph for 4 candidates.

Since we have endowed the set of all rankings with a metric space structure, we

can speak of medians in this space. A ranking M is a median ranking of n rankings

L1, L2…Ln if M minimizes among all the possible rankings the sum d(M, L1) + d(M,

L2) +…+ d(M, Ln) of its distances to the n rankings.

Defining a median ranking as the consensus between n rankings is the

aggregation procedure proposed by Kemeny (1959) and reproduced in Kemeny and

Snell's 1962 book on the mathematical models of social sciences. This procedure is

often called the Kemeny rule. Now we have the following result ([Barbut, 1966]):

let (L1, L2…. Ln) be a profile of n rankings. A ranking M is a median ranking of this

profile if and only if it is a Condorcet's solution (i.e., if M has a maximum support

among all the possible rankings). In other words Kemeny's solution to the

aggregation problem is the same as Condorcet's solution.

This result shows the equivalence of two formulations for defining a consensus

ranking of a profile of rankings. In fact, one can find many other equivalent

formulations for this same ranking (in Monjardet (1990) one will find twenty-two

equivalent formulations). In particular, it is interesting to observe that this same

median ranking was independently proposed in 1960 under two other different

formulations and names: by Brunk who adapted an idea in Kendall (1942) and by

Hays using Kendall’s tau to define a consensus ranking. It is beyond doubt that it is

the big success of Kemeny and Snell's book that made Kemeny's rule so popular,

whereas Brunk’s and Hays’ works remained largely ignored.

In the next section I will show that the notion of (metric) median has appeared

in many domains of mathematics.

4. Medians in mathematics
Apparently, the history starts with Pierre de Fermat. At the end of his Essai sur

les maximas et les minimas (1629, p153 in [Oeuvres]) Fermat launches the

challenge: "Let he who does not approve of my method attempt the solution of the

following problem: given three points of the plane, find a fourth point such that the

sum of its distances to the three given points is a minimum". So the question is to

find the median of three points of the plane for the usual "straight line" (Euclidean)

distance. The answer21 is not in Fermat’s Essai but from his formulation of the

problem one can assume that he knew it. One finds the answer first in Torricelli’s

21 This answer is not the intersection point of the three medians of the triangle. This intersection
point is the center of gravity of the triangle, i.e. the point minimizing the sum of the square of the
distances to the three vertices of the triangle. This confusion between median and center of
gravity is frequent (a famous example is given at the end of this section).
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and Cavalieri's works (1647 and 1648). When no angle of the triangle is greater or

equal to 120°, Torricelli proves that the median is the intersection point of the three

circles circumscribing the equilateral triangles constructed on the sides of and

outside the given triangle. It is why this median is also called the Torricelli point.

Cavalieri shows that this median point is the point from which the three lines

joining it to the three vertices of the triangle form three angles of 120°. He also

considers the case where the given triangle has an angle greater or equal to 120°. In

this case the median is the vertex of this angle (a result obtained again by Heinen in

1834). Later Simpson (Doctrine et applications des fluxions, 1750) observes that

the median point is also the intersection point of the Simpson lines i.e., the lines

joining the outside vertices of the equilateral triangles considered by Torricelli to

the opposite vertices of the given triangle.

R

P

Q

M

R
Q

P = M

Figure 5: the median of three points of the plane.

Generalizations of Fermat's problem occur as early as an exercise in Simpson's

book. Indeed, Simpson adds numerical weights to the points and searches the

median of 3 weighted points i.e., the point M minimizing the sum pd(M,P)+

qd(M,Q)+rd(M,R). The solution would appear in [Launhardt, 1872]. It is interesting

to observe that Lebesgue (1918) devoted a lesson to this problem where he insists

that the existence of the median must be proved. The problem of searching for the

median of n points in the plane appears for sure in Steiner (1838), which has

perhaps also raised the problem for n weighted points. These problems are

discussed by Sturm (1884), which shows the unicity of the median when the points

are not aligned. But as soon as the number of points is greater than 4 it becomes

very difficult to find the median point.22 I will not try to quote all the many works

that may have appeared on the (generalized) median problem in the plane or in

22 In fact one can only find "good” approximation algorithms. See [Weiszfeld, 1934], [Ostresh,
1978])), [Eckhardt,1980], [Bajaj,1988] or [Chandrasekaran and Tamir, 1990] for algorithms and
complexity results on this problem.
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various spaces before or during the 20th century.23 But most of the works that

appeared before the fifties remain largely ignored or were despised. For instance in

1941 two illustrious mathematicians Courant and Robbins dealt with Fermat's

problem (called by them Steiner’s problem…) in their famous book What is

mathematics? But concerning the problem of the median of n points they wrote:

"This problem which was also treated by Steiner does not lead to interesting results.

It is one of the superficial generalizations not infrequently found in the

mathematics literature". Unfortunately, this peremptory judgment was already

completely wrong.24 Indeed, the interest of this problem has appeared at the

beginning of the century in two different contexts (admittedly not in pure

mathematics).

In 1909 Alfred Weber (economist and sociologist, brother of Max Weber)

published Uber den Standort der Industrien (On the location of industries). This

book was the first to present a mathematical model for the optimal location of a

plant. In order to build a product the plant receives two types of raw material

located in two different places. The product must be sold at a third place. Weber’s

model takes in account the distances between the different places and the costs of

the transportations. The plant’s location must minimize the costs, but since Weber

assumes that it can be anywhere in the space, one finds again Simpson's problem of

the research of the median of 3 weighted points. Since Weber and particularly since

the sixties many more general models of "continuous" location have been studied.

Then the works of Fermat, Toricelli and others have been rediscovered, and so, in

facility location theory, one now currently speaks of the Fermat-Weber generalized

problem (see [Kuhn, 1967,1976]).

Another generalization of Fermat's problem also took place in statistics at the

beginning of 20th century. The story starts in 1914 but it became well known only

in 1930. This year, the famous Journal of the American Statistical Association

published "A mistaken conception of the center of population" a paper by the

23 One will find many references going from Fermat to recent works on Fermat’s problem and its
generalizations in the Fermat-Torricelli entry of the Springer Encyclopedia of Mathematics:
http://eom.springer.de/f/f130050.htm. See, in particular, [Kupitz and Martini, 1997] and
[Wesolowsky, 1993]. There exists also a dual problem of Fermat’s problem of which the origin
seems to come back to a 1811 paper by Rochat, Vecten, Fauguier and Pilatte (see [Kuhn, 1967
and 1976]).
24 One can observe that in the 1962 German edition of the book the judgment is a little less
peremptory: “Diese Problem, das ebenfalls von Steiner behandelt wurde, führt nicht zu besonders
interessanten Ergebnissen. Es ist eine der oberflächlichen Verallgmeinerungen, wie man sie in
der mathematischen Literatur manchmal antrifft”. Also, Courant and Robbins made wrong
remarks about what they called a "complementary problem" of Steiner’s (in fact Fermat’s)
problem (see, for instance, [Krarup, 1998], [Martini and Weissbach, 1999], [Jalal and Krarup,
2003]).
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statistician Eells. He pointed out that since 1910 the United States Census Bureau

committed “an unfortunate error” by trying to explain how is defined the center of

the American population. This Bureau confused the notion of center of gravity (see

footnote 21) and the notion of median of a population. Then, Eells points out that it

is much more difficult to find the median than the center of gravity. He continues

by solving the problem of finding the median of an equilateral triangle, i.e. a very

particular case of the case solved by Fermat, Toricelli and Cavalieri almost two

hundred years before!! This Eells’paper aroused an avalanche of letters and in the

next issue of JASA the chief-editor was obliged to do a synthesis of the received

letters. The most interesting was the letter of the Italian statistician Corrado Gini

that mentioned a paper by himself and Galvani published in 1929 in Metron. In this

paper Census Bureau’s error was already mentioned. But, above all, the paper

contained the proof of the existence of a solution for the problem that the authors

called the Fermat-Toricelli’s generalized problem: to find the median of n weighted

points of the Euclidean plane. Moreover, this work have been preceded and

motivated by Gini’s 1914 paper: "L’uomo medio". One knows that Quetelet had

proposed to define an "homme moyen" of a population of men by taking the means

of different characteristics (size, weights, quantified aptitudes…) describing this

population. But it was quickly objected, in particular by Cournot (see [Exposition

de la théorie des chances et des probabilités, 1843], p.213) and Poisson, that such a

mean man could be an impossible man. Gini considered a generalization of

Quetelet’s problem: how to define the central value of a multivariate statistical

series? Such a series can be represented by a (weighted) cloud of points in the

Euclidean space. And Gini’s answer was to define the central value as the (metric)

median in this metric space. It is interesting to observe that the same answer was

given later by Fréchet in his 1949 paper "Réhabilitation de la notion statistique de

l'homme moyen" ("Rehabilitation of the statistical notion of the mean man").

Fréchet tackles the same problem as the problem studied by Gini, namely to define

central values for multidimensional statistical series. In fact, Fréchet made many

contributions in order to define what the typical values of abstract random elements

in abstract spaces are (see, for instance [Fréchet, 1948]). Then he was able to give

several solutions to the problem, the main one being the same as Gini’s solution

i.e., the median(s) in a metric space. 25

In the Fermat-Weber location problem as well as in the Gini-Fréchet central

value problem the median is defined in a continuous metric space, for instance in

25 Fréchet does not quote Gini’s works in his paper on "l’homme moyen". He only writes that it is
after having heard a talk recalling the failure of Quetelet’s "homme moyen" that he had the idea
to apply some of his researches to Quetelet’s problem. One cannot be sure but since Gini was a
reputed statistician Fréchet could have known his works.
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an Euclidean space. Condorcet’s median is defined in a discrete space (since the

number of all the possible rankings forming this space is finite). In the next section

we will see that the occurrence of medians in several discrete problems and

structures has lead to a theory of the "good" discrete metric spaces for medians.

5. Medians in discrete metric spaces and median algebras
In 1869 Camille Jordan publishes a paper "Sur les assemblages de ligne"

motived by his researches on the structure and the symmetries of quadratic forms.

Jordan associates a (finite) undirected graph to such a form. An undirected graph –

called assemblage by Jordan– is formed by vertices joined by (possibly multiple)

edges. A natural distance between two vertices in the graph is the shortest path

distance i.e., the minimum number of edges of a path linking these two vertices.26

Then endowed with this distance, a graph becomes a (discrete) metric space and

one can speak of the median(s) of a set of vertices. Jordan was interested in the

search of what he called the centers of the graph associated to a quadratic form. He

calls assemblage à continuité simple what is now called a tree i.e., a graph

connected and without cycles27 (see an example at Figure 6 below). In this case

Jordan shows that there are either one center or two centers linked by an edge and

that they can be easily found. But one can show that the Jordan centers of a tree are

exactly the (metric) medians of all the vertices of this tree28. More generally one

can search the medians of a set of vertices of a tree. Here also it is easy to find the

medians and one shows that they always form a path in the tree. For instance in the

tree of Figure 6, the medians of the set {a,b,c,i,l,n} of vertices are the vertices d, e

and h (here the distance between, for instance, d and l is 4). . So a tree is a first

example of a discrete metric space where it is easy to compute medians. We will

see later that this is due to the fact that trees can be defined by means of a ternary

algebraic operation satisfying specific properties.29

26 A path is a sequence of vertices linked by edges. It is clear that the shortest path distance

satisfies the triangular inequality. The other property for a distance is satisfied if (and only if) the
graph is connected i.e., if there exists always a path between any two vertices of the graph.
27 When the first and the last vertices of a path coincide, it is called a cycle.
28 In fact, Jordan defines four kinds of centers. A (Jordan) center of second kind is what is
(generally) now called a center in graph theory (i.e., a vertex minimizing the maximum distance
between a vertex and the other vertices). A (Jordan) center is (as just said) a median of all the
vertices of the tree, but it has also called an absolute 1-median and a mass center.
29 This operation is precisely this associating to three elements their median. Its properties were
first studied by [Avann, 1948] and [Scholander, 1952, 1954] and independently –under the name
of tree algebra– by [Nebesky, 1969]. Nebesky’s monograph is a mathematical work motivated
by the use the so-called projective tree in dependency conception in syntax.
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Figure 6: medians in a tree

If one now considers the problem of searching the medians of a set of vertices of

an arbitrary (undirected) graph, it becomes less simple.30 The problem has been

very frequently studied since the sixties in the framework of the theory of discrete

facility location models. There one searches the medians (called also the Weber

points) of weighted vertices of a graph representing a location network model. So

we are in a domain of applied mathematics in fact the domain of operational

research.

But medians have also appeared in a domain of pure mathematics namely lattice

theory.31 In 1947 Birkhoff and Kiss published a paper "A ternary operation in

distributive lattices".32 A distributive lattice is a metric space with respect to a

natural distance defined between its elements.33 Then one can speak of the medians

of a set of elements of this lattice. In their paper Birkhoff and Kiss show that the

median of 3 elements of a distributive lattice can be defined by an algebraic

formula using the operations meet and join of the lattice. So they obtain a ternary

operation satisfying some properties and they show that such an operation

characterizes distributive lattices. Let me explain what is this ternary operation in

the simplest case of the distributive lattice defined by a ranking (see footnote 32).

30 This is illustrated by a Slater's result: one can find graphs for which the set of medians of all

their vertices is a given arbitrary graph [Slater, 1980].
31 A lattice is a partially ordered set –henceforth called a poset- in which any two elements have a
meet (greatest lower bound) and a join (lowest upper bound). Lattice theory began at the end of
19th century with Dedekind and Schröder but it was at first largely ignored and it only rebirthed
in the thirties with Birkhoff, Öre and many other mathematicians.
32 Lattices can also be defined algebraically by the properties of the two operations meet and join.
When each one of these operations is distributive relatively to the other the lattice is said
distributive. A simple example of distributive lattice is the set of all subsets of a set ordered by set
inclusion. The natural distance between two elements of this lattice i.e., between two subsets is
their symmetric difference distance (see footnote 20). Here the meet (respectively, join) of two
subsets is their intersection (respectively, their union). In the lattice of subsets of a set there is
also the operation of complementation of a subset that makes of this lattice a Boolean lattice. A
still simpler example of distributive lattice is the linear order defining a ranking. Here the meet
(respectively, the join) of two elements is their minimum (respectively, their maximum).
33 This distance is the shortest path distance is the (undirected) neighborhood graph of this
lattice: an element is a neighbor of another if it just below or just before it in the order of the
lattice. For instance in the lattice of subsets of a set, a subset is neighbor of another if it is
obtained from this other by deleting or adding a single element.
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Take for instance the set of integers {1,2…9} ranked by the usual linear order <. If

one considers the series 4<5<8 its median is 5. Now one can check that

5 = Max[Min(4,5),Min(5,8),Min(4,8)] = Min[Max(4,5),Max(5,8),Max(4,8)].

More generally, for x<y<z the median is y and one has

y = Max[Min(x,y),Min(y,z),Min(z,x)] = Min[Max(x,y), Max(y,z), Max(z,x)].

This same formula of computation of the median of 3 elements is true in any

distributive lattice when one replaces the operations Min and Max by the more

general operations Meet and Join. On the other hand these algebraic formulas

giving the median of three elements can be generalized to find the median of n

elements.34

Similarly using the ternary operation defining a tree (see footnote 29) one can

find algebraic formulas for obtaining the medians of a set of vertices of this tree.

This fact makes easy the computation of medians in trees like in distributive

lattices. This observation led ("pure") mathematicians to search the more general

discrete structure where computing the medians remains easy. This structure (that

contains the trees and the distributive lattices) can be defined equivalently as a

median semilattice, a median algebra or a median graph.35 Other motivations came

from ("applied") mathematicians working in consensus theory or (and) in graph

theory have led to study other aspects of these structures, for instance axiomatic

characterizations of the median (consensus) operation.36

In the next section I return to the Condorcet effect. Indeed, I show how one can

avoid this effect by using the fact that distributive lattices are good metric spaces

for the medians.

6. How to avoid the Condorcet effect?
Since the set of all the subsets of a set is a distributive lattice (see footnote 32)

the set of all binary relations defined on a set is a distributive lattice.37 So, it is easy

34
When n is odd there is a unique median. When n is even there can exist several medians but

they form a median interval whose the two bounds are given by algebraic formulas (see [Barbut,
1961] and [Monjardet,1980]). We will often speak of the median even when we will point out in
a footnote the cases where it can exist several medians.
35 See, for instance, [Avann,1948], [Scholander,1954], [Bandelt and Hedlikova,1983],
[Barthélemy and Bandelt,1984].
36 See for instance [Leclerc, 1990], [McMorris, Mulder and Roberts,1998], [Hudry, Leclerc,
Monjardet and Barthélemy,2006] and the monograph [Day and McMorris,2003] that contains
many other references.
37 A binary relation on a set X is nothing else that a subset of the set X

2 of all ordered pairs of X.
Then the natural order between relations is the inclusion order: R ⊆ R’, i.e. xRy implies xR’y. The
meet (respectively, join) of two relations is their intersection (respectively, union).
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to find the medians of n arbitrary relations. In fact it is also easy to show that the

median M of n relations R1, R2…Rn (with n odd) is given by the majority rule

applied to these relations: xMy if and only xRiy for at least (n+1)/2 relations.38 Now

if one take a set of binary relations satisfying some properties it is not generally a

distributive lattice. It is obviously the case for the set of all rankings since two

rankings are never comparable for the inclusion relation.

But it has been shown by Guilbaud and Rosenstiehl (1963) that the set of all

rankings of m elements is a lattice for a certain order.39 This lattice called the

permutoèdre lattice Sm has many interesting properties but it is not distributive.40

Nevertheless one can find in Sm distributive sublattices. And even distributive

sublattices which are "the same"41 as distributive lattices of partial orders,

sublattices of the set of all binary relations. When one takes rankings in such a

distributive lattice their median is a ranking obtained –like in the lattice of all the

binary relations– by the majority rule.42 Then one obtains restricted domains of

rankings where the majority rule works: for any profile of rankings taken in these

domains there is no Condorcet effect. The search of such restricted domains has a

long story beginning with the single-peaked rankings defined by Black

(1958,1998).43

As early as in 1952 Guilbaud observed that the set of all single-peaked rankings

has a distributive lattice structure. Figure 7 reproduces a Figure in Guilbaud’s paper

showing the distributive lattice of all the single-peaked rankings of 5 candidates.
BACDE →ΑBCDE

↑
CBADE → BCADE

38 If n is even one can have several median relations forming an interval median whose bounds
are given by applying the strict and the large majority rules (see footnote 34 and [Barthélemy
and Monjardet,1981]).
39 One fixes a reference ranking as the least ranking of this order. Then a ranking is less that
another ranking if the set of its disagreements with the reference order is contained in the set of
the disagreements of the second ranking (with the reference order). For instance, take 4 elements
a,b,c,d and the reference ranking dcba (d>c>b>a). Then one obtains a lattice that can be
represented by Figure 4. In this Figure an edge represents now that a ranking is just below or just
above another ranking in the order between rankings. For instance the edge from bdac to badc

means that bdac is just below badc (since it has one less disagreement with the reference order
dcba).
40 See, for instance, [Caspard,2000].
41 i.e., that are isomorphic to
42 Here also, one must distinguish the case where n is odd and where the median is unique and the
case where n is even that allow to have several medians (see footnote 34)
43 Let > be a "reference" ranking. A ranking L is single-peaked w.r.t. > if for every ordered triple
x>y>z the middle element y is never ranked last in the restriction of L to {x, y,z} (the term
single–peaked comes from another characterization of these orders; see [Black,1958]). The
rankings on Figure 7 are single-peaked w.r.t. the ranking A>B>C> D >E (=ABC DE).
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As early as in 1952 Guilbaud observed that the set of all single-peaked rankings

has a distributive lattice structure. Figure 7 reproduces a Figure in Guilbaud’s paper

showing the distributive lattice of all the single-peaked rankings of 5 candidates.
BACDE →ΑBCDE

↑
CBADE → BCADE

38 If n is even one can have several median relations forming an interval median whose bounds
are given by applying the strict and the large majority rules (see footnote 34 and [Barthélemy
and Monjardet,1981]).
39 One fixes a reference ranking as the least ranking of this order. Then a ranking is less that
another ranking if the set of its disagreements with the reference order is contained in the set of
the disagreements of the second ranking (with the reference order). For instance, take 4 elements
a,b,c,d and the reference ranking dcba (d>c>b>a). Then one obtains a lattice that can be
represented by Figure 4. In this Figure an edge represents now that a ranking is just below or just
above another ranking in the order between rankings. For instance the edge from bdac to badc

means that bdac is just below badc (since it has one less disagreement with the reference order
dcba).
40 See, for instance, [Caspard,2000].
41 i.e., that are isomorphic to
42 Here also, one must distinguish the case where n is odd and where the median is unique and the
case where n is even that allow to have several medians (see footnote 34)
43 Let > be a "reference" ranking. A ranking L is single-peaked w.r.t. > if for every ordered triple
x>y>z the middle element y is never ranked last in the restriction of L to {x, y,z} (the term
single–peaked comes from another characterization of these orders; see [Black,1958]). The
rankings on Figure 7 are single-peaked w.r.t. the ranking A>B>C> D >E (=ABC DE).
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↑ ↑
DCBAE → CDBAE → CBDAE → BCDAE

↑ ↑ ↑ ↑
DCBEA → CDBEA → CBDEA → BCDEA

↑ ↑
DCEBA → CDEBA

↑
EDCBA → DECBA

Figure 7: the distributive lattice of single-peaked rankings (for m = 5).

When there are m candidates there are 2m-1 single-peaked rankings of these

candidates. Other restricted domains not exceeding this size were found and for a

while it was conjectured that it was the maximum size of a restricted domain. But

this was a completely wrong conjecture since it is false for m≥ 4. In particular,

there exists a restricted domain of size 9 (> 23 = 8) for 4 candidates. Since Black,

many works have been dedicated to this topic. In particular it has been shown

recently that most of the discovered restricted domains were distributive lattices of

the kind described above.44 Just below in Figure 8, I give another example of such a

distributive lattice of rankings. It is a restricted domain of size 45 that is the

maximum size of a restricted domain for 6 candidates.45
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645231

654231 645321

465321

465231

Figure 8: a restricted domain of maximum size sub-distributive lattice of the permutoèdre S6

44 One will find a story of the works on the restricted domains with the last results due to
[Galambos and Reiner, 2008] in [Monjardet, 2008].
45 I found this example which was published in [Chameni-Nembua, 1989] but it was only in 1997
that Fishburn proved that it was a restricted domain of maximum size (for m = 6).



18

7. Synthesis and conclusion
Condorcet’s problem considered in several sections of this paper is a problem

of aggregation of individual preferences into a collective preference. Many similar

aggregation problems have been studied in data analysis.46 For instance one can

have several classifications of a set of objects and one searches a consensus

classification. Here too, one can often define a distance between two

classifications and then search a median in the induced metric space on the set of

all classifications. This approach has for instance been proposed by Régnier

(1965) and Mirkin (1979) when the classifications are partitions47 of the set of

objects. But computing a median partition is as difficult a problem as computing a

median ranking (except of course if one works in restricted domains of partitions

that are distributive lattices48).

In this paper we have seen that the notion of median is used in many areas of

"pure" and "applied" mathematics. In order to gain a better understanding of the

similarities and differences between the many uses of this notion, I will be a little

bit more abstract. I consider complex elements formed by elementary elements,

for instance objects described by several attributes. I denote by x = (x1, x2…xp)

such an element and I will refer to the elementary elements xi as the coordinates

of the element x. Each coordinate xi takes his value in a set Ai which, keeping on

the Euclidean space analogy, can be called a coordinate axis. In many cases the

sets Ai will be the set R of real numbers or a subset of R, for instance the set of

integers or simply the set {0,1}. I consider the set of all possible elements x = (x1,

x2…xp) when one assumes that each coordinate can take -independently of the

other coordinates- any value in Ai. This set is called the direct product of the sets

Ai and it is denoted by D = A1×A2×…Ap or, if A1 = A2 = …Ap = A by Ap. Now as

soon that the sets Ai are ordered by orders denoted by ≤i, the set A can be

endowed with the product order ≤ : x = (x1,x2…xp) ≤ y = (y1,y2…yp) if and only if

xi ≤i yi for i = 1,2….p. And as soon as the posets (Ai, ≤i) are distributive lattices the

poset (D, ≤) is also a distributive lattice. In fact, I will consider only the simplest

case where all the posets (Ai, ≤i) are the same poset (A, ≤) where A is a subset of

the set R of real numbers endowed with the usual (linear) order between numbers.

As already mentioned (see footnote 32) (A, ≤) is then a distributive lattice where

the meet (respectively, the join) of two numbers is their minimum (respectively,

their maximum). Therefore Ap is a distributive lattice with the two following

46 See [Barthélemy and Monjardet, 1981 and 1988].
47 A partition divides a set of objects into disjoint classes.
48 The partitions of a set form a (not distributive) lattice for a natural order between them (see
[Barbut and Monjardet, 1970]. See [Barthélemy and Leclerc, 1995] for the state of the art on the
median consensus of partitions.
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median consensus of partitions.

19

operations of meet and join:

Meet (x, y) = [Min(x1,y1), Min(x2,y2)… Min(xp,yp)]

Join (x, y) = [Max(x1,y1), Max(x2,y2)… Max(xp,yp)]

These two operations are illustrated Figure 9 when A = R and p = 2 i.e., for the

distributive lattice R
2.

u1

v1

u2

v2

Meet(x,y)

Join(x,y)

x

y

Figure 9 The meet (u2,v1) and the join (u1,v2) of x = (u1,v1) and y = (u2,v2) in R
2

There are several ways to define distances in the distributive lattice Ap. One

can use the usual Euclidean distance d2 where for x = (x1,x2…xp) and y =

(y1,y2…yp), d2(x,y) is the square root of (x1-y1)
2+ (x2-y2)

2+…(xp- yp)
2. But one can

also choose as distance the L1 (or Manhattan) distance d1 defined by

d1(x,y) = x1-y1+ x2-y2+…xp- yp.
49

In both cases Ap becomes a metric space and so one can speak of the median(s)

of elements of this space. The generalized Fermat problem consists in searching

for medians of sets of "points" in the Euclidean space, so with the distance d2. As

mentioned above, when already in R
2 this set contains more than 4 points the

computation of a median is difficult. But one can also choose to search the

median in the metric space defined by the L1 distance. This was in fact one of

Gini’s proposals in the context seen above where the elements of R
p represent

statistical data. In this metric space the median is much easier to compute: indeed,

the median of a "cloud" of points in this second metric space is obtained by taking

the point whose the coordinate on each coordinate axis is the median of the

coordinates of the cloud on this axis50 For instance, in R
3 the median for the L1

distance of the 3 points (3,2,7), (1,4,8), (2,5,6) is (2,4,7).

Still with this L1 metric space consider the particular case where the points of

the cloud are {0-1}-points i.e., points with only 0 and 1 as coordinates. What is the

49 This distance is a particular case of the "natural" distance defined in a distributive lattice.
50 So, when n is even it can exist several medians.
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median on each coordinate axis? Since there are only two values the median value

is the more frequent (majoritarian) value51. So, for instance, the median of the

three points (1,0,0), (0,1,1) and (1,0,1) is (1,0,1). Now we can come back to the

case where one must aggregate binary relations like rankings or equivalence

relations.52 Why? Because any binary relation can be "coded" by a binary

sequence of 0 and 1. Indeed, a binary relation on a set X of size s is a set of

ordered pairs (x,y). Let us rank all the s2 ordered pairs of X in a arbitrary (linear)

order and consider a binary relation R. It can be coded by a sequence c(R) of s2

numbers 0 or 1: we put 1 when (x,y) belongs to R (i.e., when x is in the relation R

with y) and 0 if not. Then with this coding any binary relation can be seen as an

element of Ap with A = {0<1} and p = s2. This direct product {0<1}s2 is a

distributive lattice.53 Let R and S be two binary relations on X and c(R) and c(S)

the two sequences coding them in As2. It is easy to check that the symmetric

difference distance |R-S| + |S-R| between R and S (see footnote 20) equals the L1

distance between the sequences c(R) and c(S). What is the median of n binary

relations in the space {0<1}s2? It results from what has been stated just above

regarding the median of a cloud of {0,1}-points that this median is the relation

given by the majority rule on the ordered pairs.54

In all the above cases we have implicitly assumed that given a set of elements

of the distributive lattice Ap (with A subset of R) its median(s) can be taken as

representative element(s) of this set. The situation changes drastically if this

hypothesis is wrong. It is the case when one considers only elements of Ap whose

coordinates are not independent: there are numerical or logical links between

these coordinates. Let S be a subset of Ap such that there exist links between the

coordinates of its elements. When one takes the median of a set of elements of S,

since this median is computed coordinate-wise, it may very well be that these

links are no more respected by the median element. In other words the set S is not

necessarily stable for the median operation. This is exactly what occurs with the

Condorcet effect. In this case the set of all rankings on a set X is a subset of the

distributive lattice formed by all the binary relations on X or equivalently, if one

considers the above coding of binary relations, a subset of the direct product

{0<1}s2. Now the coordinates of a ranking R in this direct product are not

51 So, there are 2e medians where e is the number of coordinates where these two values are
equal.
52 To aggregate equivalence relations is identical to aggregate partitions, since there is a one-to-
one correspondence between partitions of a set and equivalence relations defined on this set.
53 In fact this lattice is a Boolean lattice since it is isomorphic to the lattice of the subsets of the
set X

2 of the ordered pairs of X (see footnotes 32 and 37).
54 As already observed several times when n is even there can exist several medians (see footnote
34 ).
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independent. Let cxy, cyz and cxz be the coordinates of the ranking R for the three

ordered pairs (x,y), (y,z) and (x,z). Then, it results from the transitivity of the

ranking R that we must have 0 ≤ cxy + cyz-cxz ≤ 1. But to take the majority rule of a

profile of rankings is the same as taking the medians independently on each

coordinate axis of Xs2 and then the links assuring the transitivity of the majority

relation can be lost.

The problem of Quetelet’s "homme moyen" is the same except that Quetelet

used the arithmetical mean instead of the median. Since the mean of each

characteristic of the population of men was computed independently from the

other the mean man could be an impossible man. It is interesting to quote the

already mentioned Cournot's objection: “Lorsqu’on applique la détermination des

moyennes aux diverses parties d’un système compliqué, il faut bien prendre garde

que ces valeurs moyennes peuvent ne pas se convenir : en sorte que l’état du

système, dans lequel tous les éléments prendraient à la fois les valeurs moyennes

déterminées séparément pour chacun d’eux, serait un état impossible”55 ("When
one applies mean operations to various parts of a complicated system, one must
be aware that these mean values can be incompatible: the state of the system
where all elements take the mean values separately determined for each could be
an impossible state"). Cournot gave also the example of the triangle obtained by
taking the means of the lengths of the three sides of rectangular triangles, a
triangle that in general is not rectangular.

So, the Condorcet, Quetelet or similar aggregation problems bearing on

complex elements whose coordinates are not independent (i.e. satisfy numerical

or logical relations) arise because one computes representative elements (central

values) of a n-tuple of these elements coordinates by coordinates. And the

solutions found for these problems are the same. First one defines a distance

between any two possible complex elements. Then, in the metric space of all

possible complex elements, one computes the medians of the considered subset of

elements. So, one makes sure that these medians taken as representative

(complex) elements are possible (complex) elements. But now one may have a

new problem: the median (complex) elements can be difficult to compute. It is in

particular the case each time that the metric space of all the considered (complex)

elements is not a "good" metric space for the median.

The considerations presented in this section have been already developed in

the luminous Guilbaud’s 1952 paper. First this paper reveals some previously

ignored mathematics contained in Condorcet’s Essai. Then it deals with the

logical problem raised by the aggregation of complex objects when they are

formed by elementary objects linked by logical relations. This problem is

55 [Cournot, Exposition de la théorie des chances, p.213].
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considered from Condorcet to Arrow by way of Laplace and the theory of errors,

Quetelet, or Dom Quentin. So to complete this paper, the best thing I can do is to

recommend Guilbaud’s paper to the reader (some other comments on the same

topic can be found in [Monjardet, 1991 and 2005]).

Acknowledgement

I thanks Maurice Salles for his helpful comments on a first version of this paper.

REFERENCES
K.J. Arrow (1991) The Origins of the Impossibility Theorem. In J.K. Lenstra, A.H.G.Rinoy Kan

and A. Schrijver (Eds) History of Mathematical Programming, North-Holland, pp.1-4. .

S.P. Avann (1948) Ternary distributive semi-lattices, Bulletin of the American Mathematical

Society 54, 79.

K.M. Baker (1975) Condorcet From Natural Philosophy to Social Mathematics, The University

of Chicago Press, Chicago.

C. Bajaj (1988) The algebraic degree of geometric optimization problems, Discrete and

Computational Geometry, 3, 177–191.

H.J. Bandelt and J.P. Barthélemy (1984) Medians in Median Graphs, Discrete Applied

Mathematics, 8, 131-142.

H.J. Bandelt and J. Hedlikova (1983) Median algebras, Discrete Mathematic, 45, 1-30.

M. Barbut (1961) Médianes, distributivité, éloignements, Note CAMS, Paris, [reprinted in

Mathématiques et Sciences Humaines 70, 5-31, 1980].

M. Barbut (1966) Médianes, Condorcet et Kendall, note SEMA, Paris [reprinted in

Mathématiques et Sciences Humaines, 69, 5-13, 1980].

M Barbut et B. Monjardet (1970) Ordre et Classification, Algèbre et Combinatoire, tomes I et II,

Hachette, Paris.
J.-P. Barthélemy and B. Leclerc (1995) The median procedure for partitions. In P. Hansen (Ed.)

Partitioning data sets, American Mathematical Society, Providence, pp. 3-34.

J.P. Barthélemy and B. Monjardet (1981) The Median Procedure in Cluster Analysis and Social

Choice Theory, Mathematical Social Science, 1, 235-268.

J.P. Barthélemy and B. Monjardet (1988) The Median Procedure in Data Analysis: New Results

and Open Problems. In H.H. Bock (Ed.) Classification and related methods of data analysis,

North-Holland, Amsterdam, pp. 309-316.

D. Black (1958) The Theory of Committees and Elections, Cambridge University Press, London

[reprinted in The Theory of Committees and Elections by Duncan Black, and Committee

Decisions with Complementary Valuation by Duncan Black and R.A. Newing, I.S. McLean, A.

McMillan and B.L. Monroe (Eds.), 2nd revised edition, 1998]

H.O. Brunk (1960) Mathematical models for ranking from paired comparisons, Journal of the

American Statistical Association, 55, 503-520.

B.F. Cavalieri (1647) Exercitationes geometricae, Bologna.

C. Chameni-Nembua (1989) Règle majoritaire et distributivité dans le permutoèdre,

Mathématiques et Sciences Humaines, 108, 5-22.

N. Caspard (2000) The lattice of permutations is bounded, International Journal of Algebra and

Computation, 10(4), 481-489.



22

considered from Condorcet to Arrow by way of Laplace and the theory of errors,

Quetelet, or Dom Quentin. So to complete this paper, the best thing I can do is to

recommend Guilbaud’s paper to the reader (some other comments on the same

topic can be found in [Monjardet, 1991 and 2005]).

Acknowledgement

I thanks Maurice Salles for his helpful comments on a first version of this paper.

REFERENCES
K.J. Arrow (1991) The Origins of the Impossibility Theorem. In J.K. Lenstra, A.H.G.Rinoy Kan

and A. Schrijver (Eds) History of Mathematical Programming, North-Holland, pp.1-4. .

S.P. Avann (1948) Ternary distributive semi-lattices, Bulletin of the American Mathematical

Society 54, 79.

K.M. Baker (1975) Condorcet From Natural Philosophy to Social Mathematics, The University

of Chicago Press, Chicago.

C. Bajaj (1988) The algebraic degree of geometric optimization problems, Discrete and

Computational Geometry, 3, 177–191.

H.J. Bandelt and J.P. Barthélemy (1984) Medians in Median Graphs, Discrete Applied

Mathematics, 8, 131-142.

H.J. Bandelt and J. Hedlikova (1983) Median algebras, Discrete Mathematic, 45, 1-30.

M. Barbut (1961) Médianes, distributivité, éloignements, Note CAMS, Paris, [reprinted in

Mathématiques et Sciences Humaines 70, 5-31, 1980].

M. Barbut (1966) Médianes, Condorcet et Kendall, note SEMA, Paris [reprinted in

Mathématiques et Sciences Humaines, 69, 5-13, 1980].

M Barbut et B. Monjardet (1970) Ordre et Classification, Algèbre et Combinatoire, tomes I et II,

Hachette, Paris.
J.-P. Barthélemy and B. Leclerc (1995) The median procedure for partitions. In P. Hansen (Ed.)

Partitioning data sets, American Mathematical Society, Providence, pp. 3-34.

J.P. Barthélemy and B. Monjardet (1981) The Median Procedure in Cluster Analysis and Social

Choice Theory, Mathematical Social Science, 1, 235-268.

J.P. Barthélemy and B. Monjardet (1988) The Median Procedure in Data Analysis: New Results

and Open Problems. In H.H. Bock (Ed.) Classification and related methods of data analysis,

North-Holland, Amsterdam, pp. 309-316.

D. Black (1958) The Theory of Committees and Elections, Cambridge University Press, London

[reprinted in The Theory of Committees and Elections by Duncan Black, and Committee

Decisions with Complementary Valuation by Duncan Black and R.A. Newing, I.S. McLean, A.

McMillan and B.L. Monroe (Eds.), 2nd revised edition, 1998]

H.O. Brunk (1960) Mathematical models for ranking from paired comparisons, Journal of the

American Statistical Association, 55, 503-520.

B.F. Cavalieri (1647) Exercitationes geometricae, Bologna.

C. Chameni-Nembua (1989) Règle majoritaire et distributivité dans le permutoèdre,

Mathématiques et Sciences Humaines, 108, 5-22.

N. Caspard (2000) The lattice of permutations is bounded, International Journal of Algebra and

Computation, 10(4), 481-489.

23

R. Chandrasekaran and A. Tamir (1990) Algebraic Optimization: The Fermat-Weber Location

Problem, Mathematical Programming, 46, 219-224.

I. Charon and O. Hudry (2007) A survey on the linear ordering problem for weighted or

unweighted tournaments, 4OR: A Quarterly Journal of Operations Research, 5(1), 5-60.

M.J.A.N. Condorcet (1785) Essai sur l'application de l'analyse à la probabilité des décisions

rendues à la pluralité des voix, Paris.

M. J.A.N. Condorcet (1793) Tableau général de la science qui a pour objet l’application du

calcul aux sciences politiques et morales, Paris.

R. Courant and H. Robbins (1941) What is Mathematics? an elementary approach to ideas and

methods, Oxford University Press, Oxford (pp. 354-361). (1962) Was ist Mathematik? Springer,

Berlin

A. Cournot (1843) Exposition de la Théorie des chances et des probabilités, (pp.63 and 120),

Paris, Hachette. Tome I of “Oeuvres complètes de A.A. Cournot”, Vrin, Paris, 1975.

P. Crépel (1990) Le dernier mot de Condorcet sur les élections, Mathématiques Informatique et

Sciences Humaines, 111, 7-43.

P. Crépel and J.N. Rieucau (2005) Condorcet’s Social Mathematics, A Few Tables, Social

Choice and Welfare, 25(2-3), 243-285.

W. H. E. Day and F.R. McMorris (2003) Axiomatic Consensus Theory in Group Choice and

Biomathematics, SIAM, Philadelphia.

W.C. Eells (1930) A mistaken conception of the center of a population, Journal of the American

Statistical Association, 25, 33-40.

U. Eckhardt (1980) Weber's problem and Weiszfeld's algorithm in general spaces,

Mathematical Programming, 18,186–196.

E. Fasbender (1846) Über die gleichseitigen Dreiecke, welche um ein gegebenes Dreieck gelegt
werden können, Journal für die Reine und Angewandte Mathematik, 30, 230–231.
P. Fermat (1629) Essai sur les maxima et les minima, in Œuvres de Fermat, publiées par les

soins de MM. Paul Tannery et Charles Henry sous les auspices du Ministère de l'instruction

publique, Paris: Gauthier-Villars et fils, 1891-1912.

P.C. Fishburn (1997) Acyclic sets of linear orders, Social Choice and Welfare,14, 113-124.

M. Fréchet (1948) Positions types d'un élément aléatoire de nature quelconque, Annales de

l’Ecole Normale Supérieure, 65, 211-237.

M. Fréchet (1949) Réhabilitation de la notion statistique de l'homme moyen, Les Conférences

du Palais de la Découverte, Paris.

A. Galambos and V. Reiner (2008) Acyclic Sets of Linear Orders via the Bruhat Order, Social

Choice and Welfare 30(2): 245-264.

L. Galvani and C. Gini (1929) Di talune estensioni dei concetti di media ai caratteri qualitativi,

Metron, 8, 3–209.

C. Gini (1914) L'uomo medio, Giornali degli economiste e revista de statistica, 48, 1-24.

G. Granger (1956) La mathématique sociale du marquis de Condorcet, PUF, Paris, [reprinted

Hermann, Paris, 1989].

G.Th. Guilbaud (1952) Les théories de l'intérêt général et le problème logique de l'agrégation,

Economie appliquée, 5(4), 501-584 [reprinted in Eléments de la théorie des jeux, Dunod, Paris,

1968]. Partial English translation: Theories of the general interest and the logical problem of

aggregation. In P.F. Lazarsfeld and N.W. Henry (Eds) Readings in Mathematical Social

Sciences, Science Research Association, Inc., Chicago, 1966, pp. 262-307. Complete English

translation in Electronic Journ@l for History of Probability and Statistics, 4.1, 2008



24

G.Th. Guilbaud and P. Rosenstiehl (1963) Analyse algébrique d'un scrutin, Mathématiques et

Sciences Humaines 4, 9-33.

G.Y. Handler and P.B. Mirchandani (1979) Location on networks. Theory and Algorithms, MIT

Press, Cambridge.

W. L. Hays (1960) A note on average t as measure of concordance, Journal of the American

Statistical Association, 55, 331-341.

W. L. Hays (1994) Statistics, Wadsworth Publishing (5th edition).

F. Heinen (1934) Über Systeme von Kräften. Gymnasium zu Cleve (gedruckt bei G.D. Bädeker,
Essen) ,18-19.
E.J. Hofmann (1929) Elementare Lösung einer Minimums aufgabe, Zeitschrift für

mathematischen und naturwissenchaftlichen Unterricht., 60, 22-23.
O. Hudry, B. Leclerc, B. Monjardet and J.P. Barthélemy (2006) Médianes métriques et

latticielles. In D. Bouyssou, D. Dubois, M. Pirlot and H. Prade (Eds) Concepts et méthodes pour

l'aide à la décision 3 : Analyse multicritère, Hermès, Paris, pp. 274-279. English traslation to

appear in 2008.

G. Jalal, J. Krarup (2003) Geometrical solution to the Fermat problem with arbitrary weights,
Annals of Operations Research, 123, 67-104.
C. Jordan (1869) Sur les assemblages de ligne, Journal für die reine und angerwandte

Mathematik, 70, 185-190.
J.G. Kemeny (1959) Mathematics without numbers, Daedalus, 88, 577-591.

J.G. Kemeny and J. Snell (1962), Mathematical Models in the Social Sciences, Blaisdell, New

York.
M.G. Kendall (1942) Note on the estimation of a ranking, Journal of the Royal Statistical

Society, 105, 119.

J Krarup (1998) On a “Complementary Problem” of Courant and Robbins, Location Science, 6
(1-4), 337-354.
Y.S. Kupitz and H. Martini (1997), Geometric aspects of the generalized Fermat–Torricelli
problem, Bolyai Society Mathematical Studies 6, 55–127.
H.W. Kuhn (1967) On a pair of dual nonlinear programs. In J.Abadie (Ed.) Nonlinear

programming, North-Holland, Amsterdam.

H.W. Kuhn (1976) Nonlinear programming: A historical view. In R.W. Cottle and C.W. Lemke

(Eds.) SIAM–AMS Proceedings, 9, pp. 1–26.

Laplace (1774) Mémoire sur la probabilité des causes par les évènements, n°5 in Oeuvres

Complètes, Tome VIII, (141-153), and in Théorie analytique (1812) Livre 2, chapitre 4, N°20.

C.W.F. Launhardt (1872) Kommercielle Tracirung der Verkehrswege, Zeitschrift des

Architecten- und Ingenieur-Vereins Hannover 18, 515-534.

H. Lebesgue (1928) Sur une question de minimum, Revue de l'Enseignement des Sciences,

12ème année. [reprinted in "En marge du Calcul des variations", Monographie de

l'Enseignement Mathématique, n°12, Université de Genève,1963].

B. Leclerc (1990) Medians and majorities in semimodular lattices, SIAM Journal of Discrete

Mathematics, 3 (1990), 266-276.

H. Martini and B. Weissbach (1999) Napoleon's theorem with weights in n–space, Geometriae

Dedicata, 74, 213–223.

I. McLean and J. London (1990) The Borda and Condorcet principles: three medieval

applications, Social Choice and Welfare 7, 99-108.



24

G.Th. Guilbaud and P. Rosenstiehl (1963) Analyse algébrique d'un scrutin, Mathématiques et

Sciences Humaines 4, 9-33.

G.Y. Handler and P.B. Mirchandani (1979) Location on networks. Theory and Algorithms, MIT

Press, Cambridge.

W. L. Hays (1960) A note on average t as measure of concordance, Journal of the American

Statistical Association, 55, 331-341.

W. L. Hays (1994) Statistics, Wadsworth Publishing (5th edition).

F. Heinen (1934) Über Systeme von Kräften. Gymnasium zu Cleve (gedruckt bei G.D. Bädeker,
Essen) ,18-19.
E.J. Hofmann (1929) Elementare Lösung einer Minimums aufgabe, Zeitschrift für

mathematischen und naturwissenchaftlichen Unterricht., 60, 22-23.
O. Hudry, B. Leclerc, B. Monjardet and J.P. Barthélemy (2006) Médianes métriques et

latticielles. In D. Bouyssou, D. Dubois, M. Pirlot and H. Prade (Eds) Concepts et méthodes pour

l'aide à la décision 3 : Analyse multicritère, Hermès, Paris, pp. 274-279. English traslation to

appear in 2008.

G. Jalal, J. Krarup (2003) Geometrical solution to the Fermat problem with arbitrary weights,
Annals of Operations Research, 123, 67-104.
C. Jordan (1869) Sur les assemblages de ligne, Journal für die reine und angerwandte

Mathematik, 70, 185-190.
J.G. Kemeny (1959) Mathematics without numbers, Daedalus, 88, 577-591.

J.G. Kemeny and J. Snell (1962), Mathematical Models in the Social Sciences, Blaisdell, New

York.
M.G. Kendall (1942) Note on the estimation of a ranking, Journal of the Royal Statistical

Society, 105, 119.

J Krarup (1998) On a “Complementary Problem” of Courant and Robbins, Location Science, 6
(1-4), 337-354.
Y.S. Kupitz and H. Martini (1997), Geometric aspects of the generalized Fermat–Torricelli
problem, Bolyai Society Mathematical Studies 6, 55–127.
H.W. Kuhn (1967) On a pair of dual nonlinear programs. In J.Abadie (Ed.) Nonlinear

programming, North-Holland, Amsterdam.

H.W. Kuhn (1976) Nonlinear programming: A historical view. In R.W. Cottle and C.W. Lemke

(Eds.) SIAM–AMS Proceedings, 9, pp. 1–26.

Laplace (1774) Mémoire sur la probabilité des causes par les évènements, n°5 in Oeuvres

Complètes, Tome VIII, (141-153), and in Théorie analytique (1812) Livre 2, chapitre 4, N°20.

C.W.F. Launhardt (1872) Kommercielle Tracirung der Verkehrswege, Zeitschrift des

Architecten- und Ingenieur-Vereins Hannover 18, 515-534.

H. Lebesgue (1928) Sur une question de minimum, Revue de l'Enseignement des Sciences,

12ème année. [reprinted in "En marge du Calcul des variations", Monographie de

l'Enseignement Mathématique, n°12, Université de Genève,1963].

B. Leclerc (1990) Medians and majorities in semimodular lattices, SIAM Journal of Discrete

Mathematics, 3 (1990), 266-276.

H. Martini and B. Weissbach (1999) Napoleon's theorem with weights in n–space, Geometriae

Dedicata, 74, 213–223.

I. McLean and J. London (1990) The Borda and Condorcet principles: three medieval

applications, Social Choice and Welfare 7, 99-108.

25

I. McLean, H.Lorrey and J.Colomer (2008) Social Choice in Medieval Europe, Electronic

Journal for the History of Probability and Statistics, 4.1, 2008

F.R. McMorris, H.M. Mulder and F.S. Roberts (1998) The median procedure on median graphs,

Discrete Applied Mathematics, 84, 165-181.

B.G. Mirkin (1979) Group Choice (P.C. Fishburn ed.), Wiley, New York.

B. Monjardet (1980) Théorie et application de la médiane dans les treillis distributifs finis,

Annals of Discrete Mathematics, 9, 87-91.

B. Monjardet (1990) Sur diverses formes de la "règle de Condorcet" d'agrégation des

préférences, Mathématiques Informatique et Sciences Humaines, 111, 61-71.

B. Monjardet (1991) Eléments pour une histoire de la médiane métrique. In J. Feldman, G.

Lagneau, B. Matalon (Eds) Moyenne, Milieu et Centre : Histoires et usages. Coll. Histoire des

Sciences et Techniques, n°5, Editions de l'Ecole des Hautes Etudes en Sciences Sociales, Paris,

pp. 45-62.

B. Monjardet (2008) Acyclic domains of linear orders: a survey, to appear in a Volume in Honor

of Peter Fishburn, Springer.

L. Nebesky (1969) Algebraic properties of trees, Acta Universitatis Carolinae, Philologica

Monographia 25, Prague.

L.M. Ostresh, Jr. (1978) Convergence and descent in the Fermat location problem,

Transportation Science, 12, 2, 153-164.

S. Régnier (1965) Sur quelques aspects mathématiques des problémes de classification

automatique, ICC Bull. 4, 175-191 [reprinted in Mathématiques Informatique et Sciences

Humaines, 82, 13-29, 1983].

G. Reinelt (1985) The linear ordering problem: algorithms and applications, Helderman Verlag,

Berlin.
Rochat, Vecten, Fauguier and Pilatte (1811-1812), Annales de Mathématiques Pures et

Appliquées, edited by J.D. Gergonne, 2.

A. Scharlig (1973) 0ù construire l'usine? La localisation optimale d'une activité industrielle

dans la pratique, Dunod, Paris.

M. Scholander (1952) Trees, lattices, order and betweenness, Proceedings of the American

Mathematical Society, 3, 369-381.

M. Scholander (1954) Medians, lattices and trees, Proceedings of the American Mathematical

Society, 5, 808-812.

Th. Simpson (1750) The doctrine and applications des fluxions, London.

P.J. Slater (1980) Medians of arbitrary graphs, Journal of Graph Theory, 4 389-392.

P. Suppes (2005) The prehistory of Arrow's social choice and individual values, Social Choice

and Welfare, 25 (2), 319-326.

J. Steiner (1838) Von den Krümmungs-Schwerpuncte ebenen Curven, Journal fûr die reine und

angewandte Mathematik, 21, 33-101.
R. Sturm (1884) Ueber den Punkt Keinster Entfernungssumme von gegebenen Punkten, Journal

fûr die reine und angewandte Mathematik, 97, 49-61.
E. Torricelli, Opere di Evangelista Torricelli, G. Loria and G. Vassura (Eds), Vol.I, 2ème partie,

pp.90-97, Vol. III, pp.426-431, Faenza, 1919.

A. Weber (1909) Uber den Standort der Industrien, Teil I: Reine Theorie des Standorts, Mohr,

Tübingen. English translation Alfred Weber's theory of the location of industries, University of

Chicago Press, Chicago, 1929.

E. Weiszfeld (1936) Sur un problème de minimum dans l'espace, Tohoku Mathematical Journal,



26

42, 274-280.

E. Weiszfeld (1937) Sur le point pour lequel la somme des distances de n points donnés est

minimum, Tohoku Mathematical Journal, 43, 355-386.

G.O. Wesolowsky (1993) The Weber problem — history and perspectives, Location Science, 1,
5–23.
H.P. Young (1988) Condorcet Theory of Voting, American Political Science Review, 82, 1231-

1244 [reprinted in Mathématiques Informatique et Sciences Humaines, 111, 45-59, 1990].


