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1 Introduction 
Jessen’s theorem and Lévy’s lemma, both of which date from 1934, are the earliest general 
formulations known to us of the martingale convergence theorem. (1). The theorem treats the 
almost sure convergence of regular martingales and is usually stated as follows: let  be a Fn( )
sequence of sub σ - fields of a probability space Ω,Α,P( ) increasing or decreasing towards a 
σ - field F, and let X, be an integrable random variable, then E X /Fn( )→ E X /F( ) a. s. and in 
L1. It is recognised that the theorem had ancestors in two different frameworks: in Lebesgue’s 
theory of integration there was his proof (1903) of the theorem about differentiation almost 
everywhere (2); in Borel’s theory of denumerable probabilities there was his statement and 
proof by probabilistic arguments (1909) of the almost sure convergence of frequencies in the 
game of heads or tails—the first version of the strong law of law numbers (3). There were 
two complementary visions of the world, sometimes closely linked, sometimes resolutely 
antagonistic and thus in the image of their authors. These, we will see, would be the 
inspirations for Jessen and Lévy in the 1930s.  
 It happened that Lévy, who read little and badly, read (part of) Jessen’s article 
[1934a], and presented it to Hadamard’s Seminar in the spring of 1935. Lévy realised that his 
own results obtained by completely different methods resembled those of Jessen and a 
singular correspondence ensued, a kind of dialogue of the deaf between two mathematicians 
who conceived of mathematics in entirely different ways, who wrote it in languages without 
visible contact and yet sometimes understood better than they admitted. This exchange is 
perhaps one of the possible origins of the formulation and proof of the modern theorem, 
stated above and found in all treatises of probability theory since the beginning of the 1960s. 
The statement, written in the language of sequences of sub-fields of probability theory, 
appears for the first time in this form, in a famous 1946 article by Sparre Andersen and 
Jessen, which Doob included and developed in his great treatise of 1953 (4), and which one 
may say, without too much exaggeration, closed the quiet and surely forgotten conversation 
between Jessen and Lévy. As for the proof of this theorem given today, it is not really 
different from the extremely simple one that Lévy proposed to Jessen, in the case of 
increasing filtrations and of set indexes. It consists in supposing that the variable X is F-
measurable and can thus be approximated in  by a sequence of (simple) variablesL1 Xn , each 

- measurable. The convergence in  result then follows easily from the following 
inequalities, where we have (following Lévy)
Fn L1

E n  for the conditional expectation operator 
given Fn  : 

E n X( )− X = E n X( )− Xn + Xn − X ≤ E n X( )− Xn + Xn − X  

E n X( )− X
1

≤ 2 X − Xn 1 → 0 
For almost sure convergence, it is enough to consider an unspecified bounded stopping time, 
σ , and to write the same inequalities to show convergence in  of L1 Eσ X( ) towards X, along 
the filter of bounded stopping times and thus convergence a.s. (5). This theorem, whose proof 
has been reduced to its simplest form, now stands in the timeless and “pasteurised” ranks of 
university courses, but it took more than half a century to find its place true. The theorem 
contained nearly all the almost sure or almost everywhere results of the time; Birkhoff’s 
ergodic theorem was one of the few exceptions. So it may not be without interest to recall the 
confused debates the result generated in 1935 when it had hardly emerged from the ocean of 
ignored, misunderstood or mislaid theorems.  

It is well known that Lévy, who worked alone, liked to correspond. Moreover there is 
hardly any difference in style between his letters and his publications, long monologues 
delivered in a single breath as though he were reporting a film that was rolling in front of him 
without ever stopping. This is why one can learn much from reading his correspondence 
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about the mathematical universe he inhabited. To be convinced, consider his letters to Fréchet 
preserved in the Archives of the Académie des Sciences, and issued in a remarkable volume 
published in 2004 (6).  

Lévy’s files were destroyed during the war but Jessen kept all his letters and they 
were deposited, after its death in the Archives of the Institute for Mathematical Science at the 
University of Copenhagen (7). Christian Berg, professor at the University of Copenhagen and 
former student of Jessen, has very kindly provided us with very readable copies of all of 
Lévy’s letters and the drafts of Jessen’s replies. We are infinitely grateful to him. This 
correspondence is published here with short notes after a quick introduction to the two 
protagonists. In 1934/5 Børge Jessen, born in 1907 and a student of Harald Bohr, was 
professor of geometry at the Polytechnic School of Copenhagen and already making a name 
among analysts. Paul Lévy, born in 1886 a student of Hadamard and Borel and professor of 
analysis at the Paris École Polytechnique, had been developing after his own fashion the 
modern theory of probability for the previous fifteen years.  We also publish some later 
exchanges (from 1948-9) between Jessen and J. L. Doob and between Jessen and J. 
Dieudonné. These letters also come from the Copenhagen Archives and again we are 
indebted to Professor Berg for his help.  

We also thank Glenn Shafer and Niels Keiding who put us in touch with Christian 
Berg and are thus the originators of this small contribution.  

Christian Berg and Glenn Shafer have also very kindly provided us with copies of 
Jessen’s Danish articles from 1929 to 1947 and these have helped us to reconstruct the 
genesis of the article of 1934. They have also read our manuscript and made very interesting 
suggestions which we have incorporated in this final version. We are infinitely grateful to 
them. Any novelty in this paper is entirely due to them.   

We also give our warm thanks to John Aldrich who has undertaken the English 
translation of this paper and who has suggested numerous improvements.  

 
2. Jessen’s Theorem  
The life and the work of Børge Jessen are described in Christian Berg’s fine article reprinted 
in this issue of the JEHPS. Here we recall only some points needed for understanding what 
follows. We have mentioned that Jessen, in the course of his university studies of 
mathematics in Copenhagen, embarked on research under the direction of Harald Bohr (8). 
Harald, the younger brother of Niels Bohr, was born in 1887 and was already the author of 
important mathematical works—some with Edmund Landau—on classical analysis and the 
analytical theory of numbers. He worked on the Riemann zeta function, Dirichlet series and 
most especially on the theory of almost periodic functions of real or complex variables which 
have their origin in Dirichlet series. Bohr was the real creator of the theory of almost periodic 
functions,  [1923a, b], [1924-1926]. The fundamental theorem of the theory states that an 
almost periodic function f has a countable number of proper frequencies. If M denotes the 
mean taken on increasingly large intervals, a λ( )= M f x( )e− iλx{ }= 0 , except for a countable 

number of values of λ .  The function f has a generalised Fourier series, a λ( )∑ eiλx , which 

satisfies the Parseval equation of classical Fourier analysis : M f x( )2{ }= a λ( )∑ 2
.  This 

remarkable result, which was immediately re-derived and extended in various directions by 
the great analysts of the day, made Bohr’s name (9). It would also be the subject of Jessen’s 
“magister” thesis which marked the end of his schooling. 
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2.1 Magister thesis 1929 
Bohr’s almost periodic functions arise as natural extensions of ordinary periodic functions 
which have only one frequency and the quasi periodic functions of Bohl and Esclangon 
which have a finite number. By extending the results of these last authors to the case of a 
countable number of frequencies, Bohr showed, [1923b], [1924/26], that if f is an almost 
periodic function in his sense, it can be written  

f x( )= F x,x,....,x,....( ) 
where  is a function in an infinite number of variables, periodic in each F x1,x2,....,xn,....( )
variable, or it can be uniformly approximated by such functions. It follows that Bohr’s almost 
periodic functions are the only functions that can be approximated uniformly by generalized 
trigonometric sums. Thus almost periodic functions may be seen as the restriction on the 
diagonal of the periodic functions on a torus in infinitely many dimensions, an infinite 
annulus, to which an appropriate Fourier theory might apply. But the generalised Fourier 
series of almost periodic functions no more converge in general than the Fourier series of 
ordinary periodic functions (10). To obtain a satisfactory theory, it would be necessary to do 
for Bohr’s theory what Lebesgue [1905a], [1906] had done for Fourier’s and it is easy to 
imagine experienced analysts having this idea and dismissing it. Lebesgue measure in itself 
did not extend to infinite dimensions and the Daniell integral and the Gateaux means were 
not known. So Bohr may well not have pushed Jessen towards this apparent dead end. The 
first six chapters of Jessen’s magister’s thesis describe the recent, explosive developments in 
the theory but Jessen added (in extremis?) a seventh independent chapter, entitled “On 
functions of infinitely many variables.” This contains the first version of “Jessen’s theorem.” 

Jessen was 21 and his education was over. He had already published some elegant 
short articles and Bohr thought enough of him to involve him on his own work on the zeta 
function, which introduced him to functions in infinitely many variables (11). Jessen was 
brilliant and naïve and able to pursue a new idea, unencumbered by too much knowledge and 
prejudice.  

To produce a Fourier theory for functions f x( ) defined on the torus Qω  in infinitely 
many dimensions, where the variable x = x1,x2,...,xk ,....( ) is an infinite sequence of real 
numbers modulo 1, it is necessary to begin by defining the integral of such functions. In the 
spring of 1929 Jessen knew the Lebesgue integral for one or of a finite number of variables 
(12) but he was completely unaware of the Daniell integral, as he told Lévy later—see below. 
So he goes off in the first direction that offers itself, as though he said to himself at the start,  
the simplest procedure is to integrate successively the function f on the basis of the first 
coordinate and then continue with the other coordinates. Thus he considers the sequence of 
“Lebesgue integrals”  

dxn∫ ..... dx2 f x1, x2,.....( )dx1∫∫  
in which f is a function defined on Qω , integrable in the sense of a theory yet to be born. If 
the sequence converges, in a sense to be made precise, it can only be to the desired integral. It 
is also a first informal formulation of the theorem of the downward martingales, but we 
should not anticipate.  

It was now a matter of formalising the idea. Jessen read and studied the fundamental 
article of F. Riesz [1910], with Pal or on his own. The Riesz article presented the theory of  Lp

spaces and of  in particular, which, by the Riesz-Fischer theorem of 1907, is isomorphic to L2

Hilbert’s space l2. To begin with, Riesz treats the case of functions of a real variable and in a 
final paragraph, p. 496-497 he extends the whole theory to the case of functions of n 
variables, using what he calls a “principe de transfert” (13), which establishes (without proof, 
considered unnecessary) an (almost) bijective and measure preserving correspondence 
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between any bounded interval on the real line and an n-dimensional cube of the same 
measure, thus permitting the automatic transfer of all real theorems to the vector case.  

Jessen thought to extend this principle to infinite dimensions. His plan was to define a 
set function on Qω , which coincides with Lebesgue measure on the cylinder sets whose base 
depends only on a finite number of coordinates and to build a bijective correspondence (up to 
a set of measure zero) between the unit circle, the torus in one dimension, and the torus of 
infinite dimension, which preserves the (pseudo) measure thus constructed and transfers to it 
all the properties of Lebesgue measure, in particular countable additivity. The result is a 
theory of integration with all the properties of the Lebesgue integral. In his magister’s thesis 
as in [1929b], [1930] and [1934a], Jessen sets off from the natural measure of the generalized 
intervals ofQω  : ai ≤ xi ≤ bi  , for a finite number of indices i, and by using the compactness of 
Qω  and the Borel (- Lebesgue) covering lemma, he constructs a set functon on Qω  by the 
process of outer and inner measures (14). This set function is not yet a true measure, but it 
becomes so (and can consequently be extended in the manner of Carathéodory) by transfer, 
after Jessen had established a continuous correspondence between the intervals of the circle 
and the generalized intervals of Qω , by extending the curve of Hilbert, [1891], to infinite 
dimensions. Finally and still following Carathéodory, Jessen constructs the integral on Qω  for 
“summable” functions which he writes f x( )

Qω
∫ dwω .  

It remains to establish a link between this integral and the process of successive 
integrations defined above and, if possible, to produce a Fourier-Lebesgue theory for 
functions on the infinite torus along with some applications. What Jessen had outlined in his 
magister’s thesis was developed brilliantly in successive memoirs until [1934a]. But first it 
may be appropriate to put Jessen’s theory and his principle of transfer into a somewhat 
broader context.  

There was nothing astonishing in this discovery from the spring of 1929, viz. the 
direct transfer from infinite dimension to one dimension, or at least not with hindsight. This 
had been Borel’s starting point when he [1909] considered infinite plays of heads or tails: 
with any infinite sequence of heads and tails can be associated an expansion in base 2 of a 
number in the interval [0, 1], and the dyadic subintervals of this interval correspond to 
sequences for which the first outcomes are fixed. This rather informal correspondence was 
made precise and extended by Steinhaus in 1923 in as rigorous a fashion as could be desired 
(15), and applied to the study of series of terms of which the signs are drawn from an urn 
“which always contains as many plus signs as minus signs”. It was Steinhaus again who (a 
little after Jessen or even a little before) extended Borel’s transfer principle to the space Qω  
put in quasi-bijective measure preserving mapping with [0,1], in a study of series with terms 
drawn at random from the unit circle (16):  

ake
2πixk

k=1

∞

∑  

It suffices to develop each of the xk  in [0,1[ in base 2 (for instance), then to 
reconstruct, starting from these expansions written one below another in an array, a unique x 
from [0,1[, moving zigzag in the table thus formed. This could be in one of the traditional 
ways but the choice has no importance, provided that it rewrites on a line the initial two-
dimensional board. One thus obtains a generalised “Peano curve” almost bijective 
correspondence, which obviously preserves measure, or rather transforms Lebesgue measure 
into the product probability which governs the drawing of the terms from the urn. Indeed, in 
both cases, linear order or plane table, one deals with the same sequence of independent 
Bernoulli random variables of the same law, except for a rearrangement which leaves the law 
invariant. The measure on Qω  is nothing other than that which governs a countable sequence 
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of plays of heads or tails, i.e. (if one wants to avoid admitting chance), by appealing again to 
Borel’s principle of transfer, Lebesgue measure on the unit interval (which is, above 
suspicion). So that the measurable sets of the interval [0, 1] and those of the space Qω  which 
correspond by transfer have the same measure.  

Thus the principle of transfer that Jessen developed in an elegant and rigorous way in 
his own framework should not surprise us. There are earlier, later and contemporaneous 
versions, as is common in such cases. Moreover, we will see that Lévy asserted his own 
paternity of the principle, which he called the “principe de correspondance”, having used it 
since 1924 and perhaps before, in an unpublished course given at the Collège de France in 
1919, (and certainly well before the time of his childish walks to the garden of Luxembourg). 
Priority in the matter of this principle is one of the themes in the correspondence published 
here and gives it its title. We will see that Lévy seemed to consider this a subordinate point, 
though he kept returning to it. This was evidently not so for young Jessen who would 
undoubtedly have liked to have had his priority in the principle recognised for he had 
discovered it on his own. However, more than any else and without the least visible sign of 
probabilistic intuition or reasoning, Jessen was guided by the theory of the Lebesgue integral 
and the principle of transfer which form the basis for his theory.  

We should return to Jessen’s magister thesis. §5 of the last chapter contains an outline 
of a theory of the differentation of set functions associated with the integral on Qω , following 
a net of increasingly fine generalised intervals. Jessen transfers directly the method of La 
Vallée Poussin (17). More precisely, if f is integrable onQω , we have following Jessen, 
F E( )= f x( )dwωE∫ . F is an additive set function on Qω , which is established by transfer on 

the unit circle, with notations which go from oneself: f x( )dwωE∫ = ϕ t( )
e∫ dt .  

We define on Qω  a net of generalised intervals In , corresponding to a net of intervals 

on the unit circle, and form the associated simple functions: Δ n x( )=
F(in )
wω in( )

 if x is in i , an n

element of the net. By transfer of the Lebesgue-La Vallée Poussin theorem on differentiation, 
it follows that  converge almost everywhere toΔ n x( ) f x( ).  

In the next section, Jessen transfers Fubini’s theorem to infinite dimension, in the 
obvious way that one imagines, by collecting the coordinates of Qω , in a finite number of 
packets Qω

1( ),Qω
2( ),....,Qω

n( )( ), and by writing the corresponding Fubini theorem (18).  
Having defined for Qω  endowed with the Jessen measure wω , convergence in measure 

(19) and convergence in , which is thus to be complete by transfer, Jessen comes to the L2

statement and proof of Jessen’s theorem.  
We have reached §8. Jessen defines an integrable function f onQω . By the theorem of 

Fubini-Jessen, applied to the decomposition of Qω in two blocks, the block  of the first n Qn

coordinates and the block Q formed of the infinity of those following, while noting  n,ω wn,ω

the Jessen measure on Q , the integral  n,ω

f x1,x2,...., xn, xn +1,....( )
Qn,ω

∫ dwn,ω  

is an integrable function on Q , provided with Lebesgue measure.  n

Jessen states that this sequence of integrals converges in measure towards f, (p. 50). 
This is the first known version of the theorem of (increasing) martingales in a general 
framework, or at least it can be made as general as one wants.  

Jessen’s proof is interesting though still a little awkward. It anticipates the first part of 
the modern proof, as we recalled it in the introduction, although Jessen had not yet seen 
convergence in mean. The idea is to approach f by a sequence of functions depending only on 
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the n first coordinates and go forward by such a sequence of increases in measure. Jessen 
obviously hesitates over the nature and the general information of such an approximation. For 
this he uses the functions Δ  defined in § 5. These functions, by construction, depend n x( )
only on a finite number of coordinates and converge almost everywhere to f. For want of 
anything better and pressed by time, Jessen was satisfied to exploit convergence in measure 
of the sequence Δ  and treat first of all the case of a bounded function f and then n x( )
introduce truncation. The proof is correct but unnecessarily complicated and restrictive.  

The next section proves the proposition on which he is going to build his theory of 
integration. This is the first known form of the theorem of downward martingales but it is still 
about convergence in measure:  

The sequence of integrals dxn∫ ..... dx2 f x1,x2,.....( )dx1∫∫  converges in measure 

towards the integral f x( )
Qω

∫ dwω .  

Again Jessen truncates and uses the inequalities established in the previous section. The last 
section treats the Fourier theory of functions on the infinite torus. Jessen establishes a 
Parseval equation (p. 54) and a Riesz-Fischer theorem for this framework.  

In broad outline, the entire theory of [1934a] is already present in chapter 7 of 
Jessen’s magister thesis, which can truly be called masterly. Bohr was certainly very 
impressed.  

 
2.2  Doctoral thesis 1930  
After such an achievement and with the support of Bohr with his well-known academic clout, 
one can imagine that Jessen was propelled at once to the firmament of new mathematical 
stars, at least in Copenhagen. He was invited to make a presentation to the seventh Congress 
of Scandinavian Mathematicians, held in Oslo from 19 to 22 August 1929 (20). Jessen 
presented his theory of integration in German and in a particularly clear way, a very nice 
exposition with a reproduction of Hilbert’s space-filling curve as it appeared in the original 
article of 1891, which shows at first glance that measure is preserved, the curve preserving 
throughout construction a perfect symmetry between the two axes. Jessen did not state his 
two theorems which he undoubtedly considered marginal, but announced a Fourier theory for 
functions with a countable infinity of periods. The transactions of the congress were 
published in 1930, so that at the proof stage Jessen could add a reference to Daniell of whom 
he had been informed meanwhile. Lévy read this paper in 1934 and we will see that reading it 
played a very important part in the emergence of his theory of measure as it is expounded in 
his great treatise [1937].  

Christian Berg tells us elsewhere in this issue that in 1929 Jessen obtained a grant 
from the Carlsberg Foundation to travel in Europe, first to Szeged, where he met F. Riesz, 
one of the principal inspirers of his thesis, then to Göttingen, from where Hilbert reigned over 
universal mathematics, and to Paris to “see” Lebesgue, though he hardly saw him at all. But 
Bohr soon recalled him to Copenhagen. A position of docent (university lecturer) in 
mathematics was about to become vacant at the Royal Veterinary School of Copenhagen. 
Considering the scarcity of positions and the good health of their occupants, this was an 
exceptional opportunity that was not likely to be repeated soon and which could not be 
allowed to escape. (21)  

Jessen’s habilitation became an urgent matter. For Bohr there was no doubt that the 
final chapter of the magister’s thesis was already a doctoral thesis. It was enough to improve 
the presentation and to print the whole in Copenhagen. The university’s approval was needed 
and this was obtained on March 25, 1930, signed by J.F. Steffensen, professor of actuarial 
sciences. The thesis was submitted before the deadline and Jessen was appointed docent. He 
was 22 years old.  
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Jessen’s doctoral thesis is entitled “Contribution to the theory of the integration of the 
functions of an infinity of variables” [1930]. It is in three parts. The first treats integration of 
functions of n variables, by transferring the Lebesgue integral in one dimension. This part has 
no new results but serves as a preparation for the next part, which treats functions in an 
infinite number of variables and which includes all the results from chapter 7 of the 
magister’s thesis as described above. The last part develops some applications, in particular 
to the theory of almost periodic functions.  

We will make a brief examination of the second part which has a new version of 
Jessen’s theorem. This part begins with the construction of the integral on the infinite torus 
following the magister’s thesis. Things only start to change in §13. There Jessen, pp. 37-38, 
proves a theorem which he says is due to F. Riesz, which affirms that the quotients defined 
above converge “strongly” towards f, in the sense of convergence in L1. The proof is very 
simple. If f is bounded by a constant, the sequence is bounded by the same constant and the 
result follows from the dominated convergence theorem. If not, it is sufficient to truncate f 
and to take the limit of the truncated versions. (22)  

Thus by sections 15 and 16, Jessen can prove his theorems for convergence in L  in 1

much the way we did in the Introduction, for the increasing case; the approximating functions 
which depend on only a finite number of coordinates are precisely the quotients . Thus Δ n x( )
in the spring of 1930 Jessen has the statement and proof of the martingale theorem in a form 
which will hardly be improved upon, except for the framework (23). The intervention of 
Riesz was no doubt crucial but the idea was Jessen’s.  

The third part of the thesis of 1930 is extremely interesting, but to do it justice would 
take us too far from our subject. Jessen presents in detail his Fourier theory for functions 
defined on the infinite torus and proposes various applications which he would develop more 
fully in his article [1934a]. Among the applications were Weyl’s equi-distribution theorem 
[1916], of which he could have learnt in Göttingen, almost periodic (random) functions of a 

complex variable, which are represented in the form of series f s,x( )= ake
2πixk eλk s

k=1

∞

∑ , where s 

is the complex variable, and  is a “parameter” formed of an infinite x = x1,x2,...,xk ,....( )
sequence of real numbers modulo one, and the Riemann zeta function, in particular his work 
with Bohr which was the initial motivation of the theory. (24). 

 
2.3 The Acta article 1934 
In 1934 Jessen married and he needed to prepare his courses for the veterinary school. These 
changes may have slowed down his work but it did not stop it. However, Jessen does not 
seem to have returned to his theory of integration. Was he discouraged by discovering 
Daniell’s earlier work and Steinhaus’s concurrent work on almost the same subject (but 
without Jessen’s theorem)? It was still there in his fine presentation to the International 
Congress of Mathematics of Zurich in 1932, where Jessen gives the results of the third part of 
his thesis, which now completed by taking account of the papers by Paley and Zygmund 
[1930/1932]. Naturally Jessen referred to his work on the theory of integration on the infinite 
torus, (with a geometrical representation) but without emphasising or even mentioning 
Jessen’s theorem. He must have thought, not without reason, that the time was not yet ripe—
or worse still, that it had no interest.  

For the academic year 1933-1934 Jessen was a Rockefeller fellow in Cambridge, 
England, with Hardy, and at the newly-established Institute for Advanced Study in Princeton. 
Under the leadership of J. von Neumann and H. Weyl the Institute was stealing Göttingen’s 
mathematical supremacy as it sank under Hitlerism. Thus Jessen had the opportunity to mix 
with some of the leading analysts of the day, von Neumann, Hardy, Weyl, Wiener, Daniell, 
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Bochner, Besicovitch, etc as well as with brilliant young people from all over the world. In 
Princeton there was an atmosphere of great mathematical euphoria and intense activity. No 
doubt Jessen wanted to give an account of his direct way of tackling the problems and the 
principle of transfer, in which he hardly any more believed, which had led him to 
propositions that were unsuspected by both analysts and probabilists (25), who saw things 
differently. It would be interesting to emphasize them in a work of synthesis written in 
English and presenting all the theory and applications as a self-contained coherent whole. 
Besides he had improved his theorem and found unexpected applications. This was the 
rationale for his article, “The theory of integration in a space of an infinite number of 
dimensions”, printed on July 6, 1934 in volume 63 of Acta Mathematica. This contains the 
definitive version of “Jessen’s theorem” and we need to examine it.  

Jessen began by remarking that in the previous fifteen years the theory of integration 
in infinite dimensions had been considered by several authors who exploited in various ways 
a principle of direct extension in the space under consideration (26). Jessen, for his part, 
intended to remain faithful to the theory developed in his thesis, based on a “transferring 
principle” which allowed him to go from the interval [0, 1 [, where the Lebesgue integral is 
available, to the torus space in infinite dimensions, the correspondence automatically 
transferring any theorem in one dimension to a theorem in infinite dimension, and 
conversely. Jessen uses, as in his thesis, a procedure of increasingly fine successive partitions 
of space, in networks of generalized intervals which are put in correspondence with networks 
of intervals from [0,1 [, so that the construction of the Lebesgue integral passes to infinite 
dimension by simple translation. Jessen remarks (§ 9) that this integral enjoys the Lebesgue 
property of differentation: on following a sequence of increasingly fine dissections of space, 
the derivative of a primitive gives again the function almost everywhere. As we saw, this is 
an immediate application of the principle of transfer but this result is the basis for almost all 
the others (and it is also a martingale theorem, as we have already remarked).  

All the preceding results had appeared in Danish in Jessen’s two theses, but § 11, with 
the title “An Important Lemma”, contains a new result which has no natural analogue in finite 
dimensions. It will be debated at length in the correspondence presented below. The lemma 
states that a measurable function defined on Qω  which takes the same value on two points 
which differ only by a finite number of coordinates, is constant almost everywhere. Today we 
would notice that, if this function were the indicator of a set, the important lemma is only a 
special case of the 0-1 law of Kolmogorov [1928, 1933], but in 1934 Jessen was not aware of 
this. He refers only to a related result by Steinhaus [1930]. His proof uses the differentiation 
theorem of § 9, for suitable dissections. It seems that it was this lemma that first attracted 
Lévy’s attention, who at once re-obtained it by a “direct” probabilistic method. Lévy did not 
go back to Kolmogorov either although he cited him with Khinchin in [1931c]. Lévy had not 
really read him, as he acknowledged in his Souvenirs, [1970], p. 87. We will return to this 
point.  

§§ 12, 13 and 14 treat variations on “Fubini’s theorem” in infinite dimensions. We go 
to the statement of Fubini’s theorem itself, which had already appeared in the magister thesis. 
The following paragraphs contain at last the almost everywhere version of “Jessen’s 
theorem.” (27)  

In § 13 Jessen states:  
f x( )dwωQω

∫ = lim
n →∞

dxn∫ ..... dx2 f x1,x2,.....( )dx1∫∫  for almost every x in Qω .  

Jessen’s proof is inspired by one in Kolmogorov [1928-1930]. The argument uses measure 
theory, a subject whose richness our author seems to have appreciated during his stay in 
Princeton.  
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§ 14, “Representation of a Function as the Limit of an Integral,” would be the main 
topic in Jessen’s correspondence with Lévy presented below. It is the counterpart to the 
preceding result: integrating backwards from infinity, one recovers the function almost 
everywhere, or  

f x( )= lim
n →∞

f x( )dwn,ωQn,ω
∫  for almost every x in Qω . 

Jessen’s proof is rather complicated. It follows Riesz’s proof of a result in Fourier 
analysis in Qω  which can be seen as a special case of a result proved in Jessen’s § 18, (28). It 
relies essentially on the differentiation theorem of § 9. As we will see, Lévy tried to persuade 
Jessen that there is a direct Borelian proof; this was inspired in part by a new proof that 
Jessen put to Lévy in one of the letters presented below. 

§ 15 shows that the two theorems mentioned hold for “strong convergence”, that is for 
convergence in  if f is in , Lp Lp p ≥1. In § 16, Jessen establishes the maximal inequalities for 
martingales in  (known in their definitive form as Doob’s inequalities) which Jessen Lp

describes as analogues of the “well known maximal theorem” of Hardy-Littlewood [1930]. 
The later sections of the paper are given over to applications. These sections contain 

great riches but we cannot consider them here. (29)
 Thus in 1934 Jessen had a general theory of martingales in a particular 

framework, the space  Qω  and its partition into nets, with no mention of probability, random 
variables or conditional expectations. (30)
 
2.4 A probabilistic interlude 1934-5  
In Princeton Jessen met Aurel Wintner (31). Two more different mathematicians can hardly 
be imagined. Jessen was elegant, reserved, rigorous, scrupulous, Wintner was impassioned, a 
compulsive eater, overflowing with projects and works in progress, all done with great noise. 
Wintner was always interested in celestial mechanics and accordingly in almost periodic 
functions. For some time he had been studying the limiting laws of series of independent 
random variables of the type considered by Steinhaus, Jessen and others, what was called at 
the time the problem of infinite convolutions, on the line or in a finite-dimensional space. 
Wintner had obtained interesting results on the subject (32), which was one that Jessen had 
also come near to either alone or with Bohr. Sometime in 1934, probably in the spring, Jessen 
and Wintner decided to pool their experience and write an article. “Distribution functions and 
the Riemann zeta function” was published in 1935 in the Transactions of the A. M. S. having 
been received by the journal on July 9, 1934 and presented to the Society on April 20, 1935. 
The authors proposed to treat the problem of infinite convolutions by the method of Fourier 
transforms, which they tell us was first applied by Lévy in his book of 1925. This is 
inaccurate (33) but at least it indicates that the theory of the Fourier transform or Laplace-
Fourier-Poisson-Cauchy… transform which had long been considered suspect by 
mathematicians was now, after re-examination by the new analysis, well-established. We will 
not examine the main part of the paper but only the final two very short sections where the 
theory of infinite convolutions is considered from the point of view of the (probabilistic) 
theory of sums of independent random variables of Khinchin, Kolmogorov and Lévy (34). 
There may seem nothing surprising in this but in 1934 it was different and our authors wanted 
to show with complete clarity the relationship between the two theories (of infinite 
convolutions and of sums of independent variables) in a new way, while placing themselves 
within the framework (more analytical) of the theory of integration in infinite dimensions. 
Suppose we follow them for a moment.  

§ 15 gives a brief account of the theory of measure and integration in general product 
spaces. The authors tell us that the theory was presented in great detail by Jessen [1934a] in 
the particular case of the infinite torus and that the general case will be published by Jessen 
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“in a forthcoming paper”. The framework is a theory of abstract measure, a set Q, a “Borel 
field” of Q, a positive and countably additive set-function m, with total mass 1. Given a 
countable family of such spaces, q1, q2, .., qn, .., each supplied with a probability measure, μn , 
there exists on the product space Q = (q1, q2, .., qn, ..,) a product measure with natural 
properties (35) and one has the theorems of Jessen which are given without demonstration, in 
particular the “important lemma” of § 11, stated this time for set indices: If a measurable set 
of the product space contains all points differing from one another in only a finite number of 
coordinates, its measure is 0 or 1 (36). Naturally there are theorems from § 13 and § 14 of 
Jessen [1934a]; one theorem (in self-explanatory notation) states that:  

If f is an integrable function defined on Q, and if one puts 
t = t1,....,tn , tn +1,....( )= tn, tn,ω( ) for an arbitrary point of Q, then, 

fn t( )= f tn, tn,ω( )
Qn,ω

∫ mn,ω dtn,ω( )→ f t( ) for almost all t in Q. 

In this general version of Jessen’s martingale theorem, the concept of conditional expectation 
does not appear. We remain in the case of product spaces and Fubin’s theorem makes the 
passage possible.  

Jessen and Wintner did not actually need such a general formulation since in the 
following section, §16, they consider a sequence of independent random variables 
x1 τ1( ),....,xn τ n( ),....with values in Rk , which they define as measurable functions on the 
abstract spaces q  provided with as many probability measures. Kolmogorov, Lévy 1,....,qn ,....
and others undoubtedly (among them Jessen and Wintner) knew that such variables can be 
defined on Qω  (or the unit interval provided with Lebesgue measure), so that the theory of 
Jessen [1934a] is amply sufficient, but evidently our authors stick to their generality; they are 
unaware of the axiomatics of Kolmogorov and it is to best to be careful.  

A fundamental theorem of the theory of the sums of independent variables states that, 
for such sums, there is equivalence between convergence in law (the convergence of infinite 
convolutions), convergence in probability (convergence “in measure”) and almost sure 
convergence (almost everywhere). Jessen and Wintner proceed as follows.  Equivalence 
between convergence in law and convergence in probability is easy, it is enough to work in 
the sense of Cauchy. The only real difficulty is to show that convergence of probability 
entails almost sure convergence. Let us put with our authors s t( )= x1 τ( ) ....+ xn+ τ1 n( )+ .... 
(in probability) and , where y is fixed. f is a function bounded in absolute value f t( )= eis t( )y

and so integrable in Q, to which one can apply the theorem of Jessen stated above. The 
integral taken starting from n, fn t( )= eix1 τ1( )y ....eixn τ n( )yan y( ) where, for all y, the sequence of 
constants , when . Whence it follows that, for all y, ean →1 n → ∞ is t( )y = eix1 τ1( )yeix2 τ 2( )y ......, for 
almost all t and finally that the series x1 τ1( )+ x2 τ 2( )+ .... converges towards  for almost s t( )
all t.  

This is, to our knowledge, the first probabilistic application of the martingale theorem. 
(37). It dates from 1934 and was published in 1935 in the journal that in 1940 published 
Doob’s first article on the theory of martingales, all without Doob or Jessen noticing.  

 
2.5 After 1934 
What was the fate of the theorems of 1934 in Jessen’s later work? To treat the question 
adequately would take us too far from our subject but here are some indications.  

We have just seen that, in the spring of 1934, Jessen envisaged a complete memoir 
where his theorem would be presented in the greatest possible generality. He told Lévy so in 
one of his letters. However, the project seems to have been repeatedly put back. Jessen was 
appointed professor at the Polytechnic School of Copenhagen where his father-in-law P.O. 
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Pedersen (38) was director. He had to prepare his courses which he did with meticulous care. 
Less was at stake academically and he was no longer in Princeton with its atmosphere of 
high-speed mathematics. Jessen could pause and hope that by investing the necessary time he 
would obtain still more powerful theorems in a yet more general framework, for example 
treating the case of an arbitrary set of indices or working in spaces that are no longer products 
of measure spaces. The matter was not simple, as he must have realised rather quickly, and 
difficulties appeared at every turn and they accumulated. The new theory of abstract measure 
being born here or there conceals under the simplicity and generality of its concepts and 
statements awful traps and the majority of papers go wrong in one way or another. So it was 
necessary to begin by imposing some order on this proliferation before trying to place his 
results in their natural abstract framework. So between 1934 and 1947 Jessen published a 
series of memoirs in Danish in the journal he edited, Mat. Tidsskrift. These were so many 
chapters of a treatise on abstract measure theory and Jessen assembled them in a volume he 
published in 1947. One suspects that an English translation was planned but that the the 
project was abandoned because of other pressures. The exposition was remarkably clear and 
as good as the works that appeared in the fifties and which it inspired on a number of points.  

Of this collection of articles, we will attend only to the fourth, published in 1939, 
which touched directly on Jessen’s theorem, and which was undoubtedly a provisional 
version of the forthcoming article promised in Jessen, Wintner [1935] § 15. The article 
treated product spaces. It showed the existence of a product measure for an arbitrary family 
of probability spaces (n° 4.4). The demonstration is done by extending the natural set 
function defined on the cylinder sets. There is no more of the principle of transfer and the 
proofs of the article [1934a] must be modified. However in N° 4.7, Jessen shows Jessen’s 
theorem for the decreasing case for set functions and, in n° 4.8, he succeeds in proving the 
theorem for the increasing case, such as it is stated above according to [Jessen-Wintner 
1935], § 16. We see below that Jessen had a first version of this proof when he wrote to Lévy. 
It is reproduced (in English) in [Andersen Jessen, 1946], n° 26 and may be consulted. (39).  

The tragic situation of the world between 1939 and 1945 explains the long silence that 
follow but perhaps Jessen was still trying (unsuccessfully) to improve his theorems. In the 
absence of convincing documents, we can at least imagine the issues involved. It would be 
necessary, in one way or another, to leave countable product spaces, while working within 
the framework adapted to the families of dependent random variables, with abstract values 
and indexed by sets of filter indices (increasing or decreasing) as general as possible. Already 
Lévy, as we will see, in his treatise of 1937, relaxed the assumption of independence (though 
staying with a countable family of real variables). This potential development raises two 
delicate questions. The first, posed by many around 1935, is whether the Daniell-
Kolmogorov theorem can be placed within an abstract framework, or, if, with every 
compatible family of abstract measures defined on the system of finite cylinders of an 
unspecified product of measurable spaces, one can associate a measure of which they are the 
marginals. The second question is peculiar to Jessen: how can his theorem be extended to this 
new framework, by supposing that the set of indices is filter towards infinity without being 
completely ordered. It was found that the answers to both these questions is no (40) and that 
one cannot thus obtain in complete generality abstract generalizations of Jessen’s “Fubini’s 
theorems”. Things had to be viewed differently.  

The situation appears to have developed truly only after the war. In a famous article 
written in collaboration with Erik Sparre Andersen (41), [1946], clarified and extended in 
[1948b], Jessen could state his two theorems in a satisfactorily general framework, that of the 
modern theory recalled in the Introduction. One obtains an absolutely general result by 
forgetting the product structure and Fubini’s theorem and using the general concept of 
conditional expectation of Kolmogorov. One suspects that this very simple idea came from 
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the young Sparre Andersen, although the proofs are almost identical to those of 1939 and 
these, we will see, Jessen wrote in part for Lévy in 1935.  

At all events, Jessen could at last write, [1946], n° 1:  
The present paper deals with two theorems on integrals in an abstract set. The 
first theorem (that of § 14 of [1934a]) is a generalization of the well-known 
theorem of differentiation on a net, the net being replaced by an increasing 
sequence of σ - fields. The second limit theorem (that of § 13) is a sort of 
counterpart of the first, the sequence of σ - fields being now decreasing. The 
proofs follow the lines of the proof of the theorem on differentiation on a net.  
In case of integrals in an infinite product set the theorems lead to known 
result, when for the nth σ - field of the sequence we take either the system of 
measurable sets depending on the n first coordinates only, or the system of 
measurable sets depending on all except the n first coordinates.  
If the abstract theory of integration is interpreted as probability theory, our 
theorems lead to two theorems concerning conditional mean values.  

 
We now turn to our second protagonist. 
 
3 Lévy’s Lemma 
The life and the work of Paul Lévy are fairly familiar and we do not need to rehearse them 
(42). Lévy’s interest in probability theory went back to 1919, when he went to teach at the 
École Polytechnique, [Lévy 1919] and [Barbut, Mazliak 2008a]. His first works were mainly 
concerned with the theory of stable laws, where only convergence in law is involved. 
Essentially Lévy worked within the framework of a finite-dimensional space, provided with a 
positive additive set function of unit mass obeying Lebesgue’s theory, which he transferred if 
necessary to the unit cube endowed with Lebesgue measure. Infinite dimensions as such were 
not involved, nor what Borel called “denumerable probabilities”, i.e. probabilities for events 
depending on a countable infinity of trials. Thus for ten years, until around 1929, Lévy 
seemed to restrict himself to the “point of view of Bernoulli”, in the expression of the day. 
How can we explain this restriction and then the sudden change towards denumerable 
probabilities which would be lead on without pause to one of the great achievements of 20th 
century probability, including the lemma we are about to consider? 

 
3.1 Before 1930 
In the absence of convincing answers to these questions, we can at least make some 
suggestions. To begin with, note that between 1925 and 1929 Lévy produced no important 
publications on probability theory, a subject he seems to have abandoned completely after 
producing his first probability book [1925b] which was itself based on earlier memoirs 
[1924]. No denumerable probabilities, no finite probabilities, nothing! Lévy published a few 
papers in analysis, on the Riesz-Fischer theorem, divergent series, entire series, the Riemann 
zeta function, doubtless all based on presentations to the Hadamard seminar in which he took 
an active part. His contribution to the Congress of mathematicians at Bologna in September 
1928 was on “functions of regular growth and iteration of fractional order”, an esoteric theme 
in his work, that Lévy has described as idealist (43). And then suddenly in 1929, as noted 
above, began an almost uninterrupted flow of contributions of the highest rank, all related in 
one way or another to denumerable probabilities, including—besides much else—the 1935 
article containing Lévy’s lemma.  

One can suggest at least two hypotheses to explain Lévy’s return to probability. First 
there was Fréchet’s arrival in Paris at the end of 1928, when he was appointed professor at 
the Institut Henri Poincaré, on the recommendation of Borel who planned to create a major 
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probability centre in Paris. At the beginning of 1929, Borel organised, with Fréchet’s help, 
general lectures on probability theory and theoretical physics to be given by the principal 
proponents of these theories in Europe. Lévy, whose only mathematical contacts had been 
with speakers at the Hadamard seminar and the SMF who were not much concerned with 
probability theory, now had in Fréchet an interlocutor who knew all the probability literature 
and maintained relations with most of the analysts of the time. (44).  

Secondly, there was the Congress of Bologna in September 1928, where the principal 
“probabilists” of the day met for the first (and last) time and where Lévy, who was registered 
in the analysis section, discovered that probability theory was not only a subject taught at the 
École Polytechnique but a flourishing field. Also, after Bologna nobody could be unaware of 
the theory of denumerable probabilities for it was at the centre of a famous academic 
incident. Cantelli and Slutsky (and others in support) disputed the paternity of the outstanding 
result of the theory of denumerable probabilities, the strong law of large numbers for the 
game of heads or tails. Cantelli argued, with some energy and not without reason, that Borel’s 
proof was fundamentally incomplete and that he was the author of the first truly probabilistic 
proof of this new type of law of large numbers [1917], while Slutsky believed, not without 
reason, that it was all in Borel’s original article of 1909 and moreover had since been 
repeated by a number of authors (45). Did Cantelli’s claims clash with Lévy’s patriotic 
feelings? Did they make him read Borel’s article more closely? Or did he suddenly realise 
that there was an immense field of which he had been unaware and where he could revive his 
rather dormant mathematical work? At all events, we have to recognise that at the end of 
1928, Lévy launched himself into denumerable probabilities. We believe that these factors 
together are enough to explain Lévy’s return to probability around 1929. 

Lévy’s withdrawal in 1925, and, most of all, his not knowing about denumerable 
probabilities for ten years and having only the assistance of the point of view of Bernoulli, is 
more difficult to discuss, even hypothetically. One might invoke Lévy’s peculiarly cyclical 
disposition, with its alternating periods of intense creative activity and times when nothing 
interested him and he just performed the strict duties of his functions (46). But that does not 
explain his lack of interest in denumerable probabilities during his active period after the war. 
Indeed everything seemed to predispose him to be interested in the probability of events 
where the mean of functions depends on an infinite number of variables, and that from the 
time of his first work in probability in 1919-1920. Consider what he writes in his Souvenirs 
mathématiques, p. 55: “In January 1918, I had been in a hospital bed for more than two 
months when I suddenly reconsidered the subject of functional analysis. In my first work I 
had not thought of extending the concept of the integral to spaces of infinitely many 
dimensions. Suddenly it appeared to me possible to tackle the problem on the basis of the 
concept of the mean on a sphere in the space of square summable functions. Such a function 
can be approached by a step function, with the number n of distinct values increasing 
indefinitely. The desired mean can then be defined as the limit of the mean on a sphere in n 
dimensional space.” Shortly afterwards, Lévy communicated his “remarques” to Hadamard 
who told him that Gateaux, who was killed in combat at the beginning of October 1914, left 
manuscripts on the subject, exploiting substantially the same idea: the mean of a function of 
infinitely many variables is obtained by taking the limit of the mean of this function on a 
sphere of increasingly large dimension and radius (47). It is known that this idea, common to 
Gateaux and Lévy, most probably came from a course that Borel gave in the Sorbonne, 
during the winter 1912-1913, on the metrical geometry of spaces of very large dimensions—
of the order of Avogadro’s number. Lévy says so explicitly in many places. It is a natural and 
powerful idea insofar as, when the dimension, n, is immense, the volume of a sphere of radius 
R is negligible compared to the volume of a sphere with very slightly higher radius 
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( Rn = o R + ε( )n( )), so that in a sphere of very high dimension, the volume is essentially on the 

periphery and the calculation of the averages in such a sphere is limited to a calculation on its 
surface, which simplifies the matter greatly. For example, one can deduce from this remark 
that, necessarily, for a fixed value of t, an asymptotic mean of a functional Φ in , of the 

form 

L2

Φ x( )= ϕ x t( )( ), is equal to M Φ( )= ϕ ξ( )∫ 1
2π
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so that, in the calculation of the Gateaux means, everything happens as though the variables 
x(t) were independent and of the same reduced centered normal law (48).  

However, this theory of mean values is not directly applicable to probability theory. 
The Gateaux means exist in general but are not expectations corresponding to a probability 
measure, which, if it existed, would make independent all values of the function which one 
would draw according to this law, which is obviously not possible (one does not draw with 
the fate continuously, or there does not exist measurement of probability beyond the power of 
continuous [Lévy 1925a]). On the other hand Wiener, having read Gateaux and Lévy on the 
topic and discussed it with the latter (49), saw at once the part which it could play in the 
construction of mathematical Brownian motion, a subject which had occupied him for several 
months and which had resisted him, in spite of the remarkable work of Daniell [1919]. 
Daniell had provided a general method for constructing an integral in infinite dimensional 
spaces but he did not provide a means for calculating laws or the expectations of functionals 
that were slightly complicated, such as the maximum, nor for showing that the functions 
drawn at random from such measures are continuous, nondifferentiable, Lipschitzian,…, 
exactly what Wiener wanted to do for his Brownian motion. Wiener, while reading Gateaux-
Lévy, understood very quickly that to apply this theory to Brownian motion, it sufficed to 
treat not the values of the function at fixed times as independent variables but their changes. 
In Einstein’s theory, indeed, it is not the x(t) that are independent but the dx(t), so that a 
function x must not be represented by coordinates x(t), but by coordinates dx(t). This is the 
guiding idea of Wiener’s first paper on “Differential-space”, and is actually the only original 
idea on this point, his calculations merely reproducing those of Borel, Gateaux and Lévy, by 
replacing , by x t1( ),x t2( ),....,x tn( ) x t1( ),x t2( )− x t1( ),....,x tn( )− x tn−1( ), uniformly distributed on 
the suitable sphere, and in going to the limit on dimension n and the radius, time and space, in 
a coordinated way. The asymptotic result is still Gaussian, but now the distributions of x(t) 
have variances proportional to t, as envisaged in the physical theory of Einstein that Wiener 
knew well, or in Bachelier’s theory of speculation of which he was quite unaware (50). One 
can thus calculate the average of any simple functional defined on the space of x, and it 
comes from a probability measure, “Wiener measure”, as Wiener showed at the end of his 
article, by interpreting this asymptotic mean as a Daniell integral, after having shown, in 
various ways (without the Daniell integral), the characteristic properties of this new object, 
which resembled no other. 

This idea which appears so simple today did not occurr to Lévy, it seems, and it was 
one of the missed oppurtunities that “gave him most regret” (51). All that is to say that Lévy 
knew, before 1925, the integral of Daniell and the measure of Wiener (at least the name), 
(52), and one understands a little better that rather long part of his correspondence with 
Jessen where he tries to persuade the latter that he had known for a long time about 
integration in infinite dimensions, the principle of transfer and a thousand other things as 
well, even if he did nothing but see them in the distance (or in the fog according to what one 
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wishes to grant him), too far from the face of this research, thus missing several 
opportunities, that others, more perspicacious, seized. First there was Wiener with Einstein’s 
Brownian motion, then Steinhaus and Wiener again with their series with random signs or 
random terms, followed quickly by Khinchin and Kolmogorov who will create the theory of 
series of independent variables before even Lévy realised that they could be the subject of a 
theory (53). Finally if Lévy did nothing or almost nothing with his theories of integration 
with an infinite number of variables, it is undoubtedly that the functional fields that interested 
him did not lend themselves to it and that the probability fields that lent themselves did not 
interest him. Here at least is a simple explanation that will do to begin with (54).  

From 1919 to 1929 Lévy thus worked mainly on analysis in infinite dimension, the 
functional calculus of the school of Hadamard, and on probability theory in finite dimensions, 
an elaborate form of the theory of the errors to the programme of the École Polytechnique. 
Here Lévy was the first in France, after Laplace, Fourier, Poisson, Cauchy and Poincaré, to 
develop the method of characteristic functions and its applications to convergence in law, far 
from the work of Borel who would hasten to tell him that probability theory did not require 
such analytical sophistication which served for nothing (55). The theory of probability must 
have a “practical value”, or apply to physical sciences or to authentic mathematics—analysis 
or the theory of numbers. 

Was Lévy acting out of pique, from a preoccupation with reciprocity or from loyalty 
to Hadamard? In any case, he did not seem to be interested in practical probabilities or in 
Borel’s denumerable probabilities in the twenties. Borel, on his side, was certainly never 
interested in the stable laws of Lévy, however useful in times of crisis (56).  

Things changed, it has been said, after 1928. Lévy seems to have realised that there is 
a difference between the weak and the strong laws of laws numbers. He admitted this to 
Fréchet (57): “It may be that before 1928 I confused the point of view of Bernoulli and that of 
the strong law of large numbers. But since 1929 and in any case since 1930 I can tell you 
that, except for an always possible lapse, I did not …”. Lévy was undoubtedly thinking of his 
first partly denumerable articles [1929] and [1930b, c]. The first is on the metric theory of 
continued fractions: a number between 0 and 1 is chosen at random, what are the limiting 
laws of its quotients complete and incomplete when it is developed as a continued fraction? 
This was a topic that Lévy returned to on several occasions and which he used to test his 
increasingly elaborate methods (e.g. [1936c]). This subject had already been tackled from the 
viewpoint of denumerable probabilities by Borel in his famous article, [1909], which Lévy 
quotes (58). However, Lévy still mainly works from the point of view of Bernoulli; he treats 
convergence in law and denumerable probabilities are not involved. But the end of the article 
is concerned with the frequencies of different incomplete quotients of a number taken at 
random randomly and tries to establish a strong law of large numbers for variables which are 
not independent. To this end, Lévy uses (for the first time it seems) one of the basic 
principles of his theory of dependent variables: one goes from the case of independent 
variables to that of dependent variables by replacing prior with posterior probability. (59)  

The interesting point in this paper is elsewhere and it may help us to bring to a close 
this very short introduction to Lévy’s denumerable silence, at least provisionally. Lévy states, 
p. 190-191: “Finally there is an essential point whose interest was long unperceived and 
which has been highlighted by M. Cantelli and Mlle Mezzanotte: it is not enough to consider 
each value of n independently of the others to show that the difference between the frequency 
and the average probability is almost surely lower than a function of n tending towards zero, 
but also and more especially to consider the whole of the experiments to show that this 
difference almost surely tends towards zero, i.e. becomes and stays almost surely lower than 
any positive number given.” One should not be content to show convergence of probability 
(or a convergence in mean square) but almost sure convergence; this was the “essential point” 
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which was “a long time unperceived” (especially by Lévy), that Mlle Mezzanotte and M. 
Cantelli highlighted (60). Lévy came to it late but for him it finally opened the door to 
denumerable probabilities—around 1930 and not earlier. 

From here it is enough to follow the list of Lévy’s articles until inevitably we reach 
Lévy’s lemma. As remarked earlier, the article written in 1930 [1929], was already treating 
dependent events. Lévy would stick to this path until 1935. We will notice one or two stages.  

 
 
 
3.2 Lévy’s denumerable probabilities 
 One of Lévy’s first “denumerable” notes, [1930c], goes over again Borel’s disputed proof of 
the law of large numbers and tries to make it precise.  

Recall that Borel’s lemma, in its 1909 version, is stated as follows: there is a 
countable infinity of successive trials, assumed independent, and the probability of a 
successful outcome for the n-th trial is pn. The probability that the favourable cases are 
produced infinitely often is zero or one, according to whether the series of the pn  converges 
or diverges. Thus it treats a 0-1 law and it is in this form that Lévy understood it, as he would 
understand Lévy’s lemma four or five years later. There is nothing surprising in laws of this 
type since it had been known since 1918, that in infinite dimension, non-trivial volumes have 
a natural tendency to be null or infinite. The completely innovative and brilliant idea of 
Borel, which for a long time remained unnoticed by Lévy was, we repeat, to regard the event 
“the successful outcome occurs an infinite number of times” as worthy of interest. The entire 
theory of denumerable probability is there, and, around 1930, Lévy finally understood it. So 
much so, that from then on Lévy regarded Borel as his master, officially on a par with 
Hadamard, but secretly more and more preferring him. 

As is well known, the two applications that Borel gave of his theory, to decimal 
fractions and to continued fractions, used the lemma in cases where the successive trials are 
not independent. When the observation was made orally, Borel replied that it had no 
importance in the cases considered (61). In 1911 however, Felix Bernstein wrote in Hilbert’s 
journal, Math. Annalen, and openly challenging Borel’s results on continued fractions which, 
according to him, contradicted his own, but brought out the undeniable fact that Borel, to 
show these results, had applied his lemma to the case of dependent trials. Borel answered at 
once in the same journal (62) that Bernstein’s results did not contradict his own since they 
were identical except for the notations, and that its lemma remained valid in cases of 
dependent tests such as those which he considered. It was enough that the conditional 
probability pn of the n–th trial taking account of the results of earlier trials satisfy the 
inequalities: 

p'n ≤ pn ≤ p"n  
where p'n  and p"n  are sequences of constants to which one can apply the lemma in the form: 
the probability that the successful outcome occurs an infinite number of times is 0 or 1 
according as the two series  and p'n∑ p"n∑ are convergent or divergent, (63). Borel would 
say no more and would never take the trouble to write down the complete proofs for his 
memoir of 1909. Let him understand who can understand!  

Lévy only became involved after Bologna. In the Souvenirs (64) he tells us that only 
then did he read Borel’s article [1909].  To prove his law of large numbers, Borel had applied 
his lemma, valid for independent events, to events related to numbers Xn  of heads from n 
throws, which are not independent. Lévy reports that he was stopped for “several months” by 
this difficulty and that he finally overcame it, by considering, in the sequence of all the parts, 
those subsequences sufficiently distant from one another that the results cumulated are 
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independent or almost so, and that is enough to justify the demonstration of Borel (65). Lévy 
was thus led naturally to the law of the iterated logarithm, which he published in [1930c], not 
knowing that Khinchin had published it six years before in the same journal [1924a].  

This was the starting point of Lévy’s search for a 0-1 law for the case of dependent 
trials. He seems to have given up this investigation temporarily, in 1930-1931, to resume only 
in 1934, after having published one of his showpieces, the generalisation of Wiener’s 
differential space to the case of processes with the most general independent increments, the 
dx(t) remain independent, but they are no longer necessarily drawn at random on the sphere 
(66). After this bravura performance, which in a certain way—Lévy’s—completed the theory 
of sums of independent variables, finite or infinitely small, Lévy decided to interest himself 
in series of dependent variables. The first thing to do was obviously to establish a 0-1 law, 
similar to that in Kolmogorov’s theory, itself a generalisation of Borel’s 0-1 law for 
indicators. In the case of centered, independent variables the series of variances plays the part 
of the series of probabilities in Borel, and makes it possible to determine almost sure 
convergence or divergence of the series of variables. This was the object of the note [1934c] 
presented on October 1, 1934 (67). 

It is very clear to Lévy, that it was necessary, in the dependent case, to replace the 
conditions on expectations and variances of the independent case, by similar conditions 
relating to means and variances conditioned on the past. If one considers, following Lévy, n  u
a series of dependent variables, and En−1(.), the conditional expectation knowing the past up 
to n-1, the condition of centering of the independent case is written  

En−1 un( )= 0 

so that  is a martingale difference and  is a martingale of Ville-Doob, avant la un Sn = uν
1

n

∑
lettre. The condition on the variances of the independent case becomes a condition on the 
conditional variances μn

2 = En−1 un
2( ), and theorem I of the note [1934c] is a 0-1 law for square 

integrable martingales, the Borel-Kolmogorov condition on the series becoming a condition 
on the series of the μn

2. For this one wold conclude that Lévy was the father—not the pioneer 
or the prophet—of the theory of martingales. He handles the concept by analogy with 
Kolmogorov’s theory without seeing its central role in the theory of processes and without 
wanting to make a theory of it (68).  

The article developing the note [1934c] under the same title [1935b], was submitted in 
September 1934 and appeared only in May 1935 but its results go back to 1934, the year 
when Lévy obtained so many new results that he could only publish them only over one or 
two years. See in particular his [1935e], written in November 1934, which presents, from 
another point of view, the theory of connected variables in the sense of Lévy (i.e. Lévy’s 
martingales). Finally he brought everything together in hiss great work written in 1936, 
[1937], a unique classic in the field of probability theory—finite or denumerable—of the last 
300 years. 

The article [1935b] has a preliminary part which has no obvious relationship with the 
note entitlled §1 “denumerable probabilities and the theory of measure” which is a direct 
result, as we will see, of reading the first piece by Jessen [1929]. In §1 Lévy specifies in as 
detailed a way as possible, and for the first time, the theoretical framework in which he 
works, when he uses denumerable probabilities for series of independent variables. This 
section is included and extended in section 39 of his 1937 treatise. It is thus within an explicit 
mathematical framework and in this §1 that Lévy’s lemma is first stated along with with a 
very simple and perfectly acceptable proof, p. 86-88:  

There is given a sequence of independent random variables x1, x2,...., xn,.... each with 
the same uniform distribution on [0,1], (defined in the sense of Jessen-Lévy) and an event E 
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which “depends” on this sequence,  and P E( ) Pn E( ) denote respectively the probability of E 
before the determination of the xν  and after the determination of x1, x2,...., xn  and according 
to the values of these assumed known variables. One has then:  
Lemma I: If an event E has probabilityα, the sequences realising this event, except in cases 
of null probability, satisfy also the condition  

lim
n →∞

Pn E( ) = 1 
The work of 1937, § 41, sets Lemma I within the most general framework of Lévy’s 

theory of denumerable probabilities:  
Taking a “sequence Xn  of variables independent or not”, defined on the interval [0,1] 

provided with uniform measure, so that the variables appear truly like measurable functions 
definite on the unit interval. Lévy showed in § 39, that it is always possible, in the case 
independent of [1935b] as in the dependent case.  

A property E of the sequence Xn  is given. That is, states Lévy, the set of reals in [0,1] 
for which this property holds. Expressing its probability as Pr . E{ }, that is to say, states Lévy, 
the measure of this set, and Pr  its conditional probability given n E{ } X1, X2,...., Xn  assumed 
known, a concept that Lévy defined in § 23, (according to [1936d]). One has then:  
Theorem 41. - Except in cases of which the probability is null, if Pr . E{ } is determined, 
Prn E{ } tends, for n infinite, towards one, if the sequence X1, X2,...., Xn,...., satisfies the 
property E, and towards zero, in the contrary case. 

What in current language one writes, as we recalled in the Introduction, in an obvious 
notation:  

E n 1E( )→1E  a.s 
And this 0-1 law contains all known  0-1 laws, in particular that which Lévy attributes to 
Jessen in [1935b], p. 89, note 1, and which, in [1937], p. 130, he restores in Kolmogorov: If 
Prn E{ } = Pr  for an infinity of n, . E{ } Pr . E{ } can only take the values 0 or 1. It is the case 
when E is an asymptotic event relative to a sequence X1, X2,...., Xn ,.... of independent 
variables, for example if E is the event of Borel: “the case is favorable an infinity of times”, 
and the lemma of Borel joined thus finally the lemma of Lévy.  

To summarise. In the spring 1934, before Jessen and Lévy began their epistolary 
relationship, the first saw his theorem as an extension of the Fubini-Lebesgue theorem of 
1907-1910, and the second saw his lemma as an extension of Borel’s lemma of 1909. It is 
time to consider their letters. 
 
4. A correspondence begins   
In the spring of 1934 the brand new Institute of Mathematics was inaugurated in Copenhagen 
under the direction of Harald Bohr. It was built with a donation from the Carlsberg 
Foundation on the model of the Institute of Theoretical Physics, which the Rockefeller 
Foundation had financed for Niels Bohr, of the Institute Henri Poincaré in Paris and the 
Institute of Mathematics at Göttingen (69). There were funds for visitors and Harald Bohr 
could invite foreign lecturers of reputation to speak in Copenhagen. Among them was Paul 
Lévy, who seems to have had good relations with Bohr. Lévy was always more esteemed 
abroad than in Paris and there was nothing surprising about this invitation which came about 
in the beginning of April 1934.  

Lévy tells us that he presented his brand new theory of integrals whose elements are 
independent random variables before the Mathematical Society of Denmark on April 9, 1934 
(70). One can imagine that the audience was rather surprised by Lévy’s performance but 
Harald Bohr, a man with a cool head and perfect manners, could at least grasp that it was a 
matter of integrating functions with an infinity of variables and indicate to his guest that his 
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student Børge Jessen, then in Princeton, had done much work on the subject. In any case it 
can be shown that Bohr gave Lévy Jessen’s articles on the subject in German and in Danish, 
since Lévy quotes [Jessen 1929b] in his article [1935b], p. 86, note 1 and that paragraph 1 of 
this article seems a kind of criticism or commentary on Jessen’s theory. When Jessen 
returned to Copenhagen in September 1934, he wrote to Lévy, undoubtedly on Bohr’s advice. 
We have not found this letter but it must have accompanied part of his great article in Acta 
Mathematica [1934a], which he had just received. This letter is the starting point of the 
correspondence which is published in Section 5.
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Notes to the Introduction Sections 1-4
 
(1) [Jessen, 1934a], §§13 and 14, and [Lévy, 1935b], pp. 88-89, included in [Lévy, 
1935e], pp. 6-7 [Lévy ,1936a and b], and [Lévy, 1937], n° 41. (1)
 
(2) [Lebesgue, 1903], included in [Lebesgue, 1904], pp. 124-125, [1906], p. 13, 
developed in [Lebesgue, 1910] and from 1914 incorporated in all the major European 
treatises of analysis. The theorems on differentiation almost everywhere of Lebesgue, 
La Vallée Poussin, Denjoy, etc. are the first known statements of the theorem on 
increasing martingales. The theorems predate the term “almost everywhere” which 
was introduced by Lebesgue [1904] and then adopted generally (e. g. Lebesgue 
[1904], second edition, 1928, page 179, note 1). See also [Kahane, 1988]. (2)
 
(3) [Borel, 1909] and [Kolmogorov, 1933] for a definitive version. Borel’s theorem 
was recognised officially within the framework of the theory of decreasing 
martingales by Doob [1948]. The term “almost sure” was not yet standard in the 
thirties, when the usual expression was “convergence with probability one.” Lévy 
seems to have been one of the first to have adopted “presque sûrement” after 1930, 
though Fréchet in his courses at the IHP favoured “presque certainement”, without 
quite imposing it [1936], p. 225. Of course the terminology of probability, like the 
concepts themselves, remained somewhat fluid until the fifties. (3)
 
(4) [Andersen, Jessen, 1946, 1948b] and [Doob, 1953]. The Andersen-Jessen 
formulation and proofs are reproduced in [Hewitt, Stromberg, 1965], chapter V, § 20 - 
22. For the Moscow school, see Kolmogorov [1950] and Bogachev [2006], vol. II, p. 
469. (4)
 
(5) There are simplified proofs of the martingale theorem in [Doob, 1961], [Chow, 
1962], [Meyer, 1966],…, and of course [Lévy, 1935b]. The demonstration given here 
follows [Edgar, Sucheston, 1976] and is close in spirit to Lévy’s proof, which did not 
isolate the concept of stopping time but nevertheless used it implicitly to great effect.  

[Halmos, 1950], p. 213, theorem B gives Lévy’s statement and original proof, 
expressed in slightly pasteurised terms and less esoteric than in the inimitable original 
to which one will want to turn to taste the salt and the bitterness of Lévy composition. 
Lévy’s proof is the first “direct” demonstration of the almost sure theorem and Jessen 
ended up by acknowledging this, tacitly at least. 

We have borrowed the adjective “pasteurised” from G. Choquet’s very 
beautiful foreword to the Lebesgue-Borel correspondence edited by Dugac [2004], 
page 5: “Mathematical activity cannot be reduced to the pasteurised theorems which 
sleep in the journals of libraries; their genesis, which would reveal the operation of 
creative thought, seldom appears in printe printed statements. The mass of those 
millions of theorems resembles those coral masses which increase each day, but are 
exhausted as soon as the living corals that secrete them die. ”  

Pasteurisation is necessary to ensure diffusion across great surfaces, but it 
tends to sterilise the life of which the historian must give an account. Norms from 
Brussels or Geneva change nothing, a history of pasteurised mathematics misses the 
point and can be at best only pasteurised history of mathematics. To recover the life 
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and the creative thought, it is necessary to look elsewhere and letters are an invaluable 
resource. This is why Choquet himself fought against winds and tides to have the 
letters of Lebesgue published, for without them one can hardly grasp the genesis of 
one of the most fertile theories of the 20th century, a theory of raw milk which could 
survive pasteurisation only in a faded form, exhausted and tasteless. We should add 
that Choquet was a rarity amongst Paris mathematicians in welcomng martingale 
theory into his seminar on potential theory at the end of the fifties and in encouraging 
the work of Meyer, Courrège, Dellacherie and so many others. (5)
 
(6) [Barbut, Locker, Mazliak, 2004], a superb and fundamental work referred to as 
BLM. (6)
 
(7) The Jessen archives are described on the site 
http://www.math.ku.dk/arkivet/jessen/bjpapers.htm. It was from this well constructed 
site that we learnt of the existence of the Jessen-Lévy correspondence. We are very 
grateful to the authors of the site, particularly K. Ramskov and S. Elkjær, and also to 
Jesper Lützen and the Committee of the Archives of the Institute of Mathematics of 
the University of Copenhagen. (7)
 
(8) On Harald Bohr, see the DSB, [Jessen 1951], [Ramskov 1995]. Bohr was first 
director of the Institute of Mathematics of the University of Copenhagen which was 
founded in 1934. He was a very important figure, not only in the development of 
Danish mathematics, but also in the beginning of what is now called “the 
internationalisation of mathematics”. In the early 1930s Harald and his brother Niels 
were influential advisers to the Rockefeller Foundation. Jessen’s theorem, in its way, 
was a concrete expression of this new way of doing of mathematics, based as it was 
on contacts with the principal schools of the old and the new world. On this subject 
there is an excellent book by R. Siegmund-Schultze [2001].  

Biographers of H. Bohr never fail to recall that he was a member of the Danish 
football team at the London Olympic Games of 1908, which beat the French team 17-
1 in the semi-finals, after beating France 9-0 in the first round. There were five teams 
in the tournament and in the final Denmark lost to Great Britain 2-0. (8)
 
(9) [Jessen 1949] gives references for the proofs of Bochner, Riesz, La Vallée 
Poussin, Weyl, and Wiener, as well as proposing another. The literature on this 
subject beginning in 1925 and continuing for the next ten years is very important. The 
bibliography below contains only a small sample of titles but among them is a paper 
by Ellen Pedersen, Jessen’s future wife. We might at least notice the almost periodic 
functions of Stepanoff [1926], the periodic pseudo functions of Paley and Wiener 
[1934],… In the thirties, von Neumann and Weyl showed the links between the Bohr 
functions and the theory of group representations. See Weil [1940], ch. VII, for an 
account of this theory. After the war, Bohr’s almost periodic functions were extended 
to distributions [Schwartz 1950], ch. VIII § 9, etc. (9)
 
(10) For this subject see Pier [1990, 1994] and [Kahane 2004] who also provide 
references.  (10)
 
(11) Jessen makes this precise in [1934a], p. 252: “The present author was led to the 
theory in connection with some investigations by Bohr concerning the distribution of 
the values of the Riemann zeta-function, which were carried out in collaboration with 
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the author.”  We will not detail these investigations for Jessen did not return to them 
in this form in [1934a].  

Functions in an infinite number of variables have a long prehistory, which 
includes the theory of infinite determinants of Poincaré [1886] (for which see Riesz 
[1913]), but their history really begins in 1906 with Hilbert’s theory of integral 
equations, [1912], in which he introduced and used the Hilbert space l2; see also 
Hilbert [1909], Fréchet [1909] and Dieudonné [1981]. However the idea of using 
functions in an infinite number of variables to study the Riemann zeta function and 
almost periodic functions appears to be Bohr’s. He was followed by Jessen who must 
have exceeded all his mentor’s hopes. (11)
 
(12) Jessen knew the Lebesgue theory from the treatise of Carathéodory [1918/1927] 
of which he had made a thorough study, as Christian Berg tells us (this issue), and 
also, it seems, from Julius Pal, a Hungarian mathematician established in 
Copenhagen, who had taught Jessen. Pal worked with the Hungarian School and in 
particular with F. Riesz and was very familiar with the new functional analysis of 
Riesz where the Lebesgue integral played a central role. On this point there is an 
interesting article, Filep and Elkjær [2000]. (12)
 
(13) “Übertragungsprinzip” which Jessen translates as “Overførelsesprincip” in his 
magister’s thesis [1929a], p. 44, and and as “Transferring principle” in his [1934a] §7.  

The memoir by Riesz [1910] is the only reference Jessen gives in his 
magister’s thesis. However, by the end of 1929, and undoubtedly after his visit to 
Riesz, he knew that Lebesgue and La Vallée Poussin had used such a principle around 
the same time. Thus in his doctoral thesis [1930] p. 19, Jessen cites Lebesgue [1910] 
p. 402ff., who used the Hilbert curve to transfer his theorems on differentiation and 
La Vallée Poussin [1911] who did substantially the same. When he corrected the 
proofs of his Oslo talk, during 1930, Jessen added the same references in a note; cf 
[1929b], p. 134, note 1. 

However questions of attribution and dating are never easy, especially when 
they concern a principle like this which imposes itself naturally. Already in a note 
[1907a] F. Riesz had used his principle of transfer to go from functions of a single 
variable to functions of two variables. In a note [1899] Lebesgue had used a “principe 
de transfert” to extend Baire’s theorem for functions of one real variable to the case of 
two variables. For this purpose he used the Peano ([1890]) space-filling curve, still 
without seeing—he had no use for it—that this curve preserves the measure that Borel 
had just defined in his course [1898]. Lebesgue returns to the method, extending and 
improving it, in his famous memoir [1905b], pp. 193-201, where measure does not 
intrude either. But from the first edition of his Intégration, [1904], pp. 116-117, 
Lebesgue used the Peano curve to construct the plane measure he needed for the 
“geometrical definition” of his integral (see [1903-1905] and the second edition of 
[1904], p. 137ff.). This method is included in the second edition of 1928 of the same 
work, p. 44, where Lebesgue adds in note 2, that his method, “different from that of 
MM. Peano and Hilbert, can be used for spaces with an unspecified number of 
dimensions and even for spaces with a countable infinity of dimensions”. This note 
written in 1926 could be a version of Jessen’s generalised principle of transfer, and as 
such would be neither the first nor the last, but it could be also the pat of a tired old 
cat wanting to push away that funny bird, Lévy, when he presented related ideas to 
the Hadamard seminar of 1924. The question comes up in the correspondence 
published below. This second hypothesis would also lend some credence to Lévy’s 
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priority claim which we will be discussing below: perhaps Lebesgue recognised in 
Lévy’s talk precisely what Lévy would assert ten years later, but Lebesgue (like Lévy) 
did not take the trouble to write down. Borel became a mandarin of the radical 
Republic and Baire was left to die on the shore of Lake Léman. They were no longer 
there to play mathematics with Lebesgue; Lévy was a bad player, like Lebesgue. 

On the history of the transfer principle there is the very nice article by Riesz 
[1949]; see in particular p. 37-38. At the beginning of the 40s the principle was put 
into an abstract framework as the “isomorphism theorem” by Halmos and von 
Neumann [1942] and independently by Rokhlin [1949] around 1940. Halmos [1950] 
n° 41 has a statement and there are more references in Bogachev [2006] vol. II, p. 
549. The latter is a remarkably scholarly work with very interesting historical 
comments and a bibliography of over 2000 titles. (13)
 
(14) See Lebesgue [1904] and Carathéodory [1918]. Jessen follows them closely. 
Halmos [1950] chapter II, etc may also be consulted. (14)
 
(15) [Steinhaus 1923] uses the axiomatic set-up of Sierpinski [1919]. This article had 
a very important role in the development of the mathematical theory of probability, 
especially in Moscow where it ws followed by Khinchin [1924] and then by 
Kolmogorov, [1925], [1928] etc. (15)  
 
(16) [Steinhaus, 1930b and c], included and extended in [Kaczmarz, Steinhaus 1935], 
chapter 4, n° 7, p. 134-139, which gives the construction of the correspondence, and 
in Steinhaus [1936] and [1938]. Jessen quotes Steinhaus [1930c] in his thesis of 1930, 
p. 29 notes, and in [1934a]. In his letters to Lévy we find Jessen recognising the 
independent priority of Steinhaus, then that of Lévy (more arguable) and that of 
others, known or unknown, (Denjoy, Wiener, Cantelli, Mazurkiewicz,…)  

We may note that Steinhaus [1936] proposed another correspondence based on 
the generalised Peano curve and indicated that the earlier construction of Jessen 
[1929b], based on the generalised Hilbert curve was not so well adapted.  

From his construction [1930b] Steinhaus deduced that in general entire series 
whose coefficients have arguments chosen at random have a singularity at all points 
on their circle of convergence. This result gave a precise sense to the prophetic 
statements of Fabry [1896], p. 398-399, and the enigmatic ones of Borel [1896], 
[1897]. This work of Steinhaus was developed soon after by Paley and Zygmund 
[1930-1932], followed by many authors including Jessen [1934a]. See Kahane [1963, 
1985] and, for recent references and developments, [Marcus, Pisier 1981], [Kahane, 
Lemarié-Rieusset, 1998],…. (16)
 
(17) Jessen quotes [La Vallée Poussin 1915, 1916] and uses his terminology and 
method of “derived in nets” ([1916], chapter IV). The theorem of La Vallée Poussin, 
like Lebesgue’s, is a theorem of increasing martingales, the nets of intervals of La 
Vallée Poussin being of filtrations of finite type, and the Δn(x) the conditional 
expectations according to these filtrations. In 1946 Jessen recognizsed this.  (17)
 
(18) The first “Fubini’s theorem” for the Lebesgue integral in the plane is in 
Lebesgue’s thesis [1902], n° 37-40 and it treats the case of bounded measurable 
functions. In 1910 Lebesgue returned to the subject but meanwhile several authors 
had stated and proved Fubini’s theorem in a more or less complete way, in particular 
Beppo Levi in 1906, Hobson and Fubini in 1907, Tonelli in 1909. There is a detailed 
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study of this complex development in T. Hawkins [1970]. Hawkins finally attributes 
to Tonelli the first complete demonstration of the theorem stated by Fubini, for 
integrable functions of two variables. The modern formulation of Fubini’s theorem is 
due to La Vallée Poussin [1914, 1916]. Fubini is credited only for his extension of the 
theorem to nonmeasurable functions, which is also partly in Lebesgue’s thesis, [1902] 
n° 40, as La Vallée Poussin points out in [1916], p. 53, note 1. (18)
 
(19) In a note Jessen indicates that he is following Riesz [1909], who was, in effect, 
the first to name “convergence in measure”, although the concept had already been 
used, without being named, by Borel and Lebesgue in 1903. See Bogachev [2006], 
vol. 1, p. 426 for references. The relationships between convergence in measure and 
the other modes of convergence of the theory of the functions—convergence almost 
everywhere, convergence in mean,… —were published several times by various 
authors. They are laid out in Fréchet [1921b], who was one of the first to show that 
convergence in measure “corresponds” to (without being identified with) convergence 
in the sense of the theory of probability of Bernoulli, Moivre and Laplace, the 
Laplacian double approximation of “très probablement très proche.” See Slutsky 
[1928a], Fréchet [1930] and [Cantelli 1935]. The two concepts fused in the axiomatic 
framework of Kolmogorov [1933] and also in that of Jessen-Steinhaus-Lévy 
[1930/1937], but for a long time they were considered distinct. On this subject see 
[Doob, 1994]. For Jessen, as for Doob, the problem did not arise: it had no meaning.  
(19)
 
(20) In the list of Oslo lecturers is another young Danish mathematician, Georg 
Rasch, (1901-1980). Rasch was slightly older than Jessen and had submitted his 
magister’s thesis in 1925 and was due to submit his doctoral thesis in the coming 
months. He was appreciated and supported by Nørlund, a professor at the University 
of Copenhagen from 1922 in a chair specially created for him. There were very few 
mathematical positions in Danish universities but if one became vacant Rasch had a 
reasonable chance of success. However Rasch’s mathematical career was destroyed at 
a stroke in the spring 1930 when Jessen, with Bohr’s backing, submitted his doctoral 
thesis—and what a thesis! Undiscouraged, Rasch turned to the new Anglo-Saxon 
statistics of Fisher, but also of Neyman, Pearson and others. This was an unknown 
discipline in Denmark which remained attached to the continental school of statistics 
and actuarial science. Like Jessen and at the same time, Rasch obtained a Rockefeller 
scholarship but in his case it was to study with Fisher in England. When he returned 
he trained in the new methods the leading Danish statisticians of the next generation, 
among whom Anders Hald, an important statistician and a remarkable historian of 
statistics, became a friend. Rasch was eventually appointed university professor of 
statistics in Copenhagen, but only in 1962 and only in the Faculty of Social Sciences. 
It seems a just return that Rasch’s posthumous fame stands a good deal higher than 
Jessen’s. Only scholars know Jessen’s theorem while Rasch’s models are cited, 
applied and extended every day. On the life and work of Georg Rasch there is an 
interesting thesis by L.W. Olsen [2003].  (20)
 
(21) Bohr’s appointment to the University of Copenhagen in 1930 had set off a chain 
of movements. His old position at the Polytechnic School went to A. F. Andersen who 
was docent at the Royal Veterinary and Agricultural School and Jessen was at once 
appointed to replace him there. Aksel Frederik Andersen (1891-1972), an analyst of 
Bohr’s school, was very interested in mathematics teaching in both school and 
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university. In particular he took part in revising the great treatise of analysis by Bohr 
and Mollerup. He retired in 1960. (21)
 
(22) The theorem on differentiation in L1 was not given by Lebesgue, who did not use 
convergence in mean, but it was known to Riesz from 1910 and undoubtedly earlier; 
convergence a.e. had been proved (Lebesgue) and convergence in L1 had been defined 
(Fischer, Fréchet, Riesz, Schmidt). However, this result does not appear explicitly in 
the few works that Jessen had read, and he only learnt of the role of “strong” 
convergence at the time of his stay in Szeged; on this see note 27 below. (22)
 
(23) As we saw in the introduction, the form of the simple functions matters little, but 
Jessen does not know yet, it seems, that the functions depending only on a finite 
number of coordinates are dense in L1, by construction, an argument from measure 
theory that Lévy grasped and used at once for his “lemma”, but which appeared 
nowhere else in the current mathematical literature. So Jessen, without realising it, 
proved the martingale theorem in L1 twice, first in the form of the theorem on 
differentiation, following Riesz, and then in the form of Jessen’s theorem which he 
deduces from it. From the time of Cournot at least, it has been known that this 
complication is characteristic of creative mathematics where theorems are discovered 
by stray wandering in the forest and proved using whatever arguments are available. It 
is work of a different kind to produce proofs that are simple, clear and well-organised; 
these seldom come first. In this art too Jessen became a master, to the point perhaps 
where he forgot the thick jungle in which were hidden the new theorems, true or false. 
(23)
 
(24) These themes are developed in the article [1932b] and the last part of [1934a]. 
They were taken again by Hunt [1955] and are still the object of research; note 16 
above gives references.  

Jessen [1932b] was inspired in particular by a very fine article of Jensen 
[1899]. It was rumoured that Jensen had proved Riemann’s conjecture and on 
Jensen’s death, Rasch was charged with seeing what could be found in the many 
papers he left. The interesting details of this affair are related by Olsen [2003]. It may 
be recalled that J.L.W.V. Jensen (1859-1925) was chief engineer at the Copenhagen 
Telephone Company, where A.K. Erlang also worked. For the latter see Brockmeyer 
and Al [1948]. (24)
 
(25) In Princeton Jessen discovered the new theory of probability, in particular the 
work of Kolmogorov on series of independent variables which includes his 
generalised Fourier series with variable coefficients on the circle (without being 
drawn randomly they vary however freely). Jessen also had occasion to meet Wiener. 
According to the Bulletin of the Amer. Math. Soc, (March 1934), p. 177-178, one of 
the sessions (on December 27) of the Society’s meeting at MIT, December 26-29 
1933, was a “Symposium of invited papers on the topic of probability”. The invited 
contributions were: E. Hopf, MIT, “Remarks on causality and probability”, F. 
Bernstein, Columbia University, “Foundations of probability in the natural sciences”, 
G.E. Uhlenbeck, University of Michigan, “The probability of position in has 
canonical together”, and N. Wiener, MIT, “The Brownian motion”. A fifth lecture 
was planned, “Some analytical problems relating to probability”, to be given by Dr. 
B. Jessen, Institute for Advanced Study, but that it did not take place “on account of 
illness.” These lectures (including Jessen’s) were published in the Journal of Maths. 
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and Phys., 24,1 (1935), p. 1-35. Jessen’s lecture (p. 24-27) is a short summary of his 
1934 article. Thus Jessen was fully aware that the theory of measure in infinite 
dimensional spaces was related to the new theory of denumerable probabilities. He 
had cited Kolmogorov’s Grundbegriffe in his 1934 article but it is clear that he had 
not had time to study it in detail, as we will see. (25)
 
(26) See [Daniell 1919] who uses the extension of the integral, in the manner of W.H. 
Young and F. Riesz, [Carathéodory, 1918], [Feller-Tornier 1932], [Kolmogorov 
1933], who use the extension of the measure. (26)
 
(27) In a note to § 15 (page 278), Jessen indicates that he had originally proved  his 
two “Fubini heorems” for convergence in measure and he adds: “It was pointed out to 
me by Prof F. Riesz that the (well-known) argument used above would give the same 
theorems for the more convenient concept of strong convergence. Finally it was Prof 
Danielll who suggested to me that the theorems should be true for convergence almost 
everywhere. ” This suggests that Jessen put this finishing touch at the time of his stay 
in England and at the United States in 1933-1934, with generous help from Daniell, 
who would therefore have been the first to have had the idea of of the almost sure 
version of Jessen’s martingale theorem. On the very remarkable personality of 
Daniell, see a recent nice article [Aldrich 2007], which is very complete. (27)
 
(28) Jessen writes in a note p. 285, in connection with the result of Riesz: “A proof of 
the theorem by means of the differentiation theorem of § 9 was given by Prof F. Riesz 
and communicated to me by Dr. Kalmár. It was this proof that suggested to me the 
proof of the theorem in § 14. I note from a letter from Prof Zygmund that a proof on 
similar lines was given by Paley.” Jessen had certainly met Laszlo Kalmár, at the time 
of his stay in Göttingen, where Kalmár, a student of Fejér and Riesz, was discovering 
his vocation in mathematical logic. We do not know where Paley proved his “theorem 
on martingales”, but it is a theorem he must have known at least implicitly, given his 
admiration for Borel’s “denumerable probabilities.” Jessen probably never met Paley. 
He was already dead when Jessen arrived in Cambridge 

Symmetrically, F. Riesz recommended Jessen’s memoir [1934a] “for a 
detailed exposition [of the principle of transfer using the method of nets] (for the case 
of an infinity of variables) and for bibliographical indications.” (Riesz [1936], p. 193, 
note (5)), a faint recommendation which could have only half-pleased him. (28)
 
(29) These applications principally concern Fourier theory in Qω, random Fourier 
series, developments taking off from the articles of Paley, Wiener and Zygmund, but 
also orthogonal systems (e.g. Rademacher [1922], [Kaczmarz, Steinhaus, 1935]), 
functions almost periodic analytical random, Dirichlet series (Carlson [1933]),…. For 
these subjects, see the references given above, notes 16 and 24. On the other hand, 
Jessen [1934a] contains no overtly “probabilistic” applications, unlike the article he 
published a little later with Wintner [1935] which is described below. (29)
 
(30) It is not only a matter of difference in language; Jessen’s martingale theory 
knows nothing of the concept of stopping time and of the stopping theorem, keystones 
of the probabilistic theory of Ville and Doob, but also of Lévy. On this subject see 
[Bretagnolle 1987], p. 241, who gives a very intelligent modern reading of [Lévy, 
1935b]  
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We know from [Andersen-Jessen, 1948b] that Jessen only noticed Doob’s first 
article after the publication of the 1946 article. Moreover Doob [1940] does not yet 
contain the stopping theorem. Doob, for his part, seems to have had access to Jessen’s 
work only in 1948. As for the book by Ville [1939], Jessen wrote a very short review 
for the Mat. Tidsskrift apparently without noticing any connection with his own work; 
this was not the case with Doob who immediately understood the interest and the 
originality of Ville’s thesis.  

There was a difference of a philosophical or poetic nature. Jessen did not 
adhere to (or only very slightly and with evident discomfort) the philosophy of chance 
that Lévy inherited from his masters Bertrand, Poincaré and Borel (for this subject see 
JEHPS, December 2006). Jessen does not draw at random the terms of his series, 
which are parameters but this deprives him of probabilistic intuition and the 
mathematical concepts linked to it. One can do probability theory without chance as 
one can do mechanics without force, but, Cournot would add, what is gained in 
logical clarity is lost in richness of reasoning. (30)
 
(31) The DSB has an article on Aurel Wintner (1903-1958). Wintner is credited with 
437 articles and 9 books. No doubt some of these hundreds of articles had only a 
passing interest (Doeblin is more acid in his notebooks) but they testify to his 
astonishing publishing activity and some of them are first class, for instance those 
written with P. Hartmann, and undoubtedly those we are considering here. We do not 
know when Jessen and Wintner met. Wintner spent part of the academic year 1929-
1930, on a postdoctoral scholarship at the Copenhagen Observatory which was then 
directed by E. Strömberg. He certainly met Harald Bohr and may have been present at 
Jessen’s doctoral defence in the spring of 1930. To learn more, it would be necessary 
to analyze the voluminous Jessen-Wintner correspondence, which we were not able to 
consult, There are letters in the Jessen papers at the Institute of Mathematics of 
Copenhagen and in the Wintner papers at the Mr. S. Eisenhower Library of Johns 
Hopkins University. According to the library’s site 
(http://ead.library.jhu.edu/ms281.xml#id2620966). There is, in addition, Lévy-
Wintner and Doob-Wintner correspondence and it may be interesting to go through 
these letters. (31)
 
(32) The literature on this subject was very important in the thirties and subsequently: 
see the works of Kahane in the bibliography although these give only a sample of the 
work on infinite convolutions around 1935. There is a large bibliography in Jessen, 
Wintner [1935], of which we have transcribed only one part. (32)
 
(33) The Fourier transform was introduced by Laplace in 1810 precisely for the 
purpose of evaluating the asymptotic laws of the sums of independent random 
variables. For this topic, see the great work of Hald [1998]. (33)
 
(34) Jessen and Wintner cite Khinchin, Kolmogorov [1925], Kolmogorov 
[1928/1930] and Lévy [1931c], works with which they were only superficially 
acquainted. (34)
 
(35) The existence theorem for an infinite product measure in an abstract framework 
was stated for the first time, with an incomplete proof, in [Łomnicki-Ulam, 1934]. 
Von Neumann gave a complete proof in 1934 in his course of Princeton, although this 
was only published in 1950. It is likely that Jessen, who was in Princeton from 
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September 1933 to July 1934, followed von Neumann’s course. In any case, he 
published his own proof in 1939, [Jessen, 1934-1947, 4]. Other authors gave proofs 
around the same time, in particular Doob [1938] (the validity of which Jessen 
challenged) and Kakutani [1943]. However, Jessen’s proof, translated into English in 
[Andersen-Jessen, 1946], n° 23-24, is very simple and is valid for a general set of 
indices. It served as model for the authors of the treatises of the fifties, in particular 
Halmos [1950], n° 58, pages 157-158, and Loève [1954], chapter I, section 4.2. For a 
history and for references.refer to [Andersen Jessen, 1946], p. 22, note 1 and 
[Andersen, Jessen 1948a], n° 3. (35)
 
(36) Jessen and Wintner do not refer to Kolmogorov at this point. Thus when they 
were correcting the proofs in February 1935 neither knew Kolmogorov’s 0-1 law, nor 
moreover the Grundbegriffe, which they do not quote. We will see that Jessen 
belatedly quotes this law in his correspondence with Lévy. Dunford, Tamarkin [1941] 
may be consulted for other abstract versions of the 0-1 law and of Jessen’s Fubini’s 
theorems. (36)
 
(37) On the other hand, as is well known, the concept of martingale is as old as the 
theory of probability, under the generic and polysemous name of “fair game”. The 
method of martingales, which associates a fair game with any unfair game, is in 
Pascal and especially in Moivre. Starting from an unfair game of heads or tails the 
latter constructed a martingale (exponential) which is very similar to the martingale fn 
of Jessen and Wintner. Naturally Moivre did not use Jessen’s theorem of which he 
could have had no conception, but the stopping theorem of Borel-Doob, with against 
direction, lacking the justification which would only truly appear in the 1950s, around 
three centuries after calculations began. For these matters, see the treatises of Moivre 
[1718-1756] and Bertrand [1888] and also the thesis of S. Eid [2008] which gives all 
the references.  

Jessen and Wintner, [1935], § 16, add two applications of the (abstract) 0-1 
law of Jessen. The first shows that the probability of convergence of a series of 
independent variables is 0 or 1, a well-known result to “probabilists.” The second, on 
the other hand, is original: it is the Jessen-Wintner law of pure types which states that 
infinite convolutions of probability laws are pure, i.e., they are discrete, singular or 
absolutely continuous and not mixtures of the three. There is an account in Breiman 
[1968], chapter 3, § 5.  (37)
 
(38) Peder Oluf Pedersen (1874-1941), Danish engineer and physicist, specialised in 
electrical engineering. He was director of the Polytechnic School from 1922 to his 
death in 1941. (38)
 
(39) There is a very clear exposition of the work of Sparre Andersen and Jessen in the 
treatise of Hewitt and Stromberg [1965], chapter VI, § 22. The article [1946] 
reproduces Jessen’s fourth article of 1939. The article [1948b] re-expresses 
everything in the framework of set functions which is natural and simplifies things 
considerably. It also regulates a minor dispute which seems to have arisen between 
Doob and Jessen, who had just realised that they had treated the same theorem 
without knowing it (Lévy being except category, and being especially used, when it is 
quoted, to fold back the claims exaggerated of the other). See the account in Doob 
[1953], pp. 630-632, but also that of Moy [1953]. Shu-Teh Chen Moy (1920-1969) is 
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an interesting mathematician in more than one way and his article on Jessen-Doob is 
quite clear. The theorems of Doob, Jessen and Lévy are equivalent. (39)
 
(40) With regard to the first question, all the attempts to extend the Daniell-
Kolmogorov [1933, p. 24-30] theorem to an abstract framework proved to contain 
errors (in particular those of [Doob, 1938, p. 90-93, 96-97], [Halmos 1941, p. 390] 
and [Andersen 1944]). The first counter-examples to such an extension are due to 
[Andersen-Jessen, 1948a] and [Dieudonné, 1948]. The case of dependent variables 
with values in an abstract set cannot be treated in general like that of real variables, 
and this impossibility is related to the non-existence of conditional probabilities, or of 
“disintegrations” in an abstract framework. For a current view of these questions, with 
interesting historical notes, see [Dudley, 2002] and [Bogachev 2006] vol II, chapter 
10.  

Christian Berg has very kindly given us a copy of the Doob-Jessen and Jessen-
Dieudonné correspondence bearing on the simultaneous publication of their counter-
examples to the abstract Daniell-Kolmogorov theorem. We reproduce in an appendix 
these correspondences from the Archives of the Institute of Mathematics of 
Copenhagen, which gives new precise details on this important subject.  

In the very nice historical note in the last of the Integration volumes, N. 
Bourbaki [1969], remarks, p. 121, note 12: “It seems that it is the absence of a 
satisfactory theory of disintegrations which marks the limit of the theory of “abstract” 
measure. This difficulty reappears in an insistent way in probability theory in 
connection with conditional probabilities.” What is not false in the abstract, but 
erroneous in is undoubtedly lived and the history of the known as calculation, which 
particularly seems to have suffered from this insistent difficulty in second half of the 
20th century, and hardly in 1969.  

The second question is more subtle. Jessen’s theorem passes without difficulty 
with to the case of decreasing filter sets (see for example Hewitt-Stromberg, op cit. 
note 38 above). The increasing filter case was put in jeopardy by Dieudonné [1950], a 
serious difficulty found in the theory of the filter martingales and the differentiation 
theory of the 50s and 60s; see Krickeberg [1956] and Krickeberg-Pauc [1963]. One 
can however obtain relatively general Jessen theorems in the increasing case; for this 
see the beautiful article of Dorothy Maharam [1958]. (40)
 
(41) Erik Sparre Andersen (1919-2003) studied mathematics at the University of 
Copenhagen, where he worked chiefly with B. Jessen. In 1945 he became an actuary, 
a career in which he continued for a long time; thus his [1957] is a classic of the 
actuarial literature. In parallel he published mathematical work which was always 
very original. From 1948, after a stay at Cornell University with Feller, he worked on 
fluctuations of sums of independent random variables (an actuarial topic). For the 
time his results were truly astonishing and his combinatorial methods revived the 
theory in the United States; see e.g. [Sparre Andersen, 1949, 1953-1954], [Feller 
1950,1966] and [Spitzer, 1964]. In 1958 Sparre Andersen was appointed professor of 
mathematics at the University of Aarhus and then in 1966 at Copenhagen.  

One can assume that, during his stay at Cornell in 1948-1949, Sparre 
Andersen had occasion to present Jessen’s martingale theory and conversely to take 
note of Doob’s work. For a moment a collaboration between Doob and Jessen was 
contemplated (cf Andersen, Jessen [1948a] p. 5) but it did not happen. How could it? 
The theory of such processes was the great affair of Doob’s life, as it was for Lévy, 
but it did not interest Jessen. (41)
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(42) See, in particular, his scientific autobiography [Lévy, 1970], the recollections of 
his son-in-law Laurent Schwartz [1997], the thesis of Bernard Locker [2001] and also 
[Barbut, Locker, Mazliak, 2004]. This volume of annotated correspondence is 
invaluable for the proper understanding of the story and it would be good to have it to 
hand. It is referred to here as BLM with page number. (42)
 
(43) [1935a], p. 61, where Lévy wrote: “This work plays a particular part in my 
mathematical work, for, not only have I deliberately used idealist reasoning there, but 
I have there admitted without demonstration the compatibility of a certain number of 
axioms, which appeared to me to be essential for intuitive reasons, and consequently 
essentially subjective. ” Some apply these adjective to all of Lévy’s work, especially 
to his probability work, which is clearly exaggerated, as one can see from the example 
of Lévy’s lemma. See [Bretagnolle 1987] and especially Locker [2001] and [2009]. 
Lévy reconsiders this article in his late correspondence with Fréchet; see BLM, pp. 
300-301. (43)
 
(44) See BLM. We note that one of the first probability lecturers of the great seminar 
of the IHP, in March 1929, was Lévy, himself, [1930d], who excused himself for 
having so little to say, coming after “the remarkable lectures of M. Pólya”, [Pólya, 
1930].  (44)
 
(45) Slutsky had written in a note to the CRAS, of August 13, 1928, only a few days 
before Bologna, [1928a, p. 371, note (1)] : “Similar  considerations apply to all the 
cases subject to the strong law of law numbers (the happy expression of M. Khinchin, 
[1928]), which, after being established for the Bernouilli case by M. Borel, has been 
studied for the last years by M. Cantelli, M. Khinchin, M. Steinhaus and by the author 
of this Note [1925].” The remark displeased Cantelli. On the affair, see [Cantelli, 
1916-1938], [Benzi, 1988, 1995], [Seneta, 1992], [Regazzini 1987, 2005]. As is well-
known, Borel [1909] gave two versions of his theorem, which to him, as to other 
scientists of the time, were distinct yet related. According to the analytical version, 
normal numbers (and even absolutely normal numbers) are of measure one on the unit 
interval. According to the probabilistic version, with probability one the frequency of 
heads in the game of heads and tails converges to one-half. His proofs, it has often 
been said, were, at the very least, cavalier, but Borel never condescended to change 
them. The analytical version of “Borel’s theorem” was at once proved convincingly 
by a great number of mathematicians, including Lebesgue (from 1909—see [1991] 
and [1917]), Faber (in 1910), Hausdorff, Hardy-Littlewood, Rademacher, Sierpinski 
etc. The probabilistic version, which was harder to put into a recognised mathematical 
framework, was stated and proved independently by Cantelli (for the first time in 
1917 in his own framework), and in the framework of Borel or their own, by Pólya, 
Steinhaus, Khinchin, Mazurkiewicz, Slutsky… . Thus by 1928, Borel’s theorem was a 
classic known to all (except Lévy, it seems) and the theory of denumerable 
probabilities was coming to be recognised as a separate theory, the most evident sign 
of which was the paternity dispute in Bologna. 

It would be very interesting to look in more detail at the motivations of the 
scientists who, mostly unaware of each other, set about proving the strong law of law 
numbers for Bernoulli variables at the beginning of the twenties, but, alas, it would 
take too long. For example, the proof of György Pólya [1921b] was motivated by a 
problem of the philosopher of science Hans Reichenbach, communicated to him by 
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the Göttingen theoretical physicist, Paul Hertz, and which he discussed with the 
pacifist engineer Swiss Pierre Cérésole. All this was very far from the concerns of 
Italian actuaries and the spirit of Borelian mathematics.  

On probability theory at the Congress of Bologna, see [Krengel 1994] and, as 
a last resort, an unreadable article in the Journal de la Société Française de 
Statistique, 144, 1-2, (2003), p. 135-226. Khinchin was present in Bologna, but it 
seems that he and Lévy did not meet, or at least Lévy recalled no meeting in his 
Souvenirs [1970], p. 108. In any case, what would they have had to say in 1928? 
Apparently nothing, for they did not know that in the thirties they would be 
competing on all the open topics of the theory of sums of independent variables, the 
domains of attraction in particular, before Gnedenko in Moscow and of course 
Doeblin at Givet overtook them. Without ever seeing one another, Lévy and Khinchin 
ended up publicly opposed, in the heat of the Cold War, on the philosophical and 
ideological foundation of the concept of probability, [Lévy, 1956]. We do not know 
what became of the Lévy-Khinchin correspondence which was surely very interesting 
between 1930 and 1940.  (45)
 
(46) In October 1943 Lévy admitted as much to Maurice Fréchet, who was not in any 
way similarly afflicted. See BLM p. 207-208, where Lévy states that his periods of 
incapacity and apathy sometimes lasted for a year. This may explain the quiet years 
1932-1933, between the two impassioned and overflowing periods, 1930-1931 and 
1934-1935, but it cannot explain his being ignorant of denumerable probabilities for 
ten years. Lévy seems to have come to have come to terms with his moe or less 
extended absences by saying that they allowed his brain to be refreshed and 
reconstituted, but he did not acknowledge them readily, except as an excuse. For 
example, in his Souvenirs, Lévy refers to periods of nervous breakdown in 1921 
which stopped him giving his book of 1922 the necessary breadth and elegance 
[1970], p. 58.  

There is also the phenomenon of “dryness” experienced by a number of 
mathematicians, among them the greatest. The phenomenon is usually hidden 
(especially in research reports bound for academic authorities or for historians). It is 
difficult to understand the phenomenon properly, as it is to understand the opposite 
phenomenon, of exuberant creativity. There is not much literature on this topic, 
though the Dieudonné of P. Dugac [1995], p. 17 should be noticed. However in the 
case of Lévy, it seems likely that this temporary dryness was due essentially to the 
blocking of denumerable probabilities, which locked his intuition which was 
otherwise bubbling with impatience. One may speculate that the barrier came from 
Hadamard and his seminar and that to overcome it, the father had to be killed, but 
surely that would be an exaggeration. At all events, one may affirm that Mlle 
Mezzanotte released the richest part of Lévy’ genius; see below note 59.   (46)
 
(47) Hadamard asked Lévy to edit the posthumous works of Gateaux, in particular 
[1919a, b]. For the remarkable life and work of Gateaux, see the very complete and 
enthralling article by L. Mazliak [2007].  (47)
 
(48) These calculations were already in part in Borel’s course of 1912-1913, taken 
down by R. Deltheil and published in the form of a book [1914], chapter V. They are 
detailed in the paper by Gateaux [1919] that Lévy published and reproduced in the 
lectures on functional analysis that Lévy gave at the Collège de France in 1919, 
[1922, 1951], p. 228-234.  (48)
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(49) [Wiener 1923], p. 132 says so after writing, “Now, integration in infinitely 
dimension is a relatively little-studied problem. Apart from certain tenative 
investigations of Fréchet and E.H. Moore, practically all that has been done on it is 
due to Gateaux, Lévy, Danielll and the author of this paper. Of these investigations, 
perhaps the most complete are those begun by Gateaux and carried out by Lévy in his 
Leçons d’ Analysise Fonctionelle.”  

Wiener often travelled to Europe. He visited Lévy on several occasions in the 
1920s, but it seems that the conversations on the Gateaux means occurred during the 
summer of 1922, at the time of Wiener’s visit to Pougues-les-Eaux, where the Lévy 
family was on holiday. The Souvenirs of Lévy, [1970], p. 85-86 and the memoirs of 
Wiener [1956] agree on the point and so Pougues-les-Eaux may be regarded as the 
cradle of the mathematical theory of Brownian motion.  (49)
 
(50) [Bachelier 1900], [Einstein 1905]. Wiener quotes [Perrin 1910] on the very 
irregular character of the observed Brownian motion—continuous but seemingly 
without a tangent (like the Breton coasts where he spent his holidays). See also Perrin 
[1913].  (50)
 
(51) [Lévy 1970], p. 98.  (51)
 
(52) In 1934, in his astonishing memoir on processes with general independent 
increments, Lévy constructs his processes (Lévy processes) by interpolation and states 
that, at the end of this construction, “the probability appears as a Daniell integral.” 
The method of interpolation is preferable, according to him (and one cannot fault 
him), to the “differential” method of Wiener which consists in dividing the time 
interval into n small intervals and considering the law of the differences of the values 
of the process on these intervals and then letting n tend to infinity. This method (of 
Gateaux-Wiener) lends itself well, by a passage to a suitable limit, to the calculation 
of probabilities and “probable values” of the functionals given by a simple analytical 
expression, [1934b], p. 344. Lévy adds in a note: “In his paper on differential space, 
without introducing this concept from the beginning as we do here, Wiener clearly 
showed that the average of a uniformly bounded continuous functional is a Daniell 
integral.” This revenge on Wiener is also a revenge on Lévy, since the memoir of 
1934 makes it possible to show how the stable laws of Lévy-1920 are interpreted 
naturally within the framework of the denumerable probabilities of Lévy-1934. (52)
 
(53) [Khinchin, Kolmogorov, 1925], [Kolmogorov 1928-1929]. Lévy took up this 
topic rather tardily in [1931c] using his own methods, based in particular on the 
concepts of dispersion and of concentration which he introduced in this memoir, p. 
124-125, and which belong to the basic tools of his treatise of 1937 and of all his 
probability work. Lévy tackled the question of series of independent variables only in 
[1930a] and in [1930b], chapter II.  (53)
 
(54) This explanation of Lévy’s silence was suggested by Lévy himself. In a curious 
history of the concept of measure inserted in [1936b], p. 168, Lévy points out that 
measure as a tool existed long before the concept was isolated, adding in note (1), 
“One can make the same observation in connection with the appearance of the 
infinitesimal calculus. The tool existed in Archimedes, but he could not have had the 
idea that it was interesting to study unspecified curves and surfaces. The work of 
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Leibniz and Newton was made possible only by the progress of the concept of a 
function.” For a theory to emerge, it is necessary not only that the tools have been 
fashioned, but there is something to which they can be applied or at least there is the 
idea that it would be interesting to apply them here rather than there. The Daniell 
integral or the Gateaux means, possibly re-examined by Lévy, were not enough to 
make Lévy interested in denumerable probabilities, he needed to believe that the 
theory was interesting and the belief was obviously lacking. To build a theory, tools 
are needed, but above all a sun is needed to illuminate it. Lévy’s remark applies 
equally to the history of martingale theory, the subject of this issue of the JEHPS. (54)
 
(55) Lévy answers Borel in the introduction of his book of 1925. One could 
undoubtedly add to the objective reasons of the lapse of memory of the countable 
probabilities some subjective reasons, but it would not be very interesting. The brain 
of Lévy refused to pass to the countable probabilities and hardly saw any substantial 
difference between convergence in law and almost sure convergence. In this way one 
can partly explain his not particularly judicious rejection of Bachelier’s work in the 
twenties. See on this point, Courtault and Al [2002]. (55)
 
(56) See especially the beautiful book by M. Barbut, [Barbut, 2007]. (56)
 
(57) Letters of January 8, 1937, BLM, p. 168. (57)
 
(58) This article [1929] was announced in a note presented to the CRAS on March 10, 
1930. It was thus written in 1930. It establishes a celebrated formula given by Gauss 
to Laplace without proof. Kuzmin [1928-1932] proved it at the Bologna conference of 
1928, without Lévy realising, or without him recalling. But it is easy to speculate that 
it was from a conversation in Bologna, that Lévy became aware of the problem of 
Gauss, although he says in his Souvenirs, pp. 88-89, that the idea came to him “one 
day” without any warning. (58)
 
(59) This principle can be found already in Borel [1912a] and Bernstein [1926b] but 
the strong laws of large numbers for dependent variables were not yet known in 1930. 
Lévy is clearly improvising or rather he had not properly read or had misunderstood 
the article of Mlle Mezzanotte; see the next note. He recognsed it in [1937] n° 69, 
page 252, where he writes in a note, in connection with the article of 1929: “I had 
been satisfied, with an application an application in mind, to state this theorem which 
I believed could be regarded as known.” This was not the case and Lévy was ahead of 
the theory of denumerable probabilities without realising it. The strong law of large 
numbers that Lévy “applied” to continued fractions in 1929 was proved by Lévy in 
[1935c], [1936a] and included in [1937] in the section cited.  

On the other hand, by 1930 several weak laws of large numbers for dependent 
variables were known. The earliest date from the work of Markov beginning in 1907 
and developed after the 1914-18 war by Serge Bernstein and then absorbed in the new 
theory of “Markov chains” (also consecrated at Bologna), which would lead to the 
Markovian strong laws of large numbers in 1936 with celebrated contributions from 
Kolmogorov and Doeblin. (59)
 
(60) On Francesco Paolo Cantelli, (1875-1966), there is important work by E. 
Regazzini, and M. Benzi. Cantelli is truly the first modern “probabilist”, and he 
proclaimed himself as such. He had little doubt that he had converted Lévy to 
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denumerable probabilities. Mlle Anna Mezzanotte published, between 1928 and 1938, 
some interesting actuarial and probabilistic work, in particular [1928] which seems to 
be the main source for Lévy. There exists, to our knowledge, no biography of Mlle 
Mezzanotte.  

Lévy adored Italy and often spent his holidays there, until 1938 when the 
fascist statute on the Italian Jews was promulgated. Did he meet Mlle Mezzanotte in 
Bologna or elsewhere, or did Cantelli send him her 1928 paper? We do not know, but 
this text, of which Lévy read at least the first two or three pages, indicates very 
clearly, [Mezzanotte 1928] p. 333, that convergence in probability (“nel senso del 
calcolo delle probabilità”) does not imply convergence with probability one. This 
made a strong impression on Lévy, who evidently believed the opposite. We are very 
grateful to E. Regazzini for obtaining a copy for us of Mlle Mezzanotte’s remarkable 
piece. She was thus one of the inspirers of Lévy, and not one of the least. In his 
Souvenirs, Lévy tells a different story, without much conviction. He recognised that 
he had not done much before 1929, adding, p. 85: “I believe, without being able to 
affirm it, that it is thanks to Noaillon that I started to think of the various modes of 
convergence of probability theory. Up to then, I used convergence in the sense of 
probability theory for the condition, E Xn

2( )∑ < ∞ , on a series of independent random 
variables Xn  and I considered it obvious that this involves almost sure convergence.” 
The second part of this quotation is certainly correct, but the first is hardly so, like 
everything that relates to that silent period Lévy no longer comprehends and which in 
any case he regrets. He tries to mask this as, for example, when he maintains that he 
was interested in the phenomena of contagion after hearing Pólya’s lectures in 1927 
or 1928, at the Institute Henri Poincaré (ibid p. 88), which was then under 
construction. Pólya gave his lectures to the IHP in March 1929, i.e. probably after 
Lévy’s return to probability, [Pólya, 1930]. Noaillon is thus a decoy to hide something 
else. We will stick to the version of 1930, which does justice to the incomparable 
Mlle Mezzanotte. But it would be a mistake to remove Noaillon from the list of 
masters of Lévy, great and small. Paul Noaillon was indeed an important scientist in 
Paris between 1920 and 1940, one of faithful of the Hadamard seminar, like Lévy and 
all the others. Who was he exactly? We know only a little about him and that little is 
rather doubtful. He was born in Lyon on December 20, 1875. His father, Alexandre 
Noaillon (1843-1916), was an engineer from Arts and Métiers, a chemist and 
photographer who was appointed director of a chemistry laboratory in Angleur near 
Liège about 1885 and settled in Belgium. Thus young Paul had his basic eduation in 
Liege. A Doctor of Science, Paul Noaillon seems to have worked in Belgium, 
probably in hydrodynamics but we do not know in which branch. His publications 
were in Belgian journals and were often of a great quality, in particular his memoir 
[1912] which is still cited in the literature. It appears that in the 1914-18 war he was in 
the engineering service of the Artillery. Certainly after the war, he was “attaché au 
Service technique de l’Artillerie”, place Saint Thomas d' Aquin. He had links to 
Hadamard who thought highly of him, as did Picard. Noaillon participated in the great 
Hadamard seminar at the Collège de France where he sat with Lévy. His work was 
always original and it touched on various questions of analysis, in particular harmonic 
functions, and the equations of hydrodynamics, a subject that fascinated Hadamard. 
He married in Paris in 1923 and was clearly settled there. In 1929 he received the 
Academy’s prix Francoeur (Hadamard was rapporteur) and he went on publishing 
until his death in Paris on December 20, 1940. We have not found in his work 
anything on convergence in the sense of probability theory or of denumerable 
probabilities. On the other hand, Noaillon handled with ease the integral of his 
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contemporary Lebesgue, convergence almost everywhere, convergence in measure, 
convergence in mean square, and the Riesz- Fischer theorem. On this subject see 
[Lévy 1925d] which derived from a communication of Noaillon to the Hadamard 
seminar and re-proved the Fischer-Riesz theorem of 1907. (This is the result from 
Fischer [1907, p. 1023] that  is complete. The analogous theorem for  L2 L p  is proved 
in [Riesz, 1909] and especially [1910], which gives all the references). Lévy recounts 
this history in [1970], p. 84-85, without bringing in denumerable probabilities.  

The intervention of Mlle Mezzanotte thus seems to have been decisive, and we 
will say no more. (60)
 
(61) This was actually Borel’s answer to Lebesgue when he made that objection in 
correspondence. See [Lebesgue 1991], p. 166-167, letter of September 23, 1909, 
where Borel wrote in the margin: “regarding the matter of independence; its role here 
is not essential; it could be otherwise. (61)
 
(62) The article of F. Bernstein [1911] is of great interest. Bernstein, following Bohl 
and numerous other scientists, was interested in the problem of the mean movement 
posed by Lagrange,. The analytical version of Lagrange’s problem was treated in 
numerous works in the twenties and thirties, in particular those by Bohr, Weyl, 
Wintner, etc. A complete solution was given by Jessen in 1938. See C. Berg, this 
volume, and Jessen, Tornehave [1945] for a complete history of the problem in the 
first half of the 20th century.  

Historically the problem of the mean movement comes from a very famous 
memoir by Lagrange [1783] which shows that to first order, the positions of N planets 
of a given planetary system can be written as trigonometrical polynomials of the type 

z t( )= c je
iλ j t

j=1

N

∑ . It is then a matter of showing that the average duration of revolution 

(the mean movement) of this model system neither accelerates nor decelerates in the 
very long term, a problem which depends on the nature of the values of the λj. 
Lagrange states that if those are real and distinct, necessarily the average mean 
angular velocity of the argument of z remains bounded and he shows this for various 
special cases. The analytical problem of Lagrange is to show that it is always the case 
if the λj are real and distinct. The mechanical problem of Lagrange consists in 
knowing if the values of λj corresponding to planets belonging toof the solar system 
are in fact real and unequal, (Lagrange, [1783] section 3). This problem was 
immediately taken up and developed by Laplace in his pieces on Jupiter and Saturn 
Œuvres XI) and in la Mécanique céleste (livre VI). The λj are the eigenvalues of a 
certain symmetric matrix. Laplace establishes that they are real, anticipating the 
general results of Cauchy and Sylvester, but his proof that they are necessarily 
distinct, which would prove the secular constancy of the mean movements in all 
cases, is fallacious. There is a very clear account of the results of Laplace and 
Lagrange on this topic in chapter 26 of volume I of the treatise of Tisserand [1889]. 

The difficulty of the mechanical problem of Lagrange is that there are likely to 
be exceptions depending on the initial positions and the masses of the planets. The 
delicate question of the nature and of extent of these exceptions was one motivation 
for the introduction into celestial mechanics, at the beginning of the 20th century, of 
metric methods, “geometrical probabilities”, “sets of measure zero” in the work of 
Gylden, Poincaré, Bohl, Borel, Bernstein,….  The superb thesis of Anne Robadey 
[2005] has references and comments. (62)
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(63) In 1912, Borel still did not see that the case of convergence of his lemma does 
not require the independence of the trials. The fact that almost surely there is, in this 
case, only a finite number of successful outcomes, follows from a very simple 
inequality of Boole, as Cantelli showed in 1917 (the second very elegant idea of 
Cantelli was to consider the fourth moments). On the other hand, in the case of 
divergence, the new lemma of Borel is almost optimal. Evidently it was Lévy who 
gave this its definitive form, the series of conditional probabilities not needing to 
diverge uniformly while being undervalued by a divergent series constants, but only 
to diverge almost surely (i.e. most probably almost uniformly). This is lemma II of his 
memoir [1935b], p. 91. One can even suppose only that the series of conditional 
probabilities diverges for an entirely unfavourable past; see Neveu [1964], p. 121, 
proposition IV-4-4, for a precise statement and a high-speed proof of Borel’s lemma 
thus generalised, a proof so fast and so elegant that one cannot understand how 
scientists of the first rank did not see it immediately and argued over it for twenty 
years. But this is a frequent observation in the history of mathematics, elegance only 
comes after the battle, which generally proceeds in a thick fog, with some breaks 
sometimes in the distances and very exceptionally a “flash in the night”. Is this a 
general phenomenon? Does the beautiful only come after the truth, which only comes 
after the good? Is the scheme circular? (63)
 
(64) Lévy, [1970], p. 90-92, where he dates his return to the infinite play of heads or 
tails to 1929. On page 22 of the same book Lévy indicates that he could have read the 
paper of Borel [1909] “around 1922” and he states that he had known all about for a 
long time (since 1902). This seems doubtful. The reasoning he gives on page 23 to 
show the recurrence of the play of heads or tails, which he tells us is equivalent to his 
work of 1902 (he was then about fifteen years old), does not depend on Borel’s 
lemmas nor on his law of large numbers but on a well-known method of Bertrand 
[1888], the method of successive doubling. If we followed Lévy on this point, we 
would have to make Bertrand rather than Lévy the true father of denumerable 
probabilities, a case strengthened because Bertrand was a proven source for Borel too. 
(See JEHPS, December 2006). (64)
 
(65) Lévy makes the reasoning precise in [1931a], theorem II, which developed his 
note [1930c]. He show that  if a sequence of constants cn  is given, and if one records 
Xn  the number of heads in n tosses, the probability P that the inequality Xn > cn  holds 
inifinitely often can be only 0 or 1. So that the lemma of Borel applies to the theorem 
of Borel, in spite of the non-independence of the events Xn > cn. This type of 0-1 law 
was extended after 1935 and especially after the Second World War in several 
directions, in particular to sequences of exchangeable variables by Hewitt and Savage 
[1955], (treated in [Breiman, 1968], chapter 3, § 7), also to the study of recurrence in 
random walks, for example [Hsu, Chung, 1946] and [Chung, 2000], and to Markov 
chains of Markov by Kolmogorov, Doeblin, etc  

In [1935b], p. 89, note 1, Lévy observed that theorem II of [1931a] is a simple 
consequence of Lévy’s lemma, which covers all possible 0-1 laws. For this subject 
see BLM, p. 156, note 111.  

We may recall incidentally that there exist complete demonstrations of Borel’s 
theorem which follow Borel’s “indications”, for example Fréchet [1936], Uspensky 
[1937], ......., Chung [2000]. But that hardly matters, in view of the not easily 
contested fact that Borel posed the right question in the right way at the right time and 
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that is all that really counts, according to Cantor’s thesis III.  Cantor was Borel’s only 
master (before he moved away from him and from free mathematics), [Cantor, 
Œuvres], p. 31, and [Décaillot, 2008], p. 120, note 143. (65)
 
(66) Lévy [1934a, b], included in [1937], chapter VII. See the fine study by J. 
Bretagnolle [1987]. It is well known that one of the starting points for K. Itô’s 
exceptional work was his attempt to set down completely Lévy’s resoning, e.g. [Itô 
1998]. (66)
 
(67) In [1935b], p. 84, note 1, Lévy states that his results were presented to the SMF 
on May 23, 1934, which is easily checked by referring to the Bulletin de la SMF, 62 
(1934), Vie de la Société, p. 42-43, “L’addition de variables aléatoires enchaînées et 
la loi de Gauss”. In the space of a month Lévy presented to the SMF, his theory of 
“integrals whose elements are independent random variables”, ibid, meeting of April 
25, 1934, p. 39-41, and his theory of sums of connected variables on May 23. We may 
add that on November 28 of the same year, Lévy communicates to the Society a paper 
“sur la loi de Gauss (condition nécessaire et suffisante pour son application à la 
somme d’un grand nombre de variables indépendantes, extension au cas de variables 
enchaînées) ”, ibid, p. 48, in which Lévy stated the definitive theorem on the tendency 
towards Gaussianity of sums of independent variables. This theorem is sometimes 
called the Feller-Lévy theorem because Feller published it independently at the same 
time. See Feller [1935], Lévy, [1935a], p. 37-41, [1935d], [1970], p. 107-108, and the 
beautiful synthesis by L. Le Cam [1986]. On the history of the central limit theorem 
since Moivre and Laplace there is the superb book of A. Hald [1998], which is very 
complete although it stops in 1930.  

We may also recall that it was in the same meeting of November 28, 1934, 
that Lévy stated his conjecture about the Gaussian law: if X and Y are independent 
random variables whose sum is Gaussian, then they are themselves Gaussian, a 
conjecture whose consequences he describes in [1935d], p. 381-388. Almost 
immediately Cramér showed that Lévy’s conjecture was correct, [1936a, B], and this 
led him to write his memorable treatise [1937]. On this subject see Lévy’s Souvenirs 
[1970], p. 111-112. (67)
 
(68) Following Lévy’s own principle (above note 34) one might say that Lévy was no 
more (and no less) the founder of the theory of martingales than Archimedes of 
differential and integral calculus. One might consider, on the other hand, that Doob 
took preexisting martingale techniques and made them part of an entire theory. What 
changed for ever was the way of seeing and of treating the theory of the processes. On 
this subject see [Yor 2007].  

We may add that Doob did not find his theory of martingales in Lévy [1935b, 
c, d, e], or in [Jessen 1934a] but in the book by Ville [1939], where the concept is 
treated in its own right and not by analogy with the theory of Kolmogorov. Of course, 
in his 1940 article Doob quotes [Lévy 1937] but he does not cite Jessen, whom he 
seems to have read and used only after 1948. In his later writings, on the other hand, 
Doob was very accurate about the original contributions of Jessen [1934a] and of 
Lévy [1935b, 1937]; e.g. Doob [1984] p. 807 even details the differences in 
framework between Lévy 1935 and Lévy 1937. Some other very good, more recent 
works, e.g. [Kallenberg 2002], p. 574, also bring this out. (68)
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(69) The book by R. Siegmund-Schultze [2001] has all the details on these 
foundations. See also [Schøtt, 1980]. (69)
 
(70) [Lévy 1934b], p. 337, note 1 tells us that Lévy had given the same lecture at the 
Hadamard seminar, on March 16 of the same year; his first note on this theory was 
presented on February 26, [1934a]. (70)
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5. The Jessen- Lévy correspondence  
The letters presented in this postscript come from the Jessen Archive at the Institute of 
Mathematics at Copenhagen; see the Introduction above. The Lévy series appears to be 
complete. Nothing of Jessen’s first letter survives but copies, or drafts, of his later letters 
exist.  
 
Calendar of correspondence  
0. Jessen to Lévy. This letter has not survived and its date is unknown. 
1. September 27, 1934. Lévy replies to Jessen.  
2. April 4, 1935. Lévy writes, enclosing a note, “Demonstration of a theorem of M. Jessen on 
the basis of my lemma I.” 
3. Undated but probably April 8 1935. Jessen replies to Lévy’s letter of April 4. There are 
two draft versions of a long letter.  
4. April 24, 1935. Lévy replies to Jessen’s letter of April 8 and his sending Daniell papers.  
5. May 3, 1935. Lévy writes continuing his letter of April 24.  
6. August 11 1935. Jessen replies to Lévy’s letter of May 3.  
7. August 23, 1935. Lévy replies to Jessen’s letter of August 11 and the correspondence ends.  
8. July 14 1947. Bohr and Jessen write to Lévy.  
 
 
1. Lévy to Jessen 
Paris, 38 Avenue Théophile Gautier (16o), 27 September 1934.  
 

Dear Sir, 
Thank you for your friendly letter. As soon as I have finished writing up some results that I 
have had already for several months, I will not fail to look into those works of yours that you 
have pointed out to me. Unfortunately I am a little discouraged by the difficulty of 
researching ζ(s); I have not obtained any important result on this question (1). I was happier 
with functions of infinitely many variables.  

Professor Bohr spoke to me about your work, and what he said interested me very 
much. To tell you the truth, your theory of measure and that of H. Steinhaus have been 
familiar to me for a long time, perhaps since 1920 (2). For me they are elementary concepts 
that I specify as I need them. But in the use you have made of them, you have gone far 
beyond what I knew. I informed M. Denjoy of your communication to the Oslo Congress (3). 
He has just re-discovered the theory of measure (Note of June 6, 1933 to the Académie des 
Sciences) (4) and I have cited it in an article which I have just finished drafting and which 
will appear in the Bulletin des Sciences Mathématiques (5). It is a pity that I do not know 
Danish and cannot read the more elaborate report that M. Bohr has given me (6).  

I am presenting a note to the Academy summarising my new memoir (7). It 
supplements, and corrects the summary I gave to the Société Mathématique de France on 
May 23, 1934, and which I have sent to M. Bohr and to M. Lublin (8). I also point out that, in 
my paper in Studia Mathematica, theorems XI and XII are true, not for , but for 

,  being, for each n, a suitably given constant which can be the term of a semi-
convergent series 

xn∑
xn − an( )∑ an

(9). I noticed this error only while returning from Denmark, so that it is not 
corrected on the copies I left at the Copenhagen Institute.  

I would like to ask you to remember me to all your colleagues I saw in Copenhagen, 
M.M. Norlund, Bohr, Steffensen, Petersen, Bonnessen, Mollerup,… (10) but they are too 
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many and I cannot really ask. I have excellent memories of the days I spent in Copenhagen, 
and regret not having met you there. But I hope to see you one day in Paris.  

In the meantime trust in my devoted feelings.  
P. Levy 

 
2. Lévy to Jessen. 
Paris, 4 April 1935.  
 
Dear Sir 
 I think of interesting you by sending the proofs of a memoir which soon will appear 
and which is related to your own work. It was written last summer and sent to the editor of 
the Bulletin des Sciences Mathématiques before you sent me your article from Acta 
Mathematica. I could only indicate one of the common points in a note added afterwards (1). 
For a few days now I have been occupied in studying your article more completely. I have to 
give an account of it in the presence of M. Hadamard and I see that the common points 
between your ideas and mine are even more numerous than I had thought (2).  

My lemma I is fundamentally the same as the theorem in your § 14 (Representation of 
function as limit of an integral). Only I establish it directly (3). Your “important lemma” of § 
11 is then a special case of mine; and your theorem of § 13 is obtained readily enough from 
my lemma I.  

Also I think that you are unaware of a lecture I gave to M. Hadamard’s seminar in 
January 1924; it appeared in the Revue de Métaphysique et de Morale, and I reproduced it in 
my Calcul des Probabilités (p. 325-345) (4). Re-reading it recently, I found that, as well as an 
error on page 330 (l. 12 to 19), which M. Steinhaus pointed out to me (5), there is something 
unfortunate on p. 332 (l. 5), (6). In spite of this, I introduced at that time the ideas that M. 
Steinhaus and you have developed and clarified, without you suspecting that some were 
already in my article of 1924—and even in a course I gave in 1919 (7). What I call a partition 
corresponds to what you call “construction of nets” (8). I indicate it for abstract sets, and then 
(p. 334, l. 6 to 13) I indicate the means of realising it for the cube in an infinite number of 
dimensions (9); it is what you have done. As for your “transferring principle”, I was not very 
explicit in the article, but when I wrote p. 332 (towards the bottom) that one can carry out the 
image of the partition on a segment of right-hand side, it was of this principle that I was 
thinking (10). Indeed a partition is not simply an unspecified subdivision of the relevant set, 
but a subdivision where each cell has a weight and which leads to one definition of the 
probability (or, if you prefer, of measure). I recognise that I should have been more explicit. 
Perhaps I was at the seminar; after 11 years I am no longer sure (11). I am sure that I knew 
this result which seemed so obvious to me that it was enough to indicate it by a word. On the 
other hand, is only very recently, in particular after reading the paper by Steinhaus (Studia t. 
II) and your communication to the Oslo congress of 1929 (12), that I saw how the principle 
could be used for denumerable probabilities. 

In any case it clearly follows from my article that the principles of the theory of 
measure in any set are those of M. Lebesgue.  

Of course the very brief indications in my article are not always sufficient, and your 
very complete study remained necessary. Besides it taught me many things that I did not 
know (in particular § 3; before reading it I had not thought that it of interest to specify 
whether one considered open or closed intervals; and I had never studied the representation of 
the measure in Qω by the symbol of an integral of infinite order (13); and I do not speak of 
the application to Fourier series which I have only just begun to study).  
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Excuse this slightly long letter. Like Steinhaus, who, however, knew my 1924 article 
and seemed in no doubt what it contained, I think it cannot always be very clear, and that it is 
of interest if I indicate to you explicitly the points which are connected to your work.  

Believe, dear Sir, with my most cordial feelings.  
P. Levy 

 
Please recall me to the memory of M. Harald Bohr.  
 
Note attached: (14)  
Proof of a theorem of M. Jessen (Acta, vol 63, p. 273) on the basis of my lemma I (Bull. Sc 
Maths. 1935) 

Let f(x) be measurable in Qω . We can assume 0 < f x( )<1 [Otherwise we can take 

g x( )=
1
2

+
1
π

Arctgf x( ) ]. 

 We apply lemma I, using E to denote the inequality h
2p ≤ f x( )<

h +1
2p . For 

every εp > 0, there is an N p  such that if E holds and except in the case of a probability 

<
1

2p εp , one has for every n > Np ,  

Pn
h
2p ≤ f x( )<

h +1
2p

⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 

>1−ε , 

and consequently 
h −1
2p < fn x( )<

h + 2
2p  

on putting 
fn x( )= En f x( ){ }= f x( )dwn ,ωn,ω∫  

and finally 

f x( )− fn x( ) <
ε

2p  

 Applying this result for h = 0,1,...,2p −1, one sees that the previous inequality 
holds,  except in the case of  probability < εp , for all n > N p . 

 Put p =  ; 1,2,... εp =
ε
2p . We see that, except in the case of probability 

< , we have εp∑ = ε

f x( )− fn x( ) <
ε

2p , for every p, and n > N p . 

There is convergence almost everywhere of fn x( ) to f x( ). QED. 
 

Corollary.  From 

         f x( )− fn x( ) <
ε

2p  for n > N p , except for a set of measure < εp , 

          f x( )− fn x( ) <1 always, 
We conclude 

 f x( )
Qω

∫ dw − fn x( )dwnQω
∫ ≤ f x( )− fn x( )dw <

2
2p + εpQω

∫ , for n > N p . 
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As 2
2p + εp  is arbitrarily small, we have the theorem from § 13 of M. Jessen. 

          4/4/35 
          P. Lévy 
 
 

 
3. Jessen to Lévy.  
Undated draft but probably from April 8, 1935.  
We have very slightly corrected the orthography of this draft. Jessen would certainly have 
corrected it himself at the time of sending. 
 
Dear Professor Lévy. (1)
I have your letter of April 4 and the proofs of your memoir, which is to appear in Bulletin des 
Sciences Mathématiques, and I am very grateful for both. 

From your letter I learn that the notion of measure in infinitely many dimensions as 
well as the transferring principle is indicated already in your paper from 1924 and reproduced 
in your Calcul des Probabilités and that your ideas on this subject partly go as far back as 
1919. I am sorry not to have known this, as I have done my best to give the complete 
references in my memoir in Acta mathematica. It seems that the notion of measures in 
infinitely many dimensions has had the rather curious fate to be discovered and rediscovered 
at least five times. The priority clearly belongs to Daniell who has given a complete treatment 
of the notion and not only indications already in 1919 using his theory of general integrals 
(cf. references in my memoir). That Daniell has been quite clear about what he did is seen not 
only from these but also from other papers of his from this period ; it might interest you that 
he indicates a subdivision of the infinite-dimensional cube in Bulletin of the American Math. 
Soc. 26 (1919-20) p. 448 and explicitly points out the importance of the problem for the 
calculus of probability in The Rice Institute Pamphlet 8 (1921) p. 60-61, (2). Wiener did not 
rediscover the theory as he knew Daniell’s papers, but he made several applications of the 
theory (cf. the references in my memoir) ; he emphasized more than Daniell the usefulness of 
the subdivision, see for instance his paper in Proceedings of the London Math. Soc. (2) 22 
(1924) p. 454-467, as far as I remember, the Transferring principle does not occur explicitly 
in his early papers where he always need Daniell’s integrals, but he told me that it was quite 
familiar to him and in later papers he uses it (3), in order that he may work with Lebesgue 
integrals instead of Daniell integrals; see for instance his memoir in Acta mathematica 55 
(1930) § 13. As I now learn you have had similar ideas without knowing that the problem 
was already treated by Daniell. The same has been the case with Steinhaus and myself, who 
founded the theory independently of each other and at the same time; neither of us knew 
Daniell’s work. Finally I learned from you that Denjoy had recently rediscovered the theory. 
(4)

In my memoir in Acta mathematica I did not go too much into the history of the 
subject which is complicated by the fact that the ideas in question have developed gradually, 
so that it is now hard to say who has the priority in each case. I hope, however, that the first 
sentences in § 1 have made it clear, that my program was “to study in greater details than has 
been done before” the theory in question. 
Page 2 : (5)
 
That is : Qω  is the product of an infinite number of abstracts spaces C1, C2, … in each of 
which a measure has been defined, so that the measure of the space itself is 1. 
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 I am writing on a paper in which I intend to develop the theory for abstract spaces. (Cf 
the references in my memoir at the top of p. 251) 
 In this paper I shall make due reference to your paper from 1924 and to your book. (6)
 Your remark in your letter that my theorem from §§ 13 and 14 will follow from your 
lemma I interested me very much as I have tried hard to find simple proofs for these 
theorems. I do not think however that the proofs which you sent me are sufficient to give my 
theorems in full generality, for the following reasons : 
 1°. Is it sufficient to prove the theorems for bounded functions ? I do not think that 
you can deduce them for an arbitrary integrable f(x) from their validity for 

g x( )=
1
2

+
1
π

Arctgf x( ). 

 2°. Is it really possible to deduce the theorem of § 13 from that of § 14 ? This is as far 
as I can see what you wish to do. As it stands your proof is not valid, since the function 

fn,ω = f x( )dwn
Qn

∫  

does not appear at all. (The term f x( )dwω
Qω

∫ − fn x( )dwn
Qn

∫ on the left in your estimation is 

simply A – A = 0). (7) It might be possible to argue as follows (and this, I believe, is what 
you have in mind) 

hn x( )= f x( )− fn x( )→ 0    p. p. 
This implies  

hn x( )dwn
Qn

∫ = fn ,ω x( )− A → 0    p. p. 

The theorem « h   p. p. implies n x( )→ 0 hn x( )
Qn

∫ dwn → 0 » is actually true for bounded 

functions but I do not know how to prove it [ ?] just my theorem of § 13. I do not [ ?]   is true 
for integrable functions. (8)
 In the case of abstract spaces the proofs of the theorem of §§ 11, 13 and 14 must be 
rearranged (cf my memoir footnote 2) on page 251), the reason being that the notion of a net 
can be applied only in special cases of abstract spaces. I intend first to give a new and direct 
proof of the theorem of § 14 ; the lemma of § 13 (which is of course only the 0- and 1- law of 
the calculus of probability in a general form) (9) follows then from this theorem, and the 
proof of the theorem of § 13 may then be left unaltered. The theorem of § 14 I prove by 
generalizing F. Riesz’s proof of the differentiation theorem for monotone functions as 
follows : (10)

 
Let f(x) be integrable in Qω  and fn x( )= f x( )dwn,ω

Qn,ω

∫ . In order to prove that   

p. p., I first prove that lim  exists  p. p.

fn x( )→ f x( )

fn x( )  . It is sufficient to consider the case where 
. Put f x( )≥ 0 ϕ x( )= liminf , fn x( ) ψ x( )= limsup fn x( ). It is sufficient to prove that if 

0 < α < β < ∞  then the set Dαβ = ϕ x( )< α,ψ x( )< β[ ] is a null-set. For 0 ≤ m < n  let 
Amn = fm +1 x( )> α,..., fn−1 x( )> α, fn x( )≤ α[ ] 
Bmn = fm +1 x( )< β,..., fn−1 x( )< β, fn x( )≥ β[ ] 

Amn  and Bmn  are cylinders with basis in . We shall make use repeatedly of the remark that 
if C is a cylinder with base in Q  then 

Qn

n f x( )dwω =
C
∫ fn x( )dwω

C
∫ so that if fn x( )≤ α  or ≥ β  in 

C we have f x( )dwω
C
∫ ≤ αm C( ) or ≥ βm C( ) respectively. Suppose now that 0 ≤ m < n < β  
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and that C is a cylinder with base in Q  (if m = 0 we take m C = Qω ) – We consider the set 
CAmnBnp  which is a cylinder with base in . Hence since Qp f p x( )≥ β  in this set we 
have βm CAmnBnp( )≤ f x( )dwω

CAmnBnp

∫ . Summing this for all p > n for fixed m, n we get 

βm CAmnBnp ≤ f x( )dwω
CAmnBnp

p
∑

∫
p

∑ ≤ f x( )dwω ≤ αmCAmn
CAmn

∫  since CA  is a cylinder with base 

in  in which

mn

Qn fn x( )≤ α . Summing now for all n > m we 
get . We now take first m = 0 and βm CAmnBnp ≤ αm CAmn ≤ αmC

n
∑

np
∑ C = Qω  ; observing that 

 we get  . Next we take first CDαβ ⊆ AonBnp
np
∑ = AonBnp  for a fixed n and p ; then we get 

m AonBnp ApqBqr ≤
α
βqr

∑ mAonBnp  the indices q and r being restricted by p < q < r. Summing 

afterwards over n and p and observing that Dαβ ⊆ Aon
npqr
∑ Bnp ApqBqr  we get 

mDαβ ≤ m Aon
npqr
∑ Bnp ApqBqr ≤

α
β

m AonBnp ≤
α
β

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

np
∑

2

. Proceeding in this manner we get 

mDαβ ≤
α
β

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

n

 for every n, hence . mDαβ = 0

Summing afterwards over n and p and observing that Dαβ ⊆ Aon
npqr
∑ Bnp ApqBqr  we get 

mDαβ ≤ m Aon
npqr
∑ Bnp ApqBqr ≤

α
β

m AonBnp ≤
α
β

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

np
∑

2

. Proceeding in this manner we get 

mDαβ ≤
α
β

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

n

 for every n, hence . mDαβ = 0

 
Page 3 : 
 It remains to prove that lim fn x( )= f x( ) p. p.. This may be proved as follows. From 
the definition of measure one readily deduces the following approximation theorem : If f(x) is 
integrable in Qω  and ε > 0  is given then there exists an m = m ε( ) and an integrable function 

g(x) depending only on x1,...., xm  so that f x( )− g x( )dwω
Qω

∫ < ε . This implies 

fn x( )− gn x( )dwω
Qω

∫ < ε  for all n. Now gn x( )= g x( ) for n ≥ m. Hence 

fn x( )− g x( )dwω
Qω

∫ < ε  for n ≥ m and consequently f x( )− fn x( )dwω
Qω

∫ < 2ε  for n ≥ m. 

Hence f x( )− fn x( )dwω
Qω

∫ → 0 as n → ∞ and this, together with the existence of lim   

p. p. proves that lim

fn x( )

fn x( )= f x( )  p. p. 
 This is the simplest proof I know of the theorem of § 14. For bounded function and 
more generally for functions of the class  (p > 1) it is possible to give very short proofs of Lp
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the theorems of §§ 13 and 14 just mentionned and the majorisation theorem of § 16, but in 
this way I could not prove the theorem for arbitrary integrable functions. (11)

Excuse me this long digression ; I thought it might interest you to know this other 
proof. 

 With kind regards also from Prof. Bohr 
      Sincerely yours 
       Børge Jessen 
 
 

Written over the calculations of page 2 in a blacker ink : 
 
 I hope that your memoir in Bulletin des Sciences mathématiques will have appeared 
when I finish my paper so that there will be nothing to prevent me from using these new 
proofs (of course with due reference to your work ; my paper will at any rate be mainly 
expository). (12)
 
Extract of another more confused draft, probably a first attempt at the preceding letter. This 
draft consists of two sheets and it is not obvious which comes first. The order we propose is 
not in the least certain. 

 
“First sheet”. The beginning is truncated, but it is easy to imagine its character; Jessen 
speaks about the statement of lemma I of Levy: 

 
« ristic functions, is true, but I do not think that you can prove the theorem for unbounded 

functions in this way (the validity of the theorem for g x( )=
1
2

+
1
π

Arctgf x( ) does not imply 

its validity for f(x) itself). It is, however, possible, through a rearrangement of the proof to 
make it work for arbitrary integrable functions. The proof runs then as follows : 
 Let f(x) be integrable in Qω  and fn x( )= f x( )dwn,ω

Qn,ω

∫ . The theorem states that 

  almost everywhere. For a given fn x( )→ f x( ) ε > 0, let g(x) be chosen as a function 

depending only on a finite number of the variables x1,....,xm,m=mε( ) and such that  
f x( )− g x( )dwω

Qω

∫ ≤ ε2 . 

Put f x( )− g x( ) = h x( ), then fn x( )− gn x( ) ≤ hn x( ) for any n. For n ≥ m we have 
. Now by (16.4) and (16.5) if E denotes the set of points in Qgn x( )= g x( ) ω  where  bound 

Sup hn x( )> ε  we have 
εmE ≤ h x( )dwω

E
∫ ≤ ε2  

hence mE ≤ ε . It follows that the measure of the set of points where f x( )− fn x( ) ≥ 2ε  for 
some n ≥ m is at most 2ε which implies that fn x( )→ f x( ) almost everywhere. » 
 
 The end is crossed out and the document does not continue.  
“Second sheet”. Here there is writing in ink from top to bottom over calculations written in 
pencil with the two texts running in opposite directions. The over-writing is legible but it is 
impossible to decipher the calculation which may well supplement the reasoning outlined 
above.  
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In a similar way the theorem of § 13 follows from (13.2) and (13.3). I do not think 
that it is possible as you intend to do to deduce the theorem of § 13 immediately from the 
theorem of § 14 not even for bounded functions. (The proof in your letter seems at least to be 
defective since the term f x( )dwω

Qω

∫ − fn x( )dwn
Qn

∫ on the left in your estimation is = 0 ; and I 

do not see how this can be repaired.) 
 
The above proof was familiar to me in a somewhat less general shape, namely when 

f(x) belongs to  for a p > 1 in which case I need (16.1) instead of the more elementary 
relations (16.4) and (16.5). 

Lp

I am indebted to you for calling my attention to the problem once more. 
 
 

 
4. Lévy to Jessen 
Hennequeville, 24 April 1935. (1)

 
My dear Colleague, 

I have received your letter of April 8 and your memoirs and thank you.  
Naturally what you have said about Daniell’s priority interests me greatly. I knew of 

the existence of his work but at that time I read English with difficulty. Though I have made 
progress, I still do not read it easily. I read a summary of some of Daniell’s results at the 
beginning of a paper by Wiener, and thought I knew his most important results. I learn only 
from your letter that he knew well before me the principle of correspondence. (2)  

So I no longer have any reason to ask that my paper of 1924 be mentioned in the 
history of this principle. That does not much surprise me. I believe me well to recall that if I 
more explicitly did not indicate this principle of correspondence, it is that it appeared 
probable to me that a so simple principle was to be known. It is only by finding it 
rediscovered by you and Steinhaus that I regretted not having expressed it more explicitly.  

I agree with what you say about my lemma I. Actually the argument by which I 
thought of deducing your § 13 and 14 from it was not correct. I had noticed that your § 14 
contained my lemma I as a special case; but, as usual because I read English very slowly, I 
had to approve the printing of my paper before I had read enough of yours and for that reason 
I quoted only a part. I apologise from that. (3)  

M. Bohr had already given me your thesis. But I had not succeeded in understanding 
it. It is only now by bringing it closer to your memoir written in English that I see that it 
already contained several important results of this memoir.  

As I have two copies now, I am thinking of giving one to the Library of the Institut 
Henri Poincaré.  

I will send you my paper as soon as I have copies but you will have without doubt 
been able to see it earlier in the Bulletin des Sciences Mathématiques. I wrote, also in 1934, 
another paper which will appear in the Journal de Mathématiques where I give the necessary 
and sufficient condition for the sum of a large number of independent random variables to 
tend to Gaussianity. It was known already that this condition was sufficient; the new result is 
that it is necessary. (4)

 I add finally that I write a Note summarising my work. The impression was started 
before I received your letter. As I did for my Memoir, I am going to add some Notes at the 
bottom of the page mentioning the new priorities that have lately come to my knowledge, i.e. 
this time those of Daniell. (5)  
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Believe, dear Sir, with my devoted feelings.  
P. Levy 

 
5. Jessen to Lévy 
 Copenhagen, Phistersvej, 24, August 11, 1935. 
 
Dear Professor Levy, 
I am sorry to have been so long in answering your letter of May 3 and thanking you for 
kindly sending me your « Notice sur les travaux ». 

Regarding the question of priority for the transferring principle for the infinite 
dimensional cube it is so, that, as far as I know the literature, it occurs first in your paper from 
1924-1925 and later by Steinhaus and myself in 1929-1930. But it is difficult to separate the 
transferring principle from the underlying construction of a net in the infinite dimensional 
cube, and this construction occurs already in a paper of Daniell from 1919-1920 (Bulletin of 
the American Mathematical Society, vol. 26, p. 448 below) and is reproduced by Wiener in 
1920-1921 (Annals of Mathematics, 2. Series, vol. 22, pp. 66-72, Example 3). These authors 
had no reason to use the transferring principle, since they had the general Daniell integral, 
which is much more satisfactory. It is only a pity that the general integral was not a larger 
success, and that therefore later writers (including myself) have preferred by means of the 
transferring principle to reduce everything to ordinary Lebesgue integrals. (1)

I do not think that you estimate Daniell’s papers sufficiently since you can say that 
you do not see, what he has added of essential to the ideas of Frechet. There is the following 
essential difference: Frechet (in his paper in Bulletin de la Societe math. de France 1915) 
starts from a completely additive set function, so that what he has generalized is the definition 
of the Lebesgue integral when the Lebesgue measure is already known. This he has done in a 
very elegant way. What Daniell has done is to generalize the definition (due to Young) of the 
Lebesgue integral based on the properties of the Riemann integral, that is on an object, which 
is much more elementary that the Lebesgue measure. Personnally I prefer the definition of  
the integral based on a measure to a direct definition (though the latter have also their great 
importance) ; to Daniell’s work corresponds in the theory of measure a generalization of the 
definition of the Lebesgue measure based on the properties of the Jordan measure. Of this 
important problem (which is treated e. g. in Kolmogorov’s «Grundbegriffe der 
Wahrscheinlichkeitsrechnung ») I find nothing in Frechet’s paper. (2)

With kind regards, I am 
Very sincerely, 

 
 
 
 
 
6. Lévy to Jessen 
Paris, 3 May 1935. 
  

My dear Colleague, 
I write to you, after having looked at the memoirs of Daniell, and having read again your 
letter. I realised that there had been a misunderstanding. I do not know why I had believed 
that you were telling me about the priority of Daniell in the principle of correspondence; I see 
that you speak only of the measure in space with infinitely many dimensions.  

However, for measure in abstract sets, the priority belongs to Fréchet (Bulletin de la 
Société Mathématique de France e, 1915, p. 248-265). He did not study in particular the case 
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of space to infinitely many dimensions. He is not less that which gave the first the essential 
components of this theory. (1)  

I did not know his work which was published during the war. Like Daniell, I found 
these results again in 1919. I heard of Daniell for the first time in 1922 from N. Wiener who 
indicated his main results to me, and it was not, I believe, until 1924 or 1925 that I realised 
Fréchet’s priority, so that you can find in my work the incorrect expression of the Daniell 
integral. (2)  

As for the principle of correspondence, I think again that the question presents itself 
much I thought originally; first the imprecise indication in my paper of 1924-1925; then your 
work and those of Steinhaus.  

Believe, my dear Collègue, with my devoted feelings.  
P. Levy  

 
P.S. – The March 1935 number of the Bulletin des Sciences Mathématiques, containing the 
beginning of my Memoir, appeared. My Memoir starts at p. 84. I counted 28 pages, I think 
thus that will make p. 84 to 111.  

–I noticed that Daniell cited Fréchet well in one of his first papers. I admit to not 
clearly seeing what he added of essence to the ideas of Fréchet, except some precise details 
for a space with infinitely many dimensions.  

P.L. 
 
 
7. Lévy to Jessen 
 S. Christina, 23 August 1935. (1)
 

My dear Colleague, 
I received your letter of August 11 a few days ago. I am not able to re-examine Daniell’s 
work here but I am persuaded that you are right.  

I know very well that I have the fault of being so absorbed in my own works that it is 
always very hard for me to read those of others completely. I knew vaguely those of Daniell, 
and when you spoke to me again of them, being too occupied, I read them too much quickly, 
especially wanting to see whether I found there the statement of the principle of 
correspondence and if I could maintain what I had written in my note, which at the time I had 
to approve for printing. Also I was not surprised by your answer.  

Besides I expressed my opinion badly when I wrote to you. I should have written, “I 
do not yet see well what Daniell added to Fréchet’s paper. Your letter helps me to see better 
now and I thank you.  

I had already quoted besides Daniell, whom I knew a little thanks to N. Wiener; see 
my fascicule 5 du Mémorial des Sciences Mathématiques. I then found Fréchet’s 1915 
Memoir which I had not known or which I had forgotten and it seemed to me that I was not 
the only one who had forgotten to quote it.  

Cordial wishes to you.  
P. Levy 

 
8. Jessen to Lévy, Copenhagen, July 14, 1947. 
 
Dear Professor Levy, 
First of all we wish to thank you and Mrs Levy heartily for the most agreeable evening spent 
with you and your family in Paris (1), and for all your kindness during the interesting days in 
Nancy, on which we look back with great pleasure (2). We also thank you very much for 
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your kind letter. It would have been such a great pleasure to us all to have seen you in 
Copenhagen already this autumn. However, we are very sorry to say that, as you also felt 
yourself, in these difficult times it does not seem possible to obtain a sufficient grant to cover 
the expenses of your contemplated stay here. In earlier times this would have been easy, but 
at present the funds are rather hard up and have already disposed of their means for the 
nearest future. We hope, however, that within long it will be possible to make arrangements 
for your coming here to give some lectures which would be a great pleasure to all the Danish 
mathematicians. 

As you may have heard, Mr. Schwartz has been invited to visit Copenhagen in 
September to give some lectures on his extraordinary theory of distributions (3). That this 
invitation has been possible is due to the interest of this theory also among all the applied 
mathematicians, which has made a grant available that otherwise would have not been 
obtainable for mathematical lectures. 

With kind regards to yourself and your family. 
Yours sincerely 
HB (Bohr) BJ (Jessen) 
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Notes on the Jessen-Lévy correspondence Section 5   
 
Notes to letter 1: Lévy 27 September 1934 
 
(1) Lévy had discussed the Riemann zeta function at the Zurich Congress [1932] and it is 
possible that Jessen mentioned it in that lost first letter. Jessen had also discussed the topic in 
Zurich [1932] and worked on it with Bohr from 1928-1929, [Bohr, Jessen 1930 - 1932]. See 
also Lévy [1970], p. 41 and [1930b], p. 143. (1)  
 
 (2) An allusion to his lectures at the Collège de France in 1919, included in [Lévy, 1922, 
1925a, b, c]. (2)
 
(3) [Jessen, 1929b]. (3)
 
(4) [Denjoy, 1933]. Denjoy, whose lectures followed those given by Cantelli at the IHP in 
1933 [Cantelli 1935], used the principle of correspondence to construct what he called 
“variables pondérées multipliables” (infinite sequences of independent random variables) and 
which the Polish School called “fonctions indépendantes”, e. g. [Kac, 1936], [Marcinkiewicz, 
1938]). (4)
 
(5) [Lévy, 1935b]. From this letter, it is safe to conclude that Lévy’s paper on dependent 
variables was written after his visit to Copenhagen in April 1934 and before the end of the 
1934 summer holidays. As noted above, Lévy added to the proofs a note, p. 89, where he 
indicated that he had since been informed of Jessen’s article in Acta Math.. In his Notice 
[1935a], p. 84, note 1, Lévy also states that he had submitted his paper [1935b] in September 
1934. See the next letter and BLM, p. 156, note 111. (5)
 
(6) [Jessen, 1930]. It is therefore clear that § 1 of [1935b] (or § 39 of [1937]), that is to say, 
the “foundations” of Lévy’s theory of denumerable probabilities, came from a close reading 
of [Jessen, 1929b] and memories, real or imagined, of his first works on integration in  
infinitely many dimensions. (6)

 
(7) [Lévy, 1934c] presented on October 1, five days after this letter. This note corrects the 
statement of the central limit theorem for martingales, given in his communication to the 
SMF, which we will not examine here. We may recall, however, that the first general central 
theorem limit for connected variables is due to Bernstein [1926b], work in which Lévy had 
some part. However, Lévy’s theorem exploited a novel idea, a random change of time; Lévy 
imagines that the nth part whose result is Xn, assumed to have zero mean conditional on the 
past, has a random duration equal to the conditional variance σ n

2 = E n−1(Xn
2)  . If one 

cumulates the winnings of n left by relating not to the square root time n (or with 

E Xk
2( )

1

n

∑ ), but to the new time equal to the sum of n random durations thus defined, one 

obtains asymptotic normality, e. g. [1937], p. 242.  
This remarkable idea in every way, though it conforms to the transformation of prior 

probabilities into posterior probabilities, was taken up by W. Doeblin in the framework of 
continuous time martingales with continuous trajectories. Locally such martingales behave 
like the martingales of Lévy at infinity, so that by changing the time in the natural way  and 
by replacing the sum by an integral, one obtains Brownian motion. This theorem of Doeblin 
[1940b], p. 1068, lemma IX, which is the first known statement of the theorem of Dubins-
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Schwarz [1965], enables him to solve in masterly fashion the problem of Bernstein-
Kolmogrov, i.e. the search for probabilistic solutions of Kolmogorov’s equation. On this 
topic there is M. Yor’s account of [Doeblin, 1940b], p. 1033-1035. However, Lévy did not 
think of treating the theory of continuous martingales, which can be found in Ville [1939], 
Doob [1940], and Doeblin [1940b], without him noticing. (7)

 
(8) Mogens Lublin was a young Danish mathematician and contemporary of Jessen’s. He 
submitted his magister’s thesis, written under the direction of N. Nielsen and N. E. Nørlund, 
in 1930. In the years 1930-1940 Lublin published actuarial works and he had a brilliant career 
as an actuary in Copenhagen; he died in 1972.  (8)
 
(9) [Lévy, 1931c Π, § 15, p. 148-149. (9)
 
(10) Niels Erik Nørlund (1885-1981) was a very well known mathematician. He was a 
professor at the University of Lund and then at the University of Copenhagen. For 55 years 
he was editor of Acta Mathematica. His sister Margrethe Nørlund married Niels Bohr in 
1912. See [Gårding, 1998].  

Johan Frederik Steffensen (1873-1961) was an important Danish statistician, a 
professor of actuarial science at the University of Copenhagen and correspondent of Fréchet.  

Richard Petersen (1894-1968), a pupil of Bohr, was assistant in mathematics at the 
University of Copenhagen, then professor at the city’s Polytechnic School. This institution, 
founded in 1829, on the model of the Paris École Polytechnique, is now called the Technical 
University of Denmark; thanks to Christian Berg for this information. Richard Petersen 
pioneered the use of computers in Denmark.  

Tommy Bonnesen (1873-1935) was professor of descriptive geometry at the 
Polytechnic School of Copenhagen, which followed the programme of Monge like its 
Parisian model. Bonnesen worked in particular on the isoperimetric inequalities, convex 
bodies, etc. When he died in 1935 Jessen succeeded him—he had to learn the geometry of 
engineers and stone masons.  

Johannes Mollerup (1872-1937) was professor of analysis at the Polytechnic School 
of Copenhagen. C. Berg provides these details: “Concerning Mollerup, I mention that Bohr 
and Mollerup initiated the writing (around 1915) of a 4 volume treatise of mathematical 
analysis for the Polytechnical School (I suppose inspired by Jordan’s Cours d’analyse which 
Bohr had studied himself). It became a legend for Danish engineers, used in many new 
editions up to around 1970 and just called Bohr-Mollerup. There is a famous theorem called 
the Bohr-Mollerup theorem, namely the characterization of the Gamma function as the only 
log-convex function satisfying the functional equation and being normalized to 1 at 1. It 
appeared in a slightly disguised version in the 1922 edition of Bohr-Mollerup and was later 
made known by Artin in his small book about Gamma (with due credit to Bohr and 
Mollerup). Bohr and Mollerup never published the result in a journal.” 

On the Danish mathematical community in the 1930s, see [Ramskov, 2000b] and 
[Schøtt, 1980]. The number of mathematical positions in Denmark was much reduced and the 
number of pure mathematicians his been put at ten. Thus in 1930 there were only three 
professors of pure mathematics, N. E. Nørlund, H. Bohr and Johannes Hjelmslev (1873-
1950); Jessen would eventually succeed Hjelmslev. (10)
 
Notes to letter 2: Lévy April 4 1935  
 
(1) See above note (5) to the preceding letter. (1)
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(2) This passage shows that in April 1935, when he was preparing his presentation to the 
Hadamard seminar, Lévy did not realise the similarity between the theorem in § 14 of Jessen 
and his own lemma I, though he had received Jessen’s memoir in September 1934. (2)
 
(3) Lévy added in the margin at this point: [see the sheet attached to this letter]. (3)
 
(4) [Lévy, 1925a, b]. Lévy’s page references are to his book [1925b] and not to the original 
article in the Révue de Métaphysique et de Morale. (4)
 
(5) In [1925b], p. 330 Lévy maintained the possibility of a countably infinite (though not 
invariant and accordingly “very arbitrary”) extension of Lebesgue measure to all the subsets 
of the interval [0,1]. On this point there are some very interesting observations in BLM, p. 
153, note 103.  

Lebesgue posed the problem of extending Lebesgue measure to all the subsets of the 
real line in his first Peccot course at the Collège de France in 1903, [1904], p. 102. In the 
following year Vitali [1905] showed that an invariant extension is impossible if one accepts 
the axiom of the choice. Vitali’s nonmeasurable sets, so contrary to the geometrical intuition 
of Lebesgue, led Lebesgue to contest and then to reject the axiom of the choice in 
mathematics. To save intuition, the axioms must submit or be dismissed. This was not the 
view of Lévy who tolerated the axiom of choice and the transfinite axiom within the much 
broader limits of his own intuition ([1937] § 39, p. 124 - 125). He would reconsider the 
problem of measure in [Lévy, 1961].  

In 1914 Hausdorff [1914], p. 469 posed the problem of additive invariant extensions 
of Lebesgue measure and concluded that it was impossible in spaces of three or more 
dimensions. Banach [1923] proved the converse, that such an extension (additive and 
invariant) exists for the line and the plane. But in 1924, when Lévy wrote his note on “the 
laws of probability in abstract sets”, the problem of countably additive noninvariant 
extensions of Lebesgue measure on the line was open and Lévy thought it self-evident that 
such extensions exist using the “method of M. Zermelo”. In 1929 however, Banach and 
Kuratowski, using the continuum hypthesis, showed that it was not possible (also Ulam 
[1930]). Steinhaus had to inform Lévy about this result in the course of their correspondence 
in 1930-1931. At the same time Steinhaus probably also communicated to Lévy his principle 
of correspondence [1930b], without the latter noticing; we do not know the fate of the Lévy-
Steinhaus correspondence. Lévy returned to the point in [1937], n° 9. In its Souvenirs, [1970], 
p. 67, Lévy recalls his very great surprise at learning the negative result of Banach-
Kuratowski. He adds: “It was very necessary that I consider the evidence; my intuition had 
misled me and I am still sometimes astonished that my intuitive idea is false; I remain 
tempted by the same error.” To know why Lévy’s intuition was comfortable with the axiom 
of choice, but not with the continuum hypothesis, one would need to know much more. To go 
further it would be necessary to return to Cantor and his debates with the Paris school, but 
that would take us too far from our subject. On this matter there are some interesting recent 
works, [Décaillot, 2008] and [Graham, Kantor, 2009], and, naturally, [Guilbaud 2008].  

We recall incidentally that at the time of his visit to Paris May 1935, at the invitation 
of the Rockefeller Foundation and the IHP [1937], Bruno de Finetti gave a lecture at the SMF 
[1936], on null probabilities, which reconsidered these issues and proposed an axiomatic 
additive theory of probability. On the long and rich history of the problem of measure, see the 
important work of J.P. Pier [1986, 1990]. (5)

 
(6) Lévy gives a characterisation of summability in an abstract set which was valid only for 
bounded functions, an error he acknowledged in [1936b], p. 157, note 2. (6)
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(7) This claim appears in all, or nearly all, of Lévy’s writings from 1935, for instance in 
[1936b], p. 157-158, 169, [1937], foreword, page XII, BLM p. 163. Steinhaus also reports the 
claim in a note in his communication to the Colloque de Genève, [1938] p. 65, note 14: “M. 
Paul Lévy has informed me in private correspondence that the solution of the problem of 
measure on the [infinite] cube had come to him in the course of general considerations that 
the reader will find in a note at the end of his Calcul des Probabilités, without his judging it 
necessary to go into details. This Note of 1925 was followed by two articles by M. Paul Lévy, 
[1931c, d]…” Steinhaus adds: “My article [1923] appears to have escaped M. Lévy’s 
attention.”  

In note II of the second edition of Lévy’s treatise of 1937, written when he was 
correcting the proofs and therefore around 1954, Lévy writes finally, p. 370, note 1: “I had 
hoped to bring the mean in the sense of Gateaux closer to the concept of integral in the sense 
of Fréchet. It was an attempt likely to fail. However this very difficult problem had led me 
not to insist enough on simpler questions which seemed to me trivial.” This may explain the 
obstinacy which made Lévy assert things he had not written down but which he knew or 
would certainly have known if he had gone further in this direction. The Gateaux means are 
not Fréchet integrals (conforming to a probability measure) and everything else is trivial. (7)

 
(8) Lévy introduced the concept of partition in his [1925b], p. 331 indicating that the concept 
came from Norbert Wiener. Lévy developed the idea in [1935a], § 9, [1936b] chapter I, § 3, 
and in [1937] chapter II, § 10, but forgot about the correspondence with Jessen and his 
correspondent’s article [1934a]. These were most probably the direct cause of these later 
developments given that the note of 1925 had a different objective and the contents of the 
Peccot course of 1919 are unknown.  

Jessen introduced the concept of “nets” in [1934a], § 6, entitled “The Construction of 
Nets”, and in his theses [1929a] and [1930], following La Vallée Poussin. (8)

 
(9) As Christian Berg points out to us, Jessen underlined this last sentence member and added 
in the margin, in Danish: “This is done by Wiener: Ann. of Maths. 22 (1920-21) p. 66-72. 
Daniell: Bull. Amer. Math. Soc. 26 (1919-20) p. 448 below. Also Rice Inst.Pamphlet 8 
(1921) p. 60-61. ”  

Lévy, [1925b], p. 334, lines 6 to 13 writing, in connection with the construction of the 
partitions of the cube Qω : “A partition of this can for example be obtained in the following 
manner: at the n-th stage, the interval of variation of each of the n coordinates  a1,a2,....,an

will be divided into 2  equal intervals, making in all 2  partial volumes; but these volumes n n 3

are small in n directions only, and large in all others. For n infinite, the coordinates being 
fixed the ones after the others, one arrives at this result that each e contains one point and 
only one; and, however, a uniformly continuous functional will not in general be summable. ”  

At this point in the Note, Lévy’s goal is “to define a law of partition such that any 
uniformly continuous functional is summable”, p. 333, § VIII, first paragraph. Lévy uses 
substantially the same “construction of nets” as Jessen but he uses it to show that a theory of 
strong integration is impossible in Qω  (what is perfectly correct), while Jessen uses it to 
construct a weak integral in Qω , having concluded that it is not necessary to consider strong 
integration (which would integrate all uniformly continuous functionals) for the applications 
he envisages. This is also true for applications in probability, as Lévy ends up realising, 
though not before 1934, as he acknowledged later.  

Lévy is thus at once right and wrong in this matter. That, at least, is our conclusion 
without claiming it is right or definitive. The whole business is singularly obscure for Lévy 
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reconstructed the entire history in his new texts [1935a], [1936b], [1937], reinterpreting his 
earlier work, [1925], and thoughts from 1919—and even from 1918 in the military hospital—
in the light of what he had learned since. 

 Lévy is not the only mathematician to reconstruct in this way, far from it. For him it 
is neither a trick nor mischievousness. He acts in good faith in truth and in error, which 
makes him sympathetic and frightening at the same time. Usually historians are known to be 
careful not to reject testimonies, even the most erroneous. They busy themselves in 
subjecting these accounts to a benevolent and determined external criticism, to try to reach 
the truth through the error, without ever getting there. Let us hope that we do not get lost 
following them. For the historian of mathematics, the task is even harder; mathematical 
understanding is always an act of creation, even if what is created was already created very 
well by others, before or afterwards, independently or not, so that attributions, with rare 
exceptions, remain random and partial, and the reasons presented are multiple, fugitive and 
misleading.  (9)

 
 (10) Again Lévy is right and wrong. He uses a principle of transfer, not to establish a 
correspondence between the measure on Qω  (of which he seems only to have an implicit 
idea) with Lebesgue measure on [0,1], but with a very different aim: to show that one cannot 
define a probability law (distinguishing the points) in a set with a power exceeding that of the 
continuum (Note § VII), a result found by Ulam [1930] and taken up again by Finetti [1936], 
p. 280.  (10)
 
(11) Lévy makes the same reproach in [1935a], p. 29, note 1, [1936b], p. 158, and [1937], n° 
10, p. 21, note 1. He should have stated at this point that the correspondence (which he sees 
and which he constructs very well) preserves measure. He even adds in a note to [1936b], p. 
158, that he certainly spoke about it at the time of his “lecture of 1924”, a presentation to the 
Hadamard seminar in January 1924 which was published in [1925a] and included as the final 
note of [1925b]. One may doubt this “memory of Lévy” for nowhere in the Note does he 
refer to a “measure” in Qω , a measure which appears to him now (in 1935) as so obvious that 
he believes he remembers it, a Socratic recollection as was his way. In the lecture Lévy may 
have mentioned that the correspondence preserves measure at the same time as he defined it. 
There is a basis for this position in note 2 of page 44 of the second edition of Lebesgue’s 
Intégration, and Lebesgue was probably present at the seminar in 1924 (see on this subject 
note 12 of the presentation). But between these two hypotheses and others that could be 
conceived, it is best not to take sides and to leave the question to the more learned.  

At all events, Lévy readily recognises in his note [1935a], p. 29, note 1, that it was 
Jessen’s memoir which re-awoke (or awoke) him to the principle of correspondence, and its 
“applications to the theory of denumerable probabilities.” So, without hesitation, we may 
place Jessen in the pantheon of masters of Lévy, beside Hadamard, Borel, Wiener, Fréchet, 
Cantelli, Mlle Mezzanotte, Steinhaus, Khinchin, Marcinkiewicz, etc, all of whom aroused the 
mind of Lévy. That pantheon admits a hierarchy of pantheons. The tutelary deities are Borel 
and Hadamard but they are also awakeners. Then there is the unattainable paradise where sit 
those, like Doeblin or Kolmogorov, who shoot so quickly that Lévy’s brain does not have 
time to awake to find the parade. For Kolmogorov, see Chaumont, Mazliak, Yor [2004] and 
Shafer, Vovk [2005]. On Doeblin, see [Doeblin 2000b], in which Doeblin shows, among 
many other things, that a continuous martingale is a changed Brownian movement of time. 
This was in 1940, twenty or thirty years before the leading specialists of the time realised that 
this was an important property (above note 7). The relations between Doeblin and Lévy are 
almost oedipal, like those between Wolfgang and Alfred Doeblin. For this subject see the 
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beautiful book of M. Petit [2003]. We may recall that W. Doeblin’s first publication was joint 
with Lévy and in it Doeblin showed “easily” a conjecture of Lévy.  (11)

 
(12) [Steinhaus, 1930b], [Jessen 1929b, 1930].  (12)
 
(13) [Jessen 1934a], § 9 and especially § 13 and 14 which with the Jessen theorems are the 
finest part of the paper. Here perhaps is the origin of Lévy’s “awakening.” Obviously 
Jessen’s integral on Qω  is not an integral in the sense of Cauchy for the continuous functions 
are generally not integrable, but, as it is in “correspondence” with the Lebesgue integral, it 
acquires enough properties from it to be applicable to the theory of denumerable 
probabilities, in particular the Fubini property. This is also at the heart of Lévy’s lemma but 
Lévy did not realise this until he had read Jessen.  (13)
 
(14) As the reader will appreciate, Lévy’s proof is perfectly correct and very simple but it 
assumes that the function f is bounded, without indicating correctly how to go to the case of 
an unbounded integrable function. On the other hand, the proof of the corollary is quite 
invalid, as Jessen recognised immediately.  

Fundamentally the transition from Lévy’s lemma to Jessen’s theorem is natural and 
quite obvious as Doob grasped at once [1940], [1953]. The explanation is given by Lévy in 
his article [1936b], which can be seen as a supplementary letter to Jessen. Indeed Lévy p. 
177-178 notices that, by transfer, his lemma is nothing other than Lebesgue’s density 
theorem, while Jessen’s theorem corresponds to Lebesgue’s differentiation theorem. 
Moreover he states that Lévy’s lemma can be proved in this way, although the proof is more 
complicated than his “direct” method ([1936b], p. 178). Actually it is known that Lebesgue 
first obtained his density theorem from the theorem on differentiation, [1905], and then 
proved the differentiation theorem from the density theorem in [1910], § 33; this second 
method is that recommended by La Vallée Poussin in his contemporary work. There is no 
reason to surprised that the same situation is found in the new framework.  (14)
 
Notes to letter 3: Jessen April 8 (?) 1935  
(1) At the top of this letter Jessen wrote in pencil, “Sendt I noget anden Form,” which 
Christian Berg has kindly deciphered and translated as, “Sent in a somewhat different form.”  
(1)  
 
(2) J. Aldrich informs us that the pamphlet by Daniell that Jessen mentions to Lévy was not 
known in the literature. It is an extremely interesting review and would deserve detailed 
study. The pages 60 and 61 quoted by Jessen show explicitly how the measure that Jessen 
constructed in 1929 on Qω  can be defined starting from a Daniell integral, adding: “This type 
of integral might possibly be useful in connection with probability of sets of functions 
defined by means of Fourier constants or by the coefficients of a series expression.” This 
prophetic sentence seems to anticipate, or at least forecast, the works of Steinhaus of 1924-
1930 and of Paley, Wiener, Zygmund of 1930 on random Fourier series. For more 
information, see J. Aldrich [2007], to which we owe the essence of this note and whom we 
thank very warmly.  (2)
 
(3) Jessen met Wiener at the end of 1933. In his talk at the AMS conference in December 
1933, to which Jessen also contributed, Wiener constructed his measure by using the 
principle of correspondence [Wiener 1935], also [Wiener, Zygmund 1933]. This principle is 
also the basis for his great paper [1930] quoted by Jessen and of his work with Paley in 1930; 
presumably he learned it from Steinhaus or from Paley. As already briefly indicated, the 
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Daniell integral is not useful for calculations, it is only there to ensure their coherence. To 
calculate it is to better use the Lebesgue integral by transfer, or the Gateaux averages, or the 
approximation by the game of heads or tails, or the changes of variables and suitable 
symmetries, etc In the bibliography will be found the precise references of the memoirs 
quoted by Jessen.  (3)

 
(4) [Denjoy 1933].  (4)
 
(5) Evidently there is a piece missing here in which Jessen told Lévy of his work in progress 
on the extension of his theory to an abstract framework.  (5)
 
(6) We have not found any reference by Jessen to [Lévy 1925a, b]. [Lévy 1937] is cited in 
[Andersen, Jessen 1946].  (6)
 
(7) Jessen’s objections are well founded.  (7)
 
(8) This part is difficult to decipher. Jessen wrote over the original text in blacker ink 
obscuring the original formulas.  (8)

 
(9) This bracket, which appears in the margin of the text and which was thus added 
afterwards, seems to be by itself, but it does not appear in the initial article [1934a], nor in 
[Jessen Wintner 1935]. § 11 mentions only an application of the “important lemma” to a 
result of Steinhaus [1930c]. Between the publication of his article and this letter of April 
1935, Jessen learned of the existence of 0-1 law of probability theory, perhaps by reading 
Kolmogorov’s Grundbegriffe more attentatively.  

For his part, as we have noted, Lévy initially saw Jessen’s important lemma as a 
consequence of the lemma I of [1935b], without stating that it followed from Kolmogorov’s 
0-1 law. Moreover, a short note by L. Schwartz [1936], which undoubtedly resulted from a 
conversation between Schwartz and Lévy at the time of a Sunday meal in the spring of 1935, 
also attributed to Jessen [1934a] the 0-1 law in the probabilistic formulation of Kolmogorov, 
of whom Schwartz was obviously unaware. The mathematical conversations between Lévy 
and his future son-in-law are discussed by [Schwartz 1997], p. 93-95. Laurent Schwartz did 
not continue in this line although he took it up again at the end of the sixties; see e. g. 
[Schwartz 1980] and [Yor 2003].  

On the other hand, Lévy devoted a paragraph of his survey article [1936b], p. 179, to 
the “Lemma of MM. Kolmogorov et Jessen”, (0-1 law), quoting the Grundbegriffe of 1933 in 
a note. Thus Lévy finally took note of Kolmogorov’s text between May and December 1935; 
perhaps it was at the time of Jessen’s letter of August 11, 1935 although we cannot be sure. 
See also a letter to Fréchet of January 29, 1936 in BLM, p. 155-156 and its very enlightening 
note 111. The entire book is indispensable for anyone study the work of Lévy.  

We see that in [1936b], p. 179, Lévy raised the question of how the 0-1 law of the 
theory of denumerable probabilities could be transferred to the interval [0,1] endowed with 
Lebesgue measure, by using the principle of correspondence. In a note he writes, “It is 
necessary to note that, taking into account the principle of linear representation indicated in § 
4, this lemma is to be brought closer to a theorem on linear sets established in 1916 by M. 
Burstin, which is a corollary of Lebesgue’s theorem, as the lemma of M. Jessen is a corollary 
of our theorem of § 10 (the lemma of Lévy)”.  

We do not know how Lévy learnt of Burstin’s result. Did they meet in Bologna? 
Celestyn Leonovitch Burstin was born on January 28, 1888 in Ternopol in Ukraine. He 
studied at the University of Vienna where he published interesting work on analysis, in 
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particular [1916] which Lévy cited, and on Rriemannian geometry; for his work on the latter 
see Gromov, Rokhlin [1970]. Unable to find a position in Vienna, being Jewish and a 
member of the Communist party, he emigrated to Bielorussia, where he was a professor at 
Minsk and a member of the Academy of Science of Bielorussia. During the Stalin purges, he 
was arrested at the end of 1937 and died in prison on October1 1938. See also Borodin, Bugai 
[1987]. For the purges in Bielorussia there is the collection published by the Academy of 
Science of Minsk [1992], and also [Marakou, 2003-2005]. These two last references were 
provided by J. - M. Kantor, whom we thank most warmly.  (9)

 
(10) The new proof of the theorem of § 14 that Jessen gave to Lévy, where one senses the 
influence of Lévy’s note, is the first direct proof of Jessen’s theorem. It makes no appeal to 
the theorem on differentiation or to the principle of transfer. It is so close to the analogous 
theorem of [Jessen 1934-1947, 4] and [Andersen, Jessen, 1946] that that one cannot see what 
prevented Jessen from publishing the result ten years earlier, if it was not the lack of the 
abstract framework he considered appropriate. Lévy also lacked a framework with the result 
that the correspondence was not a complete success. However the framework was almost 
clear in Lévy’s [1937] version of the lemma, but Jessen did not see this and neither did Doob 
in his first article of 1940. Lévy never saw it though he was persuaded of the contrary. Simple 
mathematical ideas are always the most hidden, as Laplace, who could calculate everything, 
complained.  (10)

 
(11) Jessen follows the same reasoning as Lévy and he cannot be reproached. To drown 
Lévy’s proof of the bounded case, as short as it is elegant, in a fog of vague comments would 
be to devalue it: the bounded case is treated very easily, all that is well-known for me for a 
long time,…  (11)

 
(12) This refers to the memoir announced in Jessen-Wintner [1935] which was only 
published in 1939 in the series of memoirs [1934-1947]. Lévy’s name does not appear there 
although his book [1937] is in the general bibliography published in the last memoir of 1947, 
n° 10, and in [Andersen Jessen 1946].   (12)
 
Notes to letter 4: Lévy April 24 1935 
(1) Hennequeville is a district of Trouville in Calvados where Lévy was probably spending 
the Easter holidays. In 1935 Easter was on April 21.  (1)

 
(2) Lévy did not understand or had not yet read Daniell. He thought that Daniell had used the 
principle of correspondence to construct his integral. He reconsiders the point in the next 
letter.  (2)

 
(3) [Lévy 1935b], p. 89 note 1, which only cites part of Jessen’s memoir, § 11 “An important 
lemma”. Lévy corrects this in his Notice [1935a], p. 43-44, where he writes, “This theorem 
[Lévy’s lemma] was obtained independently of me by M. Jessen, or at least it appears to be a 
special case of a theorem of M. Jessen, who in addition indicates a more special case and one 
of great importance.” The reference is to Jessen’s “important lemma”, i.e. Kolmogorov’s 0-1 
law in Jessen’s framework. We have already commented on the note on page 45 where Lévy 
states that the memoir [1935b] “was sent to the editors of the Bulletin des Sciences 
Mathématiques in September 1934”. Again in [1936b], p. 179, Lévy states that M. Jessen had 
established “several theorems on integration in Qω  which include and exceed” Lévy’s 
lemma. Lévy did not include similar statements in his [1937] or later writings.  (3)
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(4) [Lévy, 1935d].  (4)
 
(5) [Lévy, 1935a], p. 28, note 1.  (5)
 
Notes to letter 5: Lévy May 3 1935  
(1) [Fréchet 1915] constructed a theory of integration associated with an abstract measure, on 
the model of the Radon-Stieltjès-Lebesgue integral, but he did not construct a (non-trivial)  
measure in a space of infinitely many dimensions, contrary to what Lévy says and would go 
on saying. In his reply Jessen insists very precisely on this point but without much effect. In 
Lévy’s mind measure in infinite dimensions existed and so obviously that there was no need 
for an explicit construction, which a posteriori was perfectly obvious. For Jessen on the 
contrary, what mattered was the construction of the measure in all its rigour and complexity, 
and he wished to date it and attribute it as accurately as possible. He attributed it to Daniell in 
the first place, but also to Jessen who rediscovered it only a few years later, to Steinhaus and 
others, and perhaps even to Lévy, though Jessen is too polite to write exactly what he thinks 
on this matter). A dialogue without issue.  (1)
 
(2) Lévy does not quote Daniell in his note of 1924-1925, but in [1925c] (see his next letter). 
He then cites him regularly from 1934, in particular in the big paper [1934b], in the Notice 
[1935a], p. 28, note 1, then in [1936b], § 7, p. 167, [1937], n° 10, p. 17-18, note 2, where 
Lévy again merges his own work from 1918-1919 with that of Daniell 1918-1919, and with 
the earlier work of Fréchet 1915, which, however, does not address itself to the integral of 
Daniell. Is the reader, even a relatively well-disposed one, convinced? And Lévy himself, 
why does he keep going back?  (2)
 
Notes to letter 6: Jessen August 11 1935.  
 (1) Without diminishing in any way Daniell’s fundamental contribution which gave the 
foundations of Kolmogorov their generality and the measures of Wiener and Lévy their first 
mathematical existence, one can undoubtedly make the opposite case, following [Steinhaus 
1938]. The fact that the Daniell integral was little known in continental Europe was also an 
opportunity. Instead of the Daniell integral, the analysts (Danish and Polish especially) 
created and applied the principle of correspondence, finding theorems that could not be found 
using the Daniell integral. There were, for example, the theorem in Jessen’s § 14 on the 
reflection in infinite dimensions of the differentiation theorem of one dimension, or, in the 
other direction, there was the theorem, which apparently Lebesgue did not see but which 
Borel nicely anticipated ([1912b], chapter II), viz. that Riemann sums of an integrable 
function in the sense of Lebesgue converges to the Lebesgue integral of this function almost 
everywhere for increasingly fine partitions of the interval of definition; this was a reflection 
in one dimension of the theorem in Jessen’s § 13, as Jessen showed in [1934b]. And, as is 
well-known, the theorem of Borel-Jessen is a way of seeing the strong law of large numbers, 
as Doob would make clear in 1948, [Locker 2009], him which places from the start in the 
axiomatic one of Kolmogorov.   (1)
 
(2) Jessen’s comments are to the point. Fréchet’s article does contain a theorem on the 
extension of a measure on an algebra to the generated σ-algebra, independently of the 
theorem of Carathéodory [1918-1927]; see e. g. Bogachev [2006], vol. 1, p. 419. Thus one 
might follow Lévy here and consider that Fréchet could have had measure in infinite 
dimensional space, if only he had thought of looking for it. Bogachev has further comments.  
(2)
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Notes to letter 7: Lévy August 23 1935 
 (1) The Lévy family spent their holidays in San Cristina in the Dolomites. Bernard Locker 
has very kindly given us information on this subject: “Denise Lévy-Piron often spoke to me 
about the pleasure her father took in spending time in the mountains, even telling me that 
“my father was an exceptional mountaineer”, which I doubted, attributing the adjective 
“exceptional” to filial piety… San Cristina is in the valley of Val Gardena in Italy…. and I 
know from M. and Mme Piron that Lévy adored the mountain and Italy…. ”.  (1)
 
Notes to letter 8: Jessen July 14 1947 
 (1) Lévy liked to entertain foreign mathematicians passing through Paris. See BLM, p. 12, 
where K.L. Chung recalls a dinner at avenue Theophilus-Gautier, at the end of which Lévy 
served Port-Salut cheese. In those days the cheese was made by the monks of the abbey of 
Port-Salut and is unrelated to the cheese now sold under that name. We do not know which 
members of the Lévy family were present at the Danish dinner.  (1)
 
 
(2) The reference is to the conference on harmonic analysis, chaired by S. Mandelbrojt, and 
held in Nancy on 15 June 22, 1947. This prestigious conference was financed by CNRS and 
the Rockefeller Foundation. It brought together the great names in a field going through great 
changes. Among the invited lecturers was, of course, Lévy who presented a paper on the 
harmonic analysis of stationary random functions, which contained a very beautiful result of 
Blanc-Lapierre and Fortet ([1946, 1953]). Whether Lévy was remembering or rediscovering 
this could not have pleased the two involved; on this subject see [Brissaud 2002], p. 31). For 
their part, Bohr and Jessen presented a paper on almost periodic functions [1947]. The 
conference proceedings were published by the CNRS in 1949. For the post-war CNRS-
Rockefeller conferences see Locker [2009].  (2) 

 
 (3) At the Nancy conference L. Schwartz described Fourier analysis for distributions which 
greatly impressed Harald Bohr. Bohr would present Schwartz’s work to the International 
Congress of Mathematics in Cambridge USA in 1950, and he would share in its international 
fame. In his memoirs L. Schwartz [1997], chapter VIII, p. 309 describes his visit to 
Copenhagen in October 1947 at the invitation of H. Bohr.  (3) 
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Appendix: Jessen’s theorem in Jessen’s theses 
As explained in Section 2, Jessen's two theses are in Danish and relatively 
unavailable. The master's thesis [1929a] is a manuscript in the archives of the 
Mathematics Institute of Copenhagen. The dissertation [1930] was printed in 
Copenhagen but not widely distributed. There are copies in the Bibliothèque Nationale 
Française and in several libraries in the United States, but not in the Library of 
Congress. 
     We are grateful to Sigurd Elkjær, who has provided the following English 
translation of the main passages concerning Jessen's theorem in the two theses. In the 
passages from the master's thesis, Jessen states and proves his theorem for 
convergence in measure. In the dissertation, he states and proves the same theorem for 
strong convergence in L¹. The notation Jessen uses is explained in Section 2. 
 
1. From the master's thesis (Magisterkonferens) 
Chapter 7 of the thesis is entitled On functions of infinitely many variables. Following 
is a translation of Sections 1, 8, and 9 of this chapter. 
 
1. Introduction. 
Functions which depend on a sequence of variables have only been scantily 
investigated in the literature (in spite of the fact that their significance has been 
strongly emphasized). In what follows, an attempt is made to show the validity of the 
Lebesgue theory for functions of infinitely many variables. It turns out that this is 
possible, even with all essential theorems preserved. However, problems are 
encountered which do not have their counterpart in functions of finitely many 
variables, for example which meaning should be attributed to an infinitely multiple 
integral 

... dxn ... dx2 f x1, x2,..., xn,...( )
0

1∫0

1∫0

1∫ dx1  
This investigation has been carried through to the two theorems, which appear to me 
to be the most beautiful in the theory of real functions, which are the theorem on 
splitting of a multidimensional integral into simple integrals, and the Riesz-Fischer 
theorem.  
 
8. Representation of a function as the limit of an integral. 
Let  be a summable function in Qf x( )= f x1,x2,x3,.....( ) ω . For each value of n, we 
look at the integral over the unit cube   determined by the coordinates Qn,ω xn +1, xn +2,... 
(2)     f x1, x2,...., xn, xn +1,....( )

Qn,ω
∫ dwn ,ω     . 

According to the Fubini theorem, this is a summable function of  x1, x2,..., xn , which is 
defined for almost all points in the n-dimensional unit cube Q . If, for each value of n, 
we regard it as a function of x which is constant in 

n

xn +1, xn +2,..., then we can say: All 
the functions (2) are defined except in a fixed set of measure zero (that is, independent 
of n) in Qω . We will show that: 

The integral (2) converges in measure for n → ∞ toward f x( ). 
Let us first assume that  is bounded, e.g. f x( ) f x( ) < M . Let η > 0 be given. We 

consider the function , which were introduced earlier. They converge, for 
, almost everywhere toward 

Δ n x( )
n → ∞ f x( ), and we determine (according to the theorem 
of Egoroff) N sufficiently large, so that the set of points in Qω , for which  and  f x( )
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Δ n x( ) deviate more than η from each other, at most has the measure η². For each 
value of n, which is greater than N, we have  
(3)   Δ N x1, x2,...., xn, xn +1, xn +2,....( )

Qn,ω
∫ dwn,ω = Δ N x( )    , 

since  Δ  is constant in the variables N x( ) xN +1, xN +2,.... For such an n, we now consider 
the set  of points e  in Q , for which the function n n f x( )− ΔN x( ) , regarded as a 
function of xn +1, xn +2,..., either is not summable or, alternatively, is summable and in a 
set, the measure of which is greater than η, is itself greater than η. This set  is 
measurable, and its measure is (according to the Fubini theorem), at most η. For each 
point of  outside e  we have, according to (3), 

en

Qn n

ΔN x( )− f x1,x2,....,xn,xn +1,....( )
Qn,ω

∫ dwn,ω ≤ 2Mη + η 

In all of Qω  except for a set, the measure of which is at most η+η², we have 
accordingly 

f x( )− f x1,x2,....,xn,xn +1,....( )
Qn,ω

∫ dwn,ω ≤ 2Mη + 2η  

This finishes the proof. 
    Next, we consider the case where f x( ) is not bounded. We write, for M > 0 
f x( )= fM x( )+ rM x( ), letting 

   fM x( )=
M

f x( )
−M

⎧ 

⎨ 
⎪ 

⎩ ⎪ 
  when  

f x( )> M
f x( ) ≤ M

f x( )< −M

⎧ 

⎨ 
⎪ 

⎩ 
⎪ 

 . 

 
If η>0 is given, we choose M sufficiently large, so that, firstly,  

except in a set, the measure of which is less than η. And secondly, the integral 
f x( )= fM x( )

(4)     rM x( )
Qω

∫ dwω       

is less than η². The splitting of f x( ) also divides the integral (2) into two parts: 
(5)   fdwn,ωQn,ω

∫ = fM dwn,ωQn,ω
∫ + rM dwn,ωQn,ω

∫    

  
Here, we have  

    rM dwn,ωQn,ω
∫ ≤ rMQn,ω

∫ dwn,ω   

    Because the integral of the last (almost everywhere in Qn  defined) function over  
according to the theorem of Fubini is equal to (4), and so is less than η², the second 
term in (5) can at most in a set, the measure of which is less than η, be numerically 
greater than η. 

Qn

    Now, after the proof above, let N be chosen sufficiently large, so that, for every 
n>N, the first term of (5) at most in a set with the measure η deviates more than η 
from . Then, (2) will at most in a set with the measure 3η deviate more than 2η from  

. Thus, the theorem is proved. f x( )
 
9. Infinitely multiple integrals. 
We consider, for each value of n, the integral over the unit cube Q  determined by the 
coordinates 

n

x1, x2,..., xn  
(6)     f x1,x2,...,xn ,xn +1,xn +2,...( )dwnQn

∫   
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 . 
The integral (6) represents a function which is constant in x1, x2,..., xn , and which is 
defined almost everywhere in Qω . The preceding theorem makes it possible for us to 
give a very simple proof of the following theorem (*) :  

The integral (6) converges in measure for n → ∞ toward the integral over Qω  
(7)     f x( )

Qω
∫ dwω    . 

    Let us first assume that  is bounded : f x( ) f x( ) < M , and let η>0 be arbitrarily 
given. We choose N sufficiently large, so that for every n>N, and everywhere in  
except in a set, the measure of which is smaller than η², the integral (2) deviates at 
most η from . Then , conceived as a function of 

Qn

f x( ) f x( ) x1, x2,..., xn  in a set in , 
the measure of which is greater than η, deviates more than η from (2) at most in a set 
in  , the measure of which is smaller than η. The integral (7) deviates more than 
2Mη+η from (6) in a set, the measure of which is at most η. This is seen by integrating 
over , since the integral (2), like 

Qn,ω

Qn f x( ) itself, is numerically smaller than M. This 
was what had to be shown. 
    If  is unbounded, the splitting f x( ) f x( )= fM x( )+ rM x( ) is again performed, and 
again we choose M sufficiently large, so that the integral (4) becomes less than η², and 
subsequently we choose N sufficiently large, so that, for n>N, the integral 

fM x1,x2,...,xn ,xn +1,xn +2,...( )dwnQn
∫  

deviates more than η from 
f x( )

Qω
∫ dwω   

at most in a set with the measure η. Then (6) will deviate more than 2η+η² from (7) in 
a set, the measure of which is at most 2η, and the theorem is again saved. 

The theorem which we have deduced has a counterpart in the theorem in the 
preceding section. There, we integrated over fewer and fewer variables, and we 
obtained the function as the limiting value; here, we have integrated over more and 
more variables, and we obtained its integral as the limiting value. 

Another formulation of the last theorem is the following: 
When  is summable overQf x( ) ω , we have 

f x( )dwω =
Qω

∫ ... dxn ... dx2 f x1, x2,..., xn,...( )
0

1∫0

1∫0

1∫ dx1  

where the symbol on the right denotes the constant, toward which 
dxn ... dx2 f x1, x2,..., xn ,...( )

0

1∫0

1∫0

1∫ dx1  
converges in measure for  . n → ∞

All of the last integrals exist except in a fixed null set in Qω . 
    By means of the concept which we have introduced, namely the infinitely multiple 
integral, the theorem in the preceding section can be formulated in this way: 

The integral 
... dxn +1 f x1, x2,..., xn , xn +1, xn +2,...( )

0

1∫0

1∫ dxn +1 
converges in measure for   toward n → ∞ f x( ). 
 
(*) By returning once again to the functions Δ n x( ), we can obtain another simple 
proof. 
 
2. From the dissertation 
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Following is a translation of Sections 15 and 16 of the dissertation of 1930. 
 
15. Infinitely multiple integrals. 
We are now in a position to carry out the mentioned extension of the Fubini theorem 
to functions of infinitely many variables. Let f x( ) be a function which is summable 
in Qω . We will show that, with a suitable definition of the expression on the right-
hand side of the equation, the relation 

f x( )
Qω

∫ dwω = ... dx3 dx2 f x1,x2,x3,...( )
0

1∫0

1∫0

1∫ dx1 

holds. 
Let N be a positive integer; we apply the result from the previous section, letting 

x'= (x1,x2,...,xN )
x' '= xN +1,xN +2,...( )

 

If we designate by QN  and  respectively, the unit cube in the space determined by 
the coordinates 

QN ,ω

x1, x2,..., xN  and xN +1, xN +2,... respectively, we get 
f x( )

Qω
∫ dwω = dwN ,ω f x1, x2,..., xN , xN +1, xN +2,...( )dwNQN

∫QN ,ω
∫  

In other words: the function 
(8)     f x1,x2,...,xN ,xN +1,xN +2,...( )dwNQN

∫  

defined almost everywhere in Q , is summable over  with the integral N ,ω QN ,ω

A = f x( )
Qω

∫ dwω  

For the sake of what follows, it is more convenient instead of (8) to consider the 
function 

fN ,ω x( ) 
which is defined almost everywhere in Qω , and which at each point  

 is equal to the value of (8) at the corresponding point 
 of Q . This function, which is constant in the variables 

x = x1,x2,...,xN ,xN +1,xN +2,...( )
N ,ωxN +1,xN +2,...( ) x1, x2,..., xN , is 

obviously summable over Qω , and its integral is equal to the integral of (8) over , 
that is, A. We will show, that, for 

QN ,ω

N → ∞, the function fN ,ω x( ) converges strongly 
toward the integral A, in other words that 

fN ,ω x( )− A dwωQω
∫ → 0  for  N → ∞  

The proof is extremely simple. Let ε > 0 be given; we have to show that for 
every N, which is larger than a certain value, 
(9)     fN ,ω x( )− A dwωQω

∫ < ε    

 . 
For this purpose, we consider the functions ΔN x( ), which were introduced in §12, and 
which according to §13 for N → ∞ converge strongly toward f x( ), and we determine 
an N0 sufficiently large, so that 
(10)     f x( )− ΔN0

x( )dwωQω
∫ < ε    

    . 
Then, for N ≥ N0, the relation (9) holds; because from (10) it appears for each N as a 
consequence of §14, that 

dwN ,ωQN ,ω
∫ f x( )− Δ N0

x( )dwNQN
∫ < ε  

that is, furthermore, 
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dwN ,ωQN ,ω
∫ f x( )− Δ N0

x( )( )QN
∫ dwN < ε  

but  being constant in the variables Δ N0
x( ) xN0 +1,xN0 +2,... and having its integral over 

Qω  equal to A, for N ≥ N0 this is simply the inequality (9). 
    If we apply the usual Fubini theorem to the integral (8), the result we have obtained 
can be formulated in this way: 

If  is a function which is summable in Qf x( ) ω , we have 

f x( )
Qω

∫ dwω = ... dx3 dx2 f x1,x2,x3,...( )
0

1∫0

1∫0

1∫  

where the expression on the right-hand side of the equation denotes that constant, 
toward which the integral 

dxN ... dx2 f x1, x2,..., xN , xN +1, xN +2,...( )
0

1∫0

1∫0

1∫ dx1 
conceived as a function of x which is constant in the variables x1, x2,..., xN , converges 
strongly for N → ∞ . 

The symbol which we have introduced is referred to as an infinitely multiple 
integral. 

 
16. Representation of a function as the limit value of an integral. 
The theorem, which was proved in the preceding section, has a natural counterpart, 
which will be proved by a quite similar consideration. 
    Let  be summable in f x( ) Qω , and let again N be a positive integer. Setting 

x'= xN +1,xN +2,...( ) 
x' '= (x1, x2,..., xN )  

then, from the result from §14, the relation 
f x( )

Qω
∫ dwω = dwN f x1, x2,..., xN , xN +1, xN +2,...( )dwN ,ωQN ,ω

∫QN
∫  

then follows. The function 
(11)      f x1, x2,..., xN , xN +1, xN +2,...( )dwN ,ωQN ,ω

∫  

defined almost everywhere in QN , is therefore summable over QN . From this it 
follows, that the function 

fN x( )= fN x1,x2,...,xN ,xN +1,xN +2,...( ) 
which is defined almost everywhere in Qω , and which at every point x is equal to the 
value of (11) at the corresponding point (x1, x2,..., xN )  in QN , and therefore is constant 
in the variables xN +1, xN +2,..., is summable over Qω . We will show, that the function 

 converges strongly toward fN x( ) f x( ) for N → ∞ , that is, for every ε > 0 and for all 
N from a certain step 
(12)     f x( )− fN x( )

Qω
∫ dwω < ε    

    . 
With this purpose, we will proceed in a way similar to that above, and choose a 

number  N0 sufficiently large, so that the relation 

(13)     f x( )− Δ N0
x( )

Qω
∫ dwω <

ε
2

     

is satisfied. Then, according to §14, for every N 

dwNQN
∫ f x( )− Δ N0

x( )
QN ,ω

∫ dwN ,ω <
ε
2

 

and so, furthermore 
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dwNQN
∫ f x( )− Δ N0

x( )( )QN ,ω
∫ dwN ,ω <

ε
2

 

Because  is constant in the variables Δ N0
x( ) xN0 +1,xN0 +2,..., then for N ≥ N0, this is 

simply the inequality 

fN x( )− Δ N0
x( )

Qω
∫ dwω <

ε
2

 

and this, in combination with (13), shows that (12) is correct for all N ≥ N0. 
    In the theory of the Fourier series, we shall make an important application of the 
theorem which we have proved. After the infinitely multiple integral is defined, it can 
be formulated as follows: 

If  is an arbitrary function which is summable in f x( ) Qω , then, for N → ∞ , the 
integral 

... dxN +2 f x1, x2,..., xN , xN +1, xN +2,...( )dxN +10

1∫0

1∫  
regarded as a function of x which is constant in the variables xN +1, xN +2,..., converges 
strongly toward the function . f x( )
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6 Postscript : Doob-Jessen and Dieudonné-Jessen correspondence 
These are from the Jessen Archive at the Institute of Mathematics at Copenhagen; see the 
Introduction above. Written in the course of a year, from the spring of 1948 to the spring of 
1949, they are presented in chronological order. They mainly concern abstract generalisations 
of the Daniell-Kolmogorov theorem and of the disintegration theorem advanced by Doob in 
1938. In 1948 Dieudonné and Sparre Andersen and Jessen showed independently that these 
generalisations were not possible. The details are given in letter 2 and in notes 34 and 39.  
 
1. Jessen to Doob. May 11, 1948.  
Dear Professor Doob 

 As you will have noticed Mr Sparre Andersen and I have raised doubt as to the 
validity of the proof of your abstract generalization of the theorem on the introduction of 
measures in a real Cartesian space of an infinite number of dimensions. The problem had 
interested us very much, and actually Sparre Andersen had given a proof of an even more 
general theorem (1). This proof we had discovered to be wrong before noticing that the 
theorem was in your paper from 1938. On reading your proof we found, however, that it used 
an argument, which we had also attempted to apply but could not carry through, and your 
proof therefore seemed incomplete. I owe you an apology for not having written to you 
before publishing our paper (2), my only excuse is that when the paper was written the mail 
service to America had not yet been opened. 

When I write to you now, it is because we believe to have found a counter-example of 
the theorem, and this we would like to show you before publishing it. 
 …. (3)
 I would very grateful to hear your opinion of this example. 
  I remain very sincerely yours  

         Børge Jessen 
 
 

2. Doob to Jessen, May 17, 1948 
Dear Professor Jessen : 
 Thank you for your letter, although I can hardly say its news was welcome. I had 
already realized that the theorem following the one to which you give a couterexample was 
false, but I had not realized that the first was false (4). These two theorems are very closely 
related, and counterexamples to the two are of essentially the same type. 
 Perhaps you have seen Kakutani’s proof in the case of independent finite dimensional 
measures the extension to the infinite dimensional case is correct. (5) His proof is quite 
simple, of the same type as the treatment of two dimensional measure by Hopf in the latter’s 
Ergodentheorie in the Ergebnisse series. Kakutani’s proof can be used word for word in the 
general case, with the following hypothesis, which saves the theorem for the purposes of 
probability. 
 Let P E  be a probability measure in ( ) x1 space. 

For  let  be for fixed  n >1 P x1,...,xn−1;E( ) x1,..., xn−1 a probability measure in xn  sets 
E. Then these probability measures can be used to define finite dimensional measures in the 
usual way ;  is the P E( ) x1 probability measure and the other function is the conditional 
probability of xn  sets if the preceding x j‘s are known. Under the hypothesis that there are  
such conditional probabilities to define the finite dimensional measures, it follows that the 
extension to infinitely many dimensions can be accomplished following Kakutani in the 
independent case, in which case the conditional measures do not actually depend on the 
conditioning variables. Conversely, if finite dimensional measures are given, they determine 
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conditional probabilities as described above in very general cases but not always (my second 
theorem is also false). Your example is also a counterexample to the second theorem. (6)

I think that this way of looking at it is helpful ; to find out when the extension to 
infinitely many dimension is possible, one may find out when the finite dimensional 
measures are determined by conditional probability measures. This is true for example if the 
coordinate spaces are themselves finite dimensional Borel sets, as can be seen by the 
principle of my proof ; the essential property is that the given field can be mapped on a Borel 
sets, of course the conditions I describe are not necessary, but I suspect that they are pretty 
close to it. (7)

Do you intend to visit this country in the next few years? Our work has many 
common points and it would be interesting to discuss these and other matters in detail. (8)

    Sincerely, 
       Doob 
 
 

3. Jessen to Doob, May 29, 1948 
Dear Professor Doob 
 Thank you for your letter. That a counter example to your first theorem would imply 
that conditional probability fields need not exist, I knew, having realized in the course of my 
attempts to prove this theorem, that the proof succeeds along the same lines as the proof in 
case of product measures when conditional probability fields exist. Kakutani’s proof for 
product measures I do not know, since we have not received the Japanese journals from the 
war. But it can hardly be simpler than my proof which was announced in Wintner’s and my 
paper in Trans. Amer. Math. Soc. 88 (1935) (§15) and which appeared (in danish) in Mat. 
Tidsskr. B 1939. This proof (which I believe to be the proof that has been published) is 
reproduced in Sparre Andersen’s and my article in Dansk Vid. Selsk. Mat.-fys. Medd. 22, n°  
19 (1948) (§ 23). 

 The introduction of a measure in an infinite product by means of conditional 
probability fields I have not worked out in detail. It hardly seemed worth while as long as the 
validity of your first theorem was undecided. Now it seems to me that it should be done. 
What would you think if we joined in a little article giving this result which, as you mention, 
is sufficient for the probability applications. Further results might possibly be included. 
Sparre Andersen and I might then in our article put in some words to the effect that according 
to our example the introduction of measure in infinite products intended to cover the case of 
dependent variables must be done in a different manner and that you and I would treat this 
question in a forthcoming paper (9). I expect to spend the major part of 1949 (from february) 
in America and hope very much to see you. We might write the paper then or perhaps we 
might do it by correspondence, though that, of course, is not so convenient. 
 Sparre Andersen will be in America this winter spending most of his time with prof. 
Feller at Cornell, who, as you may know, is a good friend of the Copenhagen mathematicians 
(10). 

     Sincerely yours 
       Børge Jessen 
 
 

4. Doob to Jessen, June 4, 1948. 
Dear Professor Jessen : 
 I think it would be a good idea to write a joint paper clearing up this whole subject. I 
first heard about my error through Halmos who sent me a counter example to my second 
wrong theorem that had been sent him by Dieudonné. My errors were rather unfortunate, 
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among other reasons because the second theorem was used very essentially in papers by 
Halmos, Kakutani and Ambrose (11). I have just been trying to read your proof of the 
existence of measure in infinitely many dimensions in the independence case, and as far as I 
can understand the language it seem to be the same as that of Kakutani which I entionned to 
you. Of course yours is much earlier (12). I have a vague recollection that von Neumann may 
have also prove the theorem in a course of lectures at Princeton, and that it appeared in a 
mimeographed edition of his lectures, but we do not have the volume in our library (13). 
 I do not think that there is any hurry in our publication. We might as well wait until 
you are here in this country. Perhaps you will be able to visit Urbana for a while. Please write 
me your plans when they are definite. I shall be in Europe to attend the Lyon conference on 
probability and statistics, but shall return immediately after it, leaving July 9, from Cherbourg 
(14). 
 Our work has had many points of contact. The war has confused my records, and I do 
not know which of my reprints I have sent you. Have I sent you the one Amer. Math. soc. 
Trans. 1940 in which I derive theorems which are essentially yours in Kgl. Danske Vi. Sels. 
1946 ? (15) Of course our terminologies and points of view are quite different. I do 
everything from the point of view of functions, you from the point of view of set functions 
(16). The theorems involved are very important in probability theory, and I am going to 
discuss various applications at Lyon. 
 If Andersen will be at Cornell, I shall see him. Feller and I visit each other frequently 
(17). 

      Best wishes, 
        Doob 
 
 

 5. Jessen to Dieudonné, June 17, 1948 (18)
 
 Dear Professor Dieudonné. 
 Together with Mr. Sparre Andersen I have recently found an example showing that 
the Daniell-Kolmogoroff theorem (Kolmogoroff : Grundbegriffe der 
Wahrscheinlichkeitsrechnung, p. 27) on the introduction of measure in an infinite Cartesian 
product by means of consistent measures in the finite sub-products cannot be extended to 
abstract sets in the case where the coordinates are dependent (in the probability sense). The 
example will be published in Danske Vid. Selsk. Mat.-fys.Medd. (19)
 Professor Doob, who like Sparre Andersen has attempted to prove the extension, and 
whom I have communicated our example, has informed me, that you have given a 
counterexample of the related theorem about the existence of conditional probability 
measures. Naturally, our example is also a counterexample of this theorem, since the 
extension of the Daniell-Kolmogoroff theorem to abstract sets may be carried through in the 
same manner as for product measures when conditional probability measures are supposed to 
exist. 
 I would be very grateful if you would let me know whether your example has been 
published in order that we may then quote it. If it has not we shall restrict ourselves to 
mention that you have given such an example. 
 I allow myself to send you (under separate cover) some of my papers relating of 
functions of infinitely many variables. 
 Please give my kind regards to your colleagues. I regret not to have met you when I 
was at Nancy last year. (20)
  Believe me, very sincerely yours 
        Børge Jessen 
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6. Dieudonné to Jessen 
Nancy, June 28, 1948. 
 
Dear Professor Jessen 

I have received your letter of June 17 and your reprints on Integration, for which I 
thank you most heartily. The example Professor Doob refers to was found by me last 
september, while working on Prof Halmos’s paper « The decomposition of measures » (21). 
My paper is due to appear in the next few weeks in the « Annales de Grenoble » under the 
title « Sur le théorème de Lebesgue-Nikodym (III) », p. 25-53 ; the example which interests 
you is given p. 42. As soon as I have reprints of this paper, I shall have great pleasure in 
sending one to you, together with some of my older papers on Integration and Banach spaces. 

 Hoping to have the pleasure of meeting you some day, I am 
  Very sincerely yours 
 
J. Dieudonné, 2, Rue de la Craffe, Nancy. 

 
7. Jessen to Dieudonné, September 13, 1948 
 
Dear Professor Dieudonné, 
 Thank you very much for your kind letter and for the reprints which I received some 
time ago. 
 The paper of Sparre Andersen and myself has now appeared and I send you enclosed 
a copy. As yours, our example is based on non-measurable sets. In order to disprove the 
existence of conditional probability measures it is, of course, sufficient to work in a product 
of two sets. An example of this type we found long ago, but it was not until recently that we 
noticed that by the same idea the extension of the Daniell-Kolmogoroff theorem to abstract 
sets may be disproved. 
 With best regards, I am 
  Very sincerely yours 
   Børge Jessen 
 
 
8. Jessen to Doob, September 13, 1948 
 
Dear Professor Doob, 
 Thank you very much for your letter of June 4. I have postponed the answer until I 
could send you the paper of Sparre Andersen and myself containing our example. I thank you 
for the references to Dieudonné (whose paper has just appeared) and von Neumann. 
 I am looking very much to write a joint paper with you on our common results. I 
except to come to the United States about middle of January and intend to spend the first 
months at eastern universities. In the second quarter (from March 28 to June 18) I will be in 
Chicago lecturing, and in the fall (from the middle of september) in Princeton at the Institute 
of Advanced Study. It will be a great pleasure for me to come in Urbana for a while either 
before or after the visit in Chicago. Please write me when it would be most convenient for 
you. (If it is not too hot in June it would perhaps be more convenient to arrange your 
collaboration after June 18 when I shall not have the lectures to think of.) 
 Your paper from Trans. Amer. Math. Soc. 1940 I had not received from you, and 
Sparre Andersen and I were not aware of it when writing our first paper. Your results are, as 
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ours, closely related to my old results on integrals in infinitely many dimensions, though the 
connection is not so apparent in your exposition. You will notice that in our paper there is a 
little unsymmetry between the two limit theorems, the first dealing with set-functions which 
may have a singular part, whereas in the second the set-function is supposed to be continuous 
with respect to the measure considered. In a note, which will appear in the Danske Vid. Selsk. 
Mat.-fys. Medd., we give easy generalisations of the two theorems which are completely 
symmetrical. Here we use the opportunity to quote your paper from 1940. Actually the 
generalization makes the proofs more conspicuous. 

    With best wishes, Sincerely yours 
        Børge Jessen 
 

9. Jessen to Doob, May 17, 1949 (22)
Dear Doob : 

Just a few lines to thank you and your wife for all your hospitality during my stay in 
Urbana. I enjoyed very much being with you and talking with you. On the matters we 
discussed I have had time to think them ( ?) 

 I had my promize not to read english detectivestories cancelled for a night and 
read one of Steve’s novels (23). Please tell him that it was most exciting as was also Gene 
Autry (24), whom I did not know before. It might interest Steve and Peter that we (or rather 
Hochschild) found a live turtle at one of the creeks in Turkey Run. (25)

 
10. Jessen to Doob, June 23, 1949 
Dear Doob : 
 I took longer time than I had expected to get the car, but now it is all in order, and 
with Mr Calderon from Argentina as chief pilot (26) I expect to leave for Urbana tomorrow 
about noon (top speed 30 m/h). If the car does not make trouble we shall continue on Monday 
for New York to meet my wife. As passenger we bring Mr Nachbin from Brazil (27), who is 
also living here. I am ashamed to make the visit such an invasion. I think I did not like to ask 
one and not the other. He will return to Chicago by train probably on Sunday. If somebody 
would put him up (I think his main interest is general topology) it would be most welcome 
but he is prepared to stay in an hotel. 
 Please do not be unhappy about the proposed collaboration (28). It has been a great 
pleasure to discuss the subject with you, if we do not arrive to anything worth while a 
publication there is the possibility to leave the subject to some … (29)

 71



  
 
Notes on the Doob-Jessen and Dieudonné-Jessen correspondence 
Section 6
 
(1) Andersen [1944] and Doob [1938]. 
J.L. Doob (1910-2004), professor at the University of Illinois, Urbana-Champaign, 
from 1935, was one of the most fertile analysts of the 20th century and clearly the 
central figure of the modern theory of martingales, a name he borrowed from Ville. 
Doob comes into the present story rather late, in 1948, and then only on the margins. 
Jessen’s theorem plays little part in the correspondence presented here (and Lévy’s 
lemma one at all) for the letters mainly concern the theorems that Doob had believed 
he had proved in 1938. These were so natural, so necessarily true, that for ten years 
they were accepted, especially in Princeton, without anybody thinking of questioning 
them. Nevertheless the correspondence does have a place in the history of martingale 
theory since it allows us to date more precisely when Doob read Jessen’s theorem in 
its new probabilistic version ([Sparre Andersen, Jessen, 1946]) and which he finally 
adopted in 1953. Jessen’s first letter sounds the death-knell for the Daniell-
Kolmogoroff-Doob theorem. It was a bitter pill for a mathematician of Doob’s 
strength but it may have occasioned his return to his own theory of martingales 
[1940]. It is not easy to identifiy the moment when Doob truly recognised the 
importance of this class of random variables which he had considered in 1940 
following Ville. It was definitely not in 1940 and must have been before 1953, which 
leaves some margin. Already by the time of his Lyon paper [1948] one senses that 
something had changed. The concept has a name and that is not a misleading sign. 
Doob’s student, Laurie Snell, submitted his thesis on “martingale systems” in 1951. 
Was Doob’s reading Jessen cause or consequence of the emergence of the theory? We 
do not know but it is incontestable that, from the spring of 1948, the concept begins to 
exist in its own right and that Doob was the first to discover it and in part to invent it. 
It is always difficult to determine the date and circumstances of the birth of a theory. 
For example, Laurent Schwartz tells us in his memoirs, [1997], p. 223, that the theory 
of the distributions was born “suddenly in only one night” in November 1944 on the 
ground floor of 11 rue Monticelli in the 14th arrondissement of Paris, where he was 
living at the time. But he admits that he is unable to understand what triggered this 
discovery, which would change dramatically his career as a mathematician, nor, 
moreover, who were “his precursors and its personal antecedents”, which leaves the 
field free for historians to find him his place (Lützen [1982], Kantor [2004]). In the 
case of Doob and the theory of martingales, we can say that the invention occurred in 
the spring of 1948 suddenly some share at his place or in the surrounding countryside 
and that among his personal antecedents and his precursors were Jessen, Lévy, Ville, 
Doob and a few tens of others. Of course, for Doob, the Jessen- Lévy-Doob theorem 
was only a part of the theory of martingales, which draws some of its richness, and 
not the least part, to stopping properties. A suitably stopped martingale remains a 
martingale. These properties may have their origins in Doob’s conversations with 
Feller and Chung about heads and tails and in the abundant work of Ville, Doeblin, 
Lévy and of all the inventors of probability theory over three centuries. That is in the 
nature of things. The universe is not obliged to be beautiful, however it is beautiful. 
(1)
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(2) The reference is to [Andersen Jessen 1946] which was submitted on October 5, 
1945 (before the postal servicebetween America and Denmark was restored) and 
printed on April 1, 1946. About the existence of measure in a countable product of 
probabilised sets, the paper writes (p. 22, n° 24, note 1): “An analogous theorem on 
arbitrary measures in product sets has been given by Doob, but his proof seems 
incomplete (it is not seen how the sets ˜ Λ n  on p. 92 are chosen). The proof by Sparre 
Andersen of a more general theorem is incomplete … ”  

It is possible that Doob objected to this critical note and that Jessen wanted to 
be apologise, but we have found no proof of this. We should recall that Doob was not 
sparing in writing notes of this kind (for example Doob [1938] notes pages 91 and 
135) and that Doeblin (which was at least as tough as Doob) complained to him about 
it; cf. his correspondence with Doob in [Cohn, 1993].  

However, the essence of the letter is concerned with the counterexample 
discovered in the spring of 1948 by Sparre Andersen and Jessen, which left in no 
doubt the irreparable inaccuracy of Doob’s theorem. (2)
 
(3) The passage omitted reproduces word for word the description of the counter-
example as it appears in n° 4 of the paper [Andersen Jessen, 1948a]. The paper was 
submitted on June 28, 1948 and, therefore, after Doob’s reply. (3)
 
(4) The “first theorem” in question here and in the following letter is theorem 1.1, p. 
90, of Doob [1938] which extends to a general abstract framework the Daniell-
Kolmogorov theorem for the real case or for the abstract case for product probabilities 
(the case of independent variables). The “following theorem” (or the “second 
theorem” lower down) is theorem 3.1, page 96 of the same paper is a theorem of 
abstract disintegration (or existence of regular conditional probability) is equally 
erroneous. Jessen’s counterexample also works for this theorem which Doob already 
knows is false from an example by Dieudonné that Halmos had communicated to him 
(see below letter 4). However, until Jessen’s first letter arrived Doob thought that his 
Daniell theorem was correct. (4)
 
(5) Kakutani [1943, I], which has a very simple treatment of the independent case. S. 
Kakutani (1911-2004) was at the Princeton IAS between 1940 and 1942 and it was 
there that he learned the general theorem from Doob. (5)
 
(6) The statement suggested by Doob is a version of the very general result, without 
topological assumptions, which was published in 1949 by C. Ionescu Tulcea. Neveu 
[1964], V-1, has a presentation of this theorem which is adequate for the general 
theory of Markov chains, and of which Jessen said in the following letter that he had 
become convinced “in the course of my attempts to prove this theorem [the theorem 
of Daniell-Doob]”. (6)
 
(7) The search for the minimal topological assumptions ensuring the validity of 
Doob’s disintegration theorem produced an abundance of literature in the fifties and 
subsequently. See the very many references in Bogachev [2006] vol. II, p. 462. (7) 
 
(8) From this last sentence it can be concluded that by May 17, 1948 Doob had read 
[Andersen Jessen 1946] and undoubtedly also Jessen’s articles from the thirties and 
had understood that they contained a satisfactory version of his first theory of [1940], 
what he still was not calling the theory of martingales. (8) 
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(9) There is a note in Sparre Andersen Jessen [1948a] n° 3 final paragraph. The 
project of a joint Doob-Jessen paper did not materialise (see letter 10 below). 
Obviously this consolation prize was not much motivation for Doob, and Jessen rather 
quickly realised that it was very interesting for him beyond expressing his sympathy 
for a colleague he had put into difficulty.  

In any event, Doob preferred to work on his own at home and published very 
little with others. In his interesting conversation with Snell [1997] he says: “I 
corresponded with many mathematicians but never had detailed interplay with any but 
Kai Lai Chung and P.- A. Meyer in probability and Brelot in potential theory. My 
instincts were to work alone and even to collect enough books and reprints so that I 
could do all my work at home. ” (9) 
 
(10) W. Feller (1906-1970) fled Nazi Germany in 1933 for Denmark and Sweden, 
before emigrating in the United States in 1939. See C. Berg in this issue for Feller’s 
links with Danish mathematicians. (10) 
 
(11) Paul Halmos (1916-2006) was Doob’s first doctoral student in Urbana and he 
was awarded his PhD in 1938. His article [1941] was based on the theorem of 
disintegration of Doob; it is referred to below in the Dieudonné correspondence. See 
the autobiography of Halmos [1978] and Burkholder [2005].  
Warren Ambrose (1914-1996) completed his PhD under Doob’s direction in 1939. He 
used Doob’s theorem in [1939], [1940].  
For Kakutani, see note 5 above. He used Doob’s theorem in [1943, II].  
The brilliant careers of these three mathematicians do not seem to have especially 
suffered from this unfortunate mistake. (11) 
 
(12) Jessen’s proof probably went back to 1934-1935. It was published in Danish in 
1939 and English in 1946. (12) 
 
(13) Von Neumann [1934b]. (13) 
 
(14) Doob [1948]. The Lyon conference was held from June 28 to July 3. See [Locker 
2009], in the present issue. (14) 
 
(15) Doob [1940], Andersen, Jessen [1946]. It is clear that by this time Doob had 
made the connection between his theory and Jessen’s. However, Jessen is not quoted 
in Doob’s address at Lyon, where only Ville’s name appears, [Doob, 1948], p. 23. 
(15) 
 
(16) Jessen reconsiders this point in Andersen, Jessen [1948b], n° 1. Jessen states that 
in 1946 he was unaware of Doob’s work [1940] and that he preferred to adopt the 
view-point of set functions, if only for the convenience of the exposition. However 
the article [1948b] is explicit that the results are also valid for point function, thus 
making the two theorems perfectly symmetrical so that they include the results of 
Doob 1940. This article was received by the journal on August 16, 1948 and 
published on October 23. It is discussed in letter 8 below. (16) 
 
(17) Doob and Feller met for the first time at the meeting of the AMS of Darmouth in 
1940 (Snell [1997]). He was, according to Doob “the first mathematical probabilist I 
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ever met.” Doob and Feller had very different visions of mathematics. To be 
convinced, simply compare [Doob 1953] and [Feller 1950]. Doob did not like 
calculations and looked for the most general possible results and concepts. Feller 
loved only formulas and the rare and precious flowers that only appear as a result of 
complicated calculations and meticulous specialised investigations. That did not 
prevent them from getting together to try to convince American mathematicians that 
the theory of probability was a branch of mathematics like any other, contrary to 
general believef. See also Doob [1941], [1972], [1994]. (17) 
 
(18) There is no shortage of literature on Jean Dieudonné (1906-1992), cofounder and 
principal writer of Bourbaki; see in particular Dugac [1995]. In 1948 Dieudonné was 
a professor at the Faculty of Science in Nancy, having spent the previous academic 
year, from May 1946 to December 1947, in Brazil, in Rio de Janeiro and São Paulo 
where he visited his friend and teacher André Weil who was professor there. 
Dieudonné would be with Weil in Chicago in the fifties before being appointed to the 
Institut des Hautes Études Scientifiques in 1959 and then in 1964 to the new 
University of Nice. (18) 
 
(19) Sparre Andersen, Jessen [1948a]. (19) 
 
(20) This is a reference to the Nancy Conference of June 1947 (see above Jessen’s 
letter to Lévy of 13 September 1948). At the time Dieudonné was in Brazil. (20) 
 
(21) Halmos [1941]. The counterexemple of Dieudonné [1948] p. 42 shows that the 
fundamental theorem of Halmos (theorem 1, p. 390) is not true in general. The 
argument is correct but it is based on an erroneous result of Doob [1938], theorem 3, 
p. 96, as Dieudonné points out (p. 42 notes 1). (21) 
 
(22) Letters 9 and 10 are dated from Chicago. These are incomplete drafts and were 
doubtless altered at the time of sending. From these letters, it seems that the Jessen-
Doob meeting took place in Urbana in the first fortnight of May 1949, without much 
scientific result and that the two men met again at the end of June 1949, after Jessen 
had given his course in Chicago. (22) 
 
(23) Steve is Doob’s oldest son. Burkholder [2005] describes Doob’s life in Urbana. 
(23) 
 
(24) Gene Autry (1907-1998), “the singing cowboy”, was a very famous actor and 
American singer. According to Wikipedia, he is the author of an interesting “Cowboy 
code” whose first rule is: “must never shoot first, hit a smaller man, and take unfair 
advantage.”  (24) 
 
(25) Turkey Run is a national park in Indiana.  
Gerhard Hochschid was born in Berlin in 1915. An important algebraist, he was a 
student of Chevalley at Princeton. In 1949 he was professor at Urbana, before being 
appointed to Berkeley. The draft ends in a badly written, crossed out sentence: 
“Please give my kind regards to the Cairns, Landen?.” Stewart S. Cairns (1904-1982), 
a student of Marston Morse at Harvard, was mathematics professor at Urbana from 
1948 to 1972.  (25) 
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(26) Alberto Calderón (1920-1998), a mathematician of Argentinian origin, was one 
of the most important analysts of the 20th century. Spotted by A. Zygmund at a 
conference in Buenos Aires in 1949, he followed Zygmund to the USA where he 
spent his career. In Chicago, where he was appointed in 1959, he and Zygmund 
established an important school of analysis. See Calderón [2001] for an outline of his 
work and his influence.  (26) 
 
(27) Leopoldo Nachbin (1922-1993), a brilliant Brazilian mathematician, was a 
student of Dieudonné and Weil when they taught in São Paulo. He was a professor in 
Rio de Janeiro and then in Rochester. In 1949 he was a Guggenheim foundation 
fellow. See Barroso [1986].  (27) 
 
(28) Here there is a fragment of a crossed out phrase: “If we decide to drop the matter 
I…”   (28) 
 
(29) Thus ended the collaboration of Doob and Jessen.  (29)
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