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Martingales in Sequential Analysis
and Time Series, 1945–1985∗

Tze Leung Lai†

Abstract

This paper reviews the history of martingales in sequential analy-
sis, beginning with Wald’s ground-breaking paper in 1945 that laid the
foundations for the subject, and ending in the decade 1975–1985 when
the usefulness of martingale theory was also recognized in time series
analysis. The important roles played by martingale inequalities, con-
vergence theory, strong laws, functional central limit theorems, laws
of the iterated logarithm, and the optional stopping theorem in de-
velopments of the theory of sequential analysis and time series from
1945 to 1985 are also discussed.

1 Introduction

Asymptotic results in statistical theory are closely related to limit theorems
in probability. Since martingale theory has played a central role in these
limit theorems, one would expect a rich history of martingales in theoreti-
cal statistics. However, because the development of statistical theory mostly
focused on the setting of independent or exchangeable observations, martin-
gale theory did not play a significant role in statistics until more complicated
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data-generating mechanisms had to be considered for statistical inference and
modeling of the data being analyzed. The history of martingales in statistics,
therefore, is closely linked to the developments in sequential analysis, time
series and survival analysis, for which the martingale structure inherent in
the data and the powerful tools from martingale theory have led to major
advances in the statistical methodologies. This paper considers the history
of martingales in sequential analysis and time series during the 40-year pe-
riod 1945–1985 when the role of martingale theory in these areas grew from
being peripheral to central. The paper by Aalen, Andersen, Borgan, Gill and
Keiding in this special issue describes the history of martingales in survival
analysis.

Following the style of Rudin’s (1997) book in the History of Mathemat-
ics series published jointly by the American Mathematical Society and the
London Mathematical Society, I try to describe the history not only from
archival works but also from my personal experience, first as a graduate stu-
dent at Columbia University (from 1968 to 1971) where sequential analysis
and martingale theory were advanced courses in the curriculum as well as
major research areas of the faculty, and then as a researcher in these fields
and in time series. Rudin’s exemplary book inspires me “to tell — as well
as I could — where the problems came from, what some of their solutions
led to, and who (were) involved.” In view of my personal experience, I find
it helpful to divide the period into two parts, namely 1945–1975 and 1976–
1985, which are presented in Sections 2 and 3, respectively. The first part,
which will be labeled “Sequential Analysis from 1945 to 1975”, covers the be-
ginnings and subsequent developments of this field and how they interacted
with martingale theory. It also reflects what I learned as a graduate student
writing a Ph.D. thesis entitled Confidence Sequences and Martingales that
belongs to the intersection of both fields. The second part, labeled “From
Sequential Analysis to Time Series”, describes the developments in the last
ten years of the period, and in particular how I and others saw and exploited
the power of martingale theory to resolve some open problems in time series
analysis, sequential experimentation and adaptive control during that time.
The paper concludes with an epilogue in Section 4.

2 Sequential Analysis from 1945 to 1975

Sequential analysis refers to the analysis of data generated from sequential
experiments, for example, when the sample size is not fixed in advance but
may depend on the observations collected so far. Wallis (1980, Sect. 6) gives
a detailed historical account of the origins of sequential analysis at the Statis-
tical Research Group (SRG) that was set up at Columbia University during
the Second World War to advise the United States Department of Defense.
Wald’s (1945) ground-breaking paper on the sequential probability ratio test
(SPRT), a preliminary version of which already appeared in a “restricted
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report” of SRG to the National Defense Research Committee in 1943, marks
the beginning of the theory of sequential analysis. Although Wald devel-
oped this theory from scratch, it was soon recognized that the theory of
martingales could simplify and generalize some of Wald’s methods and re-
sults. Moreover, sequential analysis then grew in different directions which
also had close interactions with martingale theory. The following subsec-
tions describe a number of important developments in the interplay between
martingale theory and sequential analysis in the period 1945–1975 that also
witnessed the blossoming of both fields.

2.1 Martingale theory and sequential likelihood ratio
statistics

Wald’s SPRT is concerned with testing a simple null hypothesis H0 : f = f0
versus a simple alternative hypothesis H1 : f = f1 based on independent
and identically distributed (i.i.d.) observations X1, X2, . . . , having a com-
mon density function f (with respect to some measure m). Let Ln =n

i=1(f1(Xi)/f0(Xi)) be the likelihood ratio statistic based on X1, . . . , Xn.
The SPRT stops sampling at stage

N = inf {n ≥ 1 : Ln /∈ (A,B)} , (2.1)

with A < 1 < B, and rejectsH0 if LN ≥ B. To analyze the error probabilities
of the SPRT, Wald (1945) introduced the likelihood ratio identities

P0(LN ≥ B) = E1

�
L−1
N 1{LN≥B}


, P1(LN ≤ A) = E0

�
LN1{LN≤A}


. (2.2)

It follows from (2.2) that P0(LN ≥ B) ≤ B−1P1(LN ≥ B) and P1(LN ≤
A) ≤ AP0(LN ≤ A), in which ≤ can be replaced by = if LN has to fall on
either boundary exactly (i.e., if there is no overshoot). Ignoring overshoots,
Wald made use of (2.2) to obtain approximations for the error probabilities
P0(LN ≥ B) and P1(LN ≤ A).

To analyze the operating characteristics of the SPRT, Wald made use of
another identity, which was not “restricted” under the Department of Defense
rules and which he published a year earlier. Wald (1944) proved this identity
for more general i.i.d. random variables than log(f1(Xi)/f0(Xi)) that are
the summands of logLn. Although he derived it without martingale theory
by using the particular structure (2.1) of the stopping rule, Blackwell and
Girshick (1946) used the martingale structure to generalize the identity to
more general stopping times. Doob (1953, Sect. VII.10) extended the result
further to the following form, which he called “the fundamental theorem
of sequential analysis.” Let Y1, Y2, . . . be i.i.d. random variables and let
z be a complex number such that |ψ(z)| ≥ 1, where ψ(z) = E(ezY1). Let
Sn = Y1+ · · ·+Yn. Then {ezSN/(ψ(z))n, n ≥ 1} is a martingale with mean 1.
Moreover, if N is a stopping time such that maxn≤N |R(ezSn)| is a bounded

3



Journ@l électronique d’Histoire des Probabilités et de la Statistique/ Electronic Journal for 
History of Probability and Statistics . Vol.5, n°1. Juin/June 2009

random variable, where R(·) denotes the real part, then

E

ezSN


(ψ(z))N


= 1 (2.3)

by the optional stopping theorem for martingales. In the case of real z =
0 so that ψ(z) is the moment generating function of Y1, Bahadur (1958)
subsequently showed that the left-hand side of (2.3) is equal to Q(N < ∞)
if ψ(z) <∞, where Q is the probability measure under which Y1, Y2, . . . are
i.i.d. with common density function ezy/ψ(z) with respect to the original
probability measure.

Another tool Wald (1945) developed to analyze the SPRT was Wald’s
equation

E


N

i=1

Yi


= µE(N) (2.4)

for any stopping time N and i.i.d. random variables Yi with mean µ. Doob
(1953) derived this result in Section VII.10 by applying the optional stopping
theorem to the martingale {Sn − nµ, n ≥ 1}. Chow, Robbins and Teicher
(1965) subsequently made use of martingale theory to analyze the higher mo-
ments E(

N
i=1 Yi)

r for r = 2, 3, 4. Noting that the likelihood ratio statistics
Ln, n ≥ 1, form a martingale with mean 1 under P0, Doob (1953, Sect. VII.9)
used the martingale convergence theorem to show that Ln converges a.s. [P0]
(almost surely, or with probability 1, under P0). This martingale property,
and therefore also the martingale convergence theorem, are in fact applicable
to dependent Xi, with joint density function fn for X1, . . . , Xn, so that the
likelihood ratio now takes the form

Ln = qn(X1, . . . , Xn)/pn(X1, . . . , Xn), (2.5)

where fn = qn under H1 and fn = pn under H0. Doob showed that the
a.s. limit of Ln (under H0) is 0 when the Xi are i.i.d. except for the case
P0{f1(X1) = f0(X1)} = 1, or equivalently, Ln = 1 a.s. [P0].

Although Wald (1945) developed from scratch tools to analyze the SPRT,
his approach was essentially of “martingale-type”. Alternative approaches
that were used subsequently include analytic methods based on the strong
Markov property and the fluctuation theory of random walks; see Ghosh
(1970), Siegmund (1985) and Woodroofe (1982). Doob noticed the martin-
gale structure in Wald’s work, and Chapter VII of his 1953 classic laid the
foundations for the martingale approach to the analysis of randomly stopped
sums and other statistics. Lai (2004) gives a survey of likelihood ratio iden-
tities and related methods in sequential analysis that have been developed
on the foundations laid down by Wald and Doob.

2.2 Stochastic approximation

The post-war years between Wald’s (1945) fundamental paper and that of
Robbins and Monro (1951) were a fast-growing period for Statistics as an
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academic discipline in the United States. New departments and programs
in Statistics were springing up during this period, beginning in 1946 with
the University of North Carolina that lured Hotelling from Columbia to
start a Department of Statistics at Chapel Hill, and immediately followed by
Columbia that set up a new Department of Mathematical Statistics chaired
by Wald. Hotelling recruited Herbert Robbins, who claimed that he “knew
nothing about statistics” at that time as he had been trained as a topologist
at Harvard, to “teach measure theory, probability, analytic methods, etc. to
the department’s graduate students” (Page, 1984, p. 11). At Chapel Hill,
Robbins “attended seminars and got to know several very eminent statis-
ticians”, and soon “began to get some idea about what was going on” in
statistics, in which he then “became really interested” and started daringly
original research projects. This is the background behind his highly innova-
tive work with graduate student Sutton Monro on stochastic approximation,
which opened up a new direction for sequential analysis at that time.

The Robbins–Monro paper represents a major departure from the frame-
work of sequential analysis adopted by Wald and his contemporaries, for
whom the sequential element of the data-generating mechanism (or experi-
ment) came from a data-dependent (instead of predetermined) sample size.
The sequential experiments in stochastic approximation do not have stop-
ping times; instead they involve choosing the design levels xi in a regression
model sequentially, on the basis of past observations, so that the xi eventu-
ally converge to some desired level. The regression model considered is of
the general form

yi =M(xi) + εi (i = 1, 2, . . . ), (2.6)

where yi denotes the response at xi, M is an unknown regression function,
and εi represents unobservable noise (error). In the deterministic case (where
εi = 0 for all i), Newton’s method for finding the root θ of a smooth function
M is a sequential scheme defined by the recursion

xn+1 = xn − yn/M
(xn). (2.7)

When errors εi are present, using Newton’s method (2.7) entails that

xn+1 = xn −M(xn)/M
(xn)− εn/M

(xn). (2.8)

Hence, if xn should converge to θ so that M(xn)→ 0 and M (xn)→M (θ),
assuming M to be smooth and to have a unique root θ such that M (θ) = 0,
then (2.8) implies that εn → 0, which is not possible for many kinds of
random errors εi (e.g., when the εi are i.i.d. with mean 0 and variance
σ2 > 0). To dampen the effect of the errors εi, Robbins and Monro (1951)
replaced 1/M (xn) in (2.7) by constants that converge to 0. Specifically,
assuming that

M(θ) = 0, inf
ε<|x−θ|<1/ε

(x− θ)M(x) > 0 for all 0 < ε < 1, (2.9)

|M(x)| ≤ c(|x− θ|+ 1) for some c > 0 and all x, (2.10)
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the Robbins–Monro scheme is defined by the recursion

xn+1 = xn − anyn (x1 = initial guess of θ), (2.11)

where an are positive constants such that

∞

1

a2
n <∞,

∞

1

an =∞. (2.12)

A year later, Kiefer and Wolfowitz (1952) modified the Robbins–Monro
scheme to find the maximum of the regression function M in (2.6). Here
M (θ) = 0 and the Kiefer–Wolfowitz scheme is defined by the recursion

xn+1 = xn + an∆(xn), (2.13)

where at the nth stage observations yn and yn are taken at the design levels
xn = xn+cn and xn = xn−cn, respectively, an and cn are positive constants,
and

∆(xn) = (yn − yn)

2cn

=
M(xn + cn)−M(xn − cn)

2cn
+
εn − εn
2cn

by (2.6).
(2.14)

To dampen the effect of the errors εn and εn, Keifer and Wolfowitz assumed
that

cn → 0,
∞

1

(an/cn)
2 <∞,

∞

1

ancn <∞ and
∞

1

an =∞. (2.15)

Martingale theory provides useful tools to analyze convergence properties
of stochastic approximation schemes. However, because martingales were
still unfamiliar to the statistical community at that time, they were not
invoked in the derivation of the convergence properties and statement of the
assumptions. By deriving recursions for E(xn+1 − θ)2 from (2.11) or (2.13)
and the assumption supiE(ε2i |x1, . . . , xi−1) ≤ σ2, Robbins and Monro (1951)
and Kiefer and Wolfowitz (1952) proved that their stochastic approximation
schemes converge in L2, and therefore also in probability, to θ which is the
solution of the equation M(θ) = 0 or M (θ) = 0. Subsequently, Blum (1954)
cited a convergence theorem for square-integrable martingales (although he
did not use “martingale” terminology) to prove the a.s. convergence of the
Robbins–Monro and Kiefer–Wolfowitz schemes; he was also able to remove
the assumption

∞
1 ancn < ∞ in (2.15). Dvoretzky (1956) then proved the

a.s. and L2 convergence of a general class of recursive stochastic algorithms
which include the Robbins–Monro and Kiefer–Wolfowitz schemes as special
cases. This result is commonly called Dvoretzky’s approximation theorem.
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Gladyšev (1965) gave a simple proof of the a.s. convergence of the Robbins–
Monro scheme by an ingenious application of Doob’s supermartingale con-
vergence theorem, paving the way for a subsequent generalization of su-
permartingales by Robbins and Siegmund (1971). Let {εi,Fi, i ≥ 1} be a
martingale difference sequence such that

sup
i
E(ε2i |Fi−1) <∞ a.s. (2.16)

Putting (2.6) into the recursion (2.11) yields a corresponding recursion for
Vn := (xn+1 − θ)2. From (2.10) and the assumption that E(εi|Fi−1) = 0, it
then follows from this recursion for Vn that

E(Vn|Fn−1) ≤ (1+2c2a2
n)Vn−1+a

2
n


2c2 + E(ε2n|Fn−1)


−2an(xn−θ)M(xn),

(2.17)
which can be written in the form

E(Vn|Fn−1) ≤ (1 + αn−1)Vn−1 + βn−1 − γn−1, (2.18)

in which αi, βi and γi are nonnegative Fi-measurable random variables. Rob-
bins and Siegmund (1971) call Vn that satisfies (2.18) an almost supermartin-
gale, noting that Vn is indeed a supermartingale if αn−1 = βn−1 = γn−1 = 0.
They showed that if Vn is a nonnegative almost supermartingale, then

Vn converges and
∞

1

γn <∞ a.s. on

 ∞

1

αi <∞,
∞

1

βi <∞

. (2.19)

They applied this result to derive the a.s. part of Dvoretzky’s approximation
theorem and certain convergence results in two-person games and cluster
analysis as corollaries.

Although Vn satisfying (2.18) is not a supermartingale, it can be trans-
formed into one via

Un = Vn


n−1

i=1

(1 + αi)−
n−1

i=1


(βi − γi)


i

j=1

(1 + αj)


,

which is a supermartingale by (2.18). Let βi = βi/
i

j=1(1+αj). Although Un
need not be nonnegative, it is bounded below on the event {

∞
1 βi ≤ k} for

every k = 1, 2, . . . . Therefore by Doob’s supermartingale convergence theo-
rem, Un converges a.s. on {

∞
1 αi < ∞,

∞
1 βi < ∞}. Robbins and Sieg-

mund (1971) made use of this argument to prove (2.19). Earlier, Gladyšev
(1965) used a somewhat different argument to transform (2.17) to a nonneg-
ative supermartingale, to which he applied Doob’s supermartingale conver-
gence theorem.

Robbins and Siegmund (1971, pp. 246–249) also showed how (2.19) can
be applied to prove a.s. convergence of stochastic approximation schemes in
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a Hilbert space, using Vn = xn+1 − θ2 in this case. Stochastic approxima-
tion was an active area of research during the two decades after the seminal
paper of Robbins and Monro (1951). A relatively complete theory on the
convergence and asymptotic normality of multivariate stochastic approxima-
tion schemes emerged and was summarized in the monograph by Nevelson
and Hasminskĭı (1973).

2.3 Mixtures of likelihood ratio martingales, power-
one tests and confidence sequences

The Robbins–Siegmund paper on almost supermartingales was published
during the period 1968–1974 when their research focus was the development
of martingale methods for boundary crossing probabilities in sequential tests
with power 1. In the case of simple hypotheses H0 : f = f0 and H1 : f = f1,
a one-sided SPRT with stopping rule Ñ = inf{n : Ln ≥ B} (i.e., letting
A = 0 in (2.1) and rejecting H0 upon stopping) has power 1 and type I error
probability α if B is so chosen that P0(Ñ =∞) = α. On the other hand, for
composite hypotheses of the type H0 : θ ≤ 0 versus H1 : θ > 0 when f = fθ,
how can power-one tests such that supθ≤0 Pθ(Reject H0) ≤ α be constructed?
In the case where X1, X2, . . . are i.i.d. random variables from an exponential
family of densities fθ(x) = eθx−ψ(θ) with respect to P0 such that E0X1 = 0,
Darling and Robbins (1967) used the fact that Zn(θ) := eθSn−nψ(θ), n ≥ 1,
is a nonnegative martingale with mean 1 under P0, where Sn =

n
i=1Xi, to

conclude from Doob’s martingale inequality that for ci > 1,

P0 {Zn(θi) ≥ ci for some mi ≤ n < mi+1}
= P0


Sn ≥ θ−1

i log ci + nθ−1
i ψ(θi) for some mi ≤ n < mi+1



≤ 1/ci.

(2.20)

By choosingmi, ci and θi suitably, they derived iterated logarithm inequalities
of the form

P0 {Sn ≥ bn(ε) for some n ≥ 1} ≤ ε (2.21)

for given ε > 0, where

bn(ε) ∼
�
E0X

2
1

1/2
(2n log log n)1/2 as n→∞. (2.22)

In 1968, in collaboration with David Siegmund who was his former Ph.D.
student, Robbins came up with a much simpler construction of bn(ε) that
satisfies (2.21) and (2.22). It was the year when he and I both came to
Columbia; I arrived as a new graduate student and he returned after spending
the previous three years at different universities that tried to lure him away,
including University of Michigan where he collaborated with Darling. He
had moved in 1953 from Chapel Hill to Columbia to chair the Department
of Mathematical Statistics after Wald died in a plane crash in 1950. In
1969, after a year of coursework, I began thinking about research and was
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attracted to the recent work of Robbins and Siegmund after hearing about
it that summer through Robbins’ Wald Lectures at the annual meeting of
the Institute of Mathematical Statistics in New York City. At around the
same time Siegmund was moving from Stanford to Columbia, and I took the
earliest opportunity to ask him to be my thesis advisor as I wanted to work
on problems related to his exciting project with Robbins.

Instead of letting θ and c vary with n as in (2.20), Robbins and Sieg-
mund integrated Zn(θ) with respect to a probability measure on θ, noting
that

∞
0
Zn(θ)dF (θ) is also a nonnegative martingale with mean 1 for any

probability distribution F on (0,∞) and that

 ∞

0

Zn(θ) dF (θ) ≥ c⇐⇒ Sn ≥ βF (n, c) (2.23)

for c > 0, where x = βF (n, c) is the unique positive solution of
∞
0
eθx−nψ(θ)

dF (θ) = c. Therefore Doob’s martingale inequality again yields

P0 {Sn ≥ βF (n, c) for some n ≥ 1}

= P0

 ∞

0

Zn(θ) dF (θ) ≥ c for some n ≥ 1


≤ c−1.

(2.24)

They also showed how F can be chosen so that the boundary βF (n, c) has
the iterated logarithm growth in (2.22). They applied and refined this idea
in a series of papers during the period 1968–1970; see the references cited in
Robbins (1970), which was based on his Wald Lectures.

A natural problem related to (2.24), which only provides an upper bound
for the boundary crossing probability of the sample sums Sn, is whether the
bound is sharp enough for statistical applications of the type described in
Robbins (1970). Note that Ln :=


eθSn−nψ(θ)dF (θ) is the likelihood ra-

tio statistic (2.5) for testing H0 : P = P0 versus H1 : P = Q, where
Q is the probability measure under which (X1, . . . , Xn) has joint density n

i=1 fθ(xi)dF (θ). Hence the likelihood ratio identity and Wald’s argu-
ment described in Section 2.1 can still be used to show that (2.24) is sharp in
the sense that it becomes an equality after ignoring the overshoot lN(c)−log c,
where ln = logLn and N(c) = inf{n : ln ≥ log c}. To improve these Wald-
type approximations, one should correct for the overshoot in

EQ
�
LN(c)1{N(c)<∞}


= c−1


Eθ

�
e(lN(c)−log c)1{N(c)<∞}


dF (θ). (2.25)

Because ln is a nonlinear function of the random walk Sn, conventional
renewal-theoretic methods to analyze overshoots could not be applied. This
led to the development of a nonlinear renewal theory by Lai and Siegmund
(1977), who used it to derive an asymptotic approximation for (2.25) and for
the type I error P0(Sn ≥ a

√
n for some n0 ≤ n ≤ n1) of a repeated signifi-

cance test considered by Robbins (1952). Nonlinear renewal theory has since
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become a standard tool in sequential analysis; see Woodroofe (1982, 1991)
and Siegmund (1985).

The overshoot problem disappears if one replaces Sn by a continuous pro-
cess, e.g., Brownian motion. More generally, Robbins and Siegmund (1970)
proved the following result for continuous martingales. Let ε > 0 and let
{Zt,Ft, t ≥ a} be a nonnegative martingale with continuous sample paths

on {Za < ε} and such that Zt1{sups>a Zs}
P→ 0 as t→ 0. Then

P


sup
t>a

Zt ≥ ε|Fa


= Za/ε a.s. on {Za < ε}. (2.26)

Consequently, P{supt≥a Zt ≥ ε} = P{Za ≥ ε}+ ε−1E(Za1{Za<ε}). Applying
this result to Zt = f(Wt + b, t+ h), where Wt is Brownian motion and

f(x, t) =

 ∞

0

eθx−θ
2t/2 dF (θ), (2.27)

they showed that for any b ∈ R, h ≥ 0 and a > 0,

P {f(Wt + b, t+ h) ≥ ε for some t ≥ a}
= P {f(Wa + b, a+ h) ≥ ε}

+
1

ε

 ∞

0

exp


bθ − h

2
θ2

Φ


βF (a+ h, ε)− b√

a
−
√
aθ


dF (θ),

(2.28)

where Φ is the standard normal distribution function and βF (t, ε) = inf{x :
f(x, t) ≥ ε}.

Since (2.26) holds for Zt = f(Wt, t) that is a nonnegative continuous
martingale, one may wonder if the special form (2.27) of f used in (2.28)
is too restrictive. Robbins and Siegmund (1973) gave a definitive answer to
this question and in this connection also provided a probabilistic proof of the
integral representations, introduced by Widder (1944), of positive solutions of
the heat equation. They showed that the following statements are equivalent
for any continuous f : R× (0,∞)→ [0,∞):

∂f/∂t+ 1
2
∂2f/∂x2 = 0 on R× (0,∞), (2.29a)

f(x, t) =
∞
−∞ e

θx−θ2t/2 dF (θ) for all x ∈ R, t > 0 and some measure F,

(2.29b)

f(Wt, t), t ≥ 0, is a martingale. (2.29c)

Since Widder (1953) had also established integral representations of positive
solutions of the heat equation on the half-line x > 0 (semi-infinite rod), Rob-
bins and Siegmund (1973) considered extensions of their result to Brownian
motion with reflecting barrier at 0 and to the radial part of 3-dimensional
Brownian motion (Bessel process), noting that Brownian motion is recurrent
in dimensions 1 and 2 but transient in higher dimensions. They showed that
in this case, (2.29c) has to be replaced by

f(rt∧Ta , t ∧ Ta), t ≥ 0, is a martingale for every a > 0, (2.29c)
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where rt is either reflected Brownian motion or the Bessel process and Ta =
inf{t : rt ≤ a}. The integral representation (2.29b) takes a different form
here: it is a sum of two integrals with respect to measures F1 on the time
axis [0,∞) and F2 on the space axis (0,∞). In the case of reflected Brownian
motion, (2.29a) is the time-reversed heat equation on (0,∞) × (0,∞), and
takes the form ∂f/∂t + Af = 0 for the Bessel process, whose infinitesimal
generator A is given by Af(x) = 1

2
f (x) + x−1f (x), x > 0.

Lai (1973) and Sawyer (1974/75) generalized these results on the Bessel
process to a more general continuous Markov process Xt on an interval I
with endpoints r0 and r1, where −∞ ≤ r0 < r1 ≤ ∞. Let A be the in-
finitesimal generator of Xt. Then ∂/∂t + A is the infinitesimal generator
of the space-time process (t,Xt). Suppose f : I × [0,∞) → R satisfies
(∂/∂t + A)f(x, t) = 0 for r0 < x < r1 and t > 0, which is an extension
of (2.29a). Lai (1973) studied the analog of (2.29c), providing conditions
on the boundaries r0 and r1 under which f(Xt, t), t ≥ 0, is a martingale.
As an analog of (2.29b), Sawyer (1974/75) derived integral representations of
nonnegative weak solutions of (∂/∂t+A)f , thereby generalizing the Robbins–
Siegmund representation described in the preceding paragraph.

As an alternative to mixture likelihood ratios, Robbins and Siegmund
(1972, 1974) introduced adaptive likelihood ratio statistics of the form

L̃n =
n

i=1


fθ̂i−1

(Xi)

fθ0(Xi)


(2.30)

to construct power-one tests of H0 : θ ≤ θ0 versus H1 : θ > θ0 for the param-
eter θ of an exponential family fθ(x) = eθx−ψ(θ), where θ̂i−1 ≥ θ0 is an esti-
mate (e.g., by constrained maximum likelihood) of θ based on X1, . . . , Xi−1.
Note that θ̂i−1 is measurable with respect to the σ-field Fi−1 generated by
X1, . . . , Xi−1 while Xi is independent of Fi−1. Hence {L̃n, n ≥ 1} is still
a nonnegative martingale under Pθ0 and therefore Doob’s inequality can be
applied as in (2.24) to ensure that Pθ{Nα < ∞} ≤ Pθ0{Nα < ∞} ≤ α for
θ ≤ θ0, where Nα = inf{n : L̃n ≥ α−1}. Robbins and Siegmund (1974)
showed how θ̂i−1 can be chosen so that EθNα attains Farrell’s (1964) asymp-
totic lower bound, as θ ↓ θ0, for EθT subject to the constraint Pθ0(T <∞) ≤
α. Lai (1977) developed a theory of power-one tests of the parameter θ of a
one-parameter exponential family, based on the sequence of sample sums Sn
which are sufficient statistics for θ. Taking θ0 = 0 without loss of generality,
Lai (1977) made use of Wald’s equation and likelihood ratio identities to
show that for Tb = inf{n ≥ n0 : Sn ≥ b(n)},

lim
θ↓0

EθTb/g(µθ) = P0(T =∞), (2.31)

where b(·) is a continuous upper-class boundary satisfying certain regularity
conditions, t = g(θ) is the solution of θt = b(t), and µθ = EθX1 = ψ(θ). In
particular, for an upper-class boundary b such that b(t) ∼ (E0X

2
1 )

1/2(2t log log t)1/2

as t→∞, the stopping rule Tb attains Farrell’s (1964) lower bound.
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Robbins’ revolutionary idea of terminating a test only when there is
enough evidence against the null hypothesis and his theory of power-one
tests were described by Neyman (1971) as “a remarkable achievement.” Even
though practical constraints on time and resources have rendered open-ended
tests infeasible in practice, this achievement in statistical theory paved the
way for subsequent breakthroughs. In particular, Lorden’s (1971) seminal
work on the theory of control charts and change-point detection involves the
following connection between the stopping time N of a sequential detection
rule and an open-ended test τ : Let τ be a stopping time based on i.i.d. ran-
dom variables X1, X2, . . . , such that P (τ < ∞) ≤ α. For k = 1, 2, . . . , let
Nk denote the stopping time obtained by applying τ to Xk, Xk+1, . . . and let
N = mink≥1(Nk + k − 1). Then N is a stopping time and EN ≥ 1/α. This
allows one to derive the properties of a sequential detection rule from those
of its associated power-one test, as was done by Lorden (1971) in relating
the CUSUM rule to the one-sided SPRT.

Let X1, X2, . . . be i.i.d. random variables whose common distribution
depends on an unknown parameter θ ∈ Θ. A sequence of confidence sets
Γn = Γn(X1, . . . , Xn) is called a (1− α)-level confidence sequence if

Pθ{θ ∈ Γn for all n ≥ 1} ≥ 1− α for all θ ∈ Θ. (2.32)

Darling and Robbins (1967) introduced this concept and related it to the
boundary crossing probabilities developed in that paper by using martingale
inequalities. Lai (1976) showed that for an exponential family with parame-
ter θ, the Robbins–Siegmund method of mixture likelihood ratio martingales
leads to a confidence sequence of intervals which have the desirable property
of eventually shrinking to θ if the mixing distribution F is so chosen that
F (I) > 0 for every open interval I contained in the natural parameter space
Θ. He also used invariance with respect to transformation groups to handle
nuisance parameters, thereby constructing invariant confidence sequences.
Subsequent applications of confidence sequences to data monitoring in clin-
ical trials were introduced independently by Jennison and Turnbull (1984)
and Lai (1984).

2.4 Other related developments

We now summarize other important developments in the interplay between
martingale theory and sequential analysis during this period. The first is the
theory of optimal stopping and its applications to sequential analysis. The
SPRT with stopping rule (2.1) was shown by Wald and Wolfowitz (1948) to
be optimal in the sense that it minimizes both E0(T ) and E1(T ) among all
tests whose sample size T has a finite expectation under both H0 : f = f0
and H1 : f = f1, and whose error probabilities satisfy P0{Reject H0} ≤
α and P1{Reject H1} ≤ β. This had been conjectured by Wald (1945)
who developed lower bounds on the expected sample size of T , which are
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attained by the SPRT ignoring overshoots. Wald and Wolfowitz showed
that the SPRT is a Bayes procedure, assuming a prior probability π in favor
of H0 and a cost c for each observation. Subsequently, Arrow, Blackwell
and Girshick (1949) recognized the optimal stopping aspect of the problem.
Snell (1952) made use of martingale theory to establish the existence of
optimal stopping rules in general settings and to characterize the optimal
values given the σ-field Fn generated by observations up to time n. This
work was based on his Ph.D. thesis at the University of Illinois under Doob’s
supervision, and laid the foundations for rapid development of the subject
in the 1960s, culminating in the monographs by Chernoff (1972), Chow,
Robbins and Siegmund (1971), Dynkin and Yushkevich (1969) and Shiryaev
(1969).

A second area of active development during this period consists of func-
tional central limit theorems for martingales and their applications to sequen-
tial analysis. While Billingsley (1961), Brown (1971), Dvoretzky (1972) and
McLeish (1974) proved central limit theorems for martingales and also used
martingale inequalities to prove tightness for weak convergence, the embed-
ding of martingales in Brownian motion by Dubins and Schwarz (1965) and
Strassen (1967) provided a more direct approach to deriving functional cen-
tral limit theorems (also called invariance principles), as shown by Freedman
(1971). Approximating sums of weakly dependent variables by martingales
led to corresponding central limit theorems for these sums, as in Gordin’s
(1969) proof of the central limit theorem for stationary sequences. Strassen’s
embedding result was actually developed in the context of strong approxima-
tions (or almost sure invariance principles), yielding a negligibly small (in the
almost sure sense) error for the problem at hand. Making use of these strong
approximations, Heyde (1973) and Heyde and Scott (1973) proved laws of the
iterated logarithm for martingales and sums of stationary sequences, Jain,
Jogdeo and Stout (1975) obtained integral tests for upper- and lower-class
boundaries for martingales and mixing sequences, and Philipp and Stout
(1975) extended Gordin’s method to derive strong approximations of sums
of weakly dependent random variables by martingales.

Applications of functional central limit theorems and strong invariance
principles in sequential analysis during this period were mostly related to
nonparametric sequential estimation and testing based on rank statistics, U -
statistics and linear combinations of order statistics. Sen’s (1981) monograph
gives a review of these developments and their connections to invariance
principles and stong approximations. Berk’s (1966) proof of the stong con-
sistency of a U -statistic as an unbiased estimator of Eg(X1, . . . , Xm) made
use of the martingale convergence theorem applied to reverse martingales;
see also Doob (1953, pp. 341–342) and Sen (1981, p. 51).
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3 From Sequential Analysis to Time Series

An important research direction in sequential analysis and related martingale
limit theorems during the decade 1976–1985 was associated with continuous-
time processes. The two-volume monograph by Liptser and Shiryayev (1977,
1978) describes developments in nonlinear filtering and other sequential es-
timation problems for stochastic processes. The functional central limit
theorems for stochastic integrals and semimartingales, developed by Jacod,
Klopotowski and Mémin (1982), Lipster and Shiryayev (Lipcer and Širjaev,
1980) and Rebolledo (1980), found immediate applications. One such appli-
cation was to survival analysis and is reviewed in the paper by Aalen et al.
in this issue.

Section 2 of Lai (2001), which gives a survey of the theory and applications
of sequential tests of composite hypotheses, shows the emergence of a unified
complete theory in this period. In particular, the survey points out a historic
event occurring outside the research community of sequential analysis and
opening up a new direction for the field:

“While sequential analysis had an immediate impact on weapons
testing when it was introduced during World War II to reduce
the sample sizes of such tests (Wallis, 1980), its refinements for
testing new drugs and treatments received little attention from
the biomedical community until the Beta-Blocker Heart Attack
Trial (BHAT) that was terminated in October 1981, prior to its
prescheduled end in June 1982. The main reason for this lack of
interest is that the fixed sample size (i.e., the number of patients
accrued) for a typical trial is too small to allow further reduc-
tion. . . . On the other hand, BHAT. . . drew immediate attention
to the benefits of sequential methods not because it reduced the
number of patients but because it shortened a four-year study by
8 months, with positive results for a long-awaited treatment for
MI patients.”

The success story of BHAT led to rapid development of time-sequential
methods for censored survival data in the next 10 years; see the review in Lai
(2001, pp. 312–315). Besides advances in time-sequential survival analysis,
which was closely related to continuous-time martingale theory (see Sellke
and Siegmund, 1983 and Section V.6 and Appendix 3 of Siegmund, 1985)
this period also witnessed a unified treatment of Bayes tests of composite
hypotheses via likelihood ratio martingales and optimal stopping (see Lai,
2001, pp. 306–308). In fact, most of the results in Lai (1988a,b) were already
obtained by 1983 and were presented in a number of seminars and conferences
around that time, but I did not write them up because my research focus
at that time shifted from sequential analysis to time series and stochastic
adaptive control. The following subsections will review the developments in
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1980) and Rebolledo (1980), found immediate applications. One such appli-
cation was to survival analysis and is reviewed in the paper by Aalen et al.
in this issue.

Section 2 of Lai (2001), which gives a survey of the theory and applications
of sequential tests of composite hypotheses, shows the emergence of a unified
complete theory in this period. In particular, the survey points out a historic
event occurring outside the research community of sequential analysis and
opening up a new direction for the field:

“While sequential analysis had an immediate impact on weapons
testing when it was introduced during World War II to reduce
the sample sizes of such tests (Wallis, 1980), its refinements for
testing new drugs and treatments received little attention from
the biomedical community until the Beta-Blocker Heart Attack
Trial (BHAT) that was terminated in October 1981, prior to its
prescheduled end in June 1982. The main reason for this lack of
interest is that the fixed sample size (i.e., the number of patients
accrued) for a typical trial is too small to allow further reduc-
tion. . . . On the other hand, BHAT. . . drew immediate attention
to the benefits of sequential methods not because it reduced the
number of patients but because it shortened a four-year study by
8 months, with positive results for a long-awaited treatment for
MI patients.”

The success story of BHAT led to rapid development of time-sequential
methods for censored survival data in the next 10 years; see the review in Lai
(2001, pp. 312–315). Besides advances in time-sequential survival analysis,
which was closely related to continuous-time martingale theory (see Sellke
and Siegmund, 1983 and Section V.6 and Appendix 3 of Siegmund, 1985)
this period also witnessed a unified treatment of Bayes tests of composite
hypotheses via likelihood ratio martingales and optimal stopping (see Lai,
2001, pp. 306–308). In fact, most of the results in Lai (1988a,b) were already
obtained by 1983 and were presented in a number of seminars and conferences
around that time, but I did not write them up because my research focus
at that time shifted from sequential analysis to time series and stochastic
adaptive control. The following subsections will review the developments in

14

these two areas during the period, and the important role that martingale
theory had played in these developments.

3.1 Adaptive stochastic approximation and the multi-
period control problem

Robbins was on sabbatical leave from Columbia in the academic year 1975–
76, visiting the University of London. His former Columbia colleague T. W.
Anderson, who had moved to Stanford in 1966, was also spending a sab-
batical leave in London. Anderson had recently finished a paper with John
Taylor, his former Ph.D. student in economics at Stanford, on the following
“multi-period control problem” in econometrics: How should inputs ui in
the regression model yi = α + βui + i, with unknown parameters α and
β and i.i.d. disturbances i having mean 0 and variance σ2, be chosen se-
quentially so that the outputs yi are as close as possible in some sense to
a given target value y∗? Anderson and Taylor (1976) proposed the follow-
ing certainty-equivalence rule: If α and β(= 0) are both known, ui can be
optimally set at θ = (y∗ − α)/β. Without assuming α and β to be known,
suppose that bounds K1, K2 are given such that K1 < θ < K2. Assuming
the i to be normally distributed, the maximium likelihood estimator of θ at
stage t ≥ 2 is

θ̂t = K2 ∧

β̂−1
t (y∗ − α̂t) ∨K1


, (3.1)

where β̂t = {
t

1(ui − ūt)yi}/{
t

1(ui − ūt)
2}, α̂t = ȳt − β̂tūt are the least

squares estimates of β and α, and ūt = t−1
t

1 ui. The initial values u1

and u2 are distinct but otherwise arbitrary numbers between K1 and K2,
and for t ≥ 2, the certainty-equivalence rule sets ut+1 = θ̂t. Based on the
results of simulation studies, Anderson and Taylor (1976) conjectured that
the certainty-equivalence rule converges to θ a.s. and that

√
t(θ̂t − θ) has a

limiting N(0, σ2/β2) distribution. They also raised the question whether α̂t
and β̂t are strongly consistent. Anderson mentioned this problem to Robbins
when they met in London. After he returned to Columbia at the end of his
sabbatical leave, Robbins posed the problem to me and also suggested trying
stochastic approximation as an alternative to the certainty-equivalence rule.

To address the Anderson–Taylor conjecture, we first noted that if the
xi should cluster around θ, then there would not be much information for
estimating the slope β. There is, therefore, an apparent dilemma between
the control objective of setting the design levels as close as possible to θ
and the need for an informative design with sufficient dispersion to estimate
β. To resolve this dilemma, we began by considering the case of known
β. Replacing yi by yi − y∗, it can be assumed without loss of generality
that y∗ = 0 so that yi = β(xi − θ) + i. With known β, the least squares
certainty-equivalence rule becomes xn+1 = x̄n − ȳn/β, which turns out to be
equivalent to the stochastic approximation scheme (2.11) with an = (nβ)−1.
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Since x̄n− ȳn/β = θ− ̄n/β, E(xn+1−θ)2 = σ2/(nβ2) for n ≥ 1 and therefore

E


N

n=1

y2
n


=

N

n=1

E

β2(xn − θ)2 + 2n


= Nσ2 + β2

N−1

n=0

E(xn+1 − θ)2

= σ2 (N + logN +O(1)) .

We applied martingale theory to show that

β2

N

n=1

(xn − θ)2 ∼ σ2 logN a.s. (3.2)

Using dynamic programming after putting a prior distribution on θ, we found
that the optimal control rule when the i are normal also has expected regret
σ2 logN +O(1), where β2

N
n=1(xn− θ)2 [=

N
n=1(yn− n)2] is called the re-

gret (due to ignorance of θ) of the design; see Lai and Robbins (1982a). Thus,
for normally distributed errors, (3.2) shows that the least squares certainty-
equivalence rule when β is known yields both asymptotically minimal regret
and an efficient final estimate. The next step, therefore, was to try also to
achieve this even when β is unknown. We accomplished this in Lai and Rob-
bins (1979, 1981), where we introduced adaptive stochastic approximation
schemes of the type

xn+1 = xn − yn/(nbn), (3.3)

under the assumptions (2.9) and (2.10) on the regression function M and
also assuming that M (θ) = β > 0. The bn in (3.3) is assumed to be Fn−1-
measurable and such that bn → β a.s. Not only were these schemes shown
to provide asymptotically efficient estimates of θ but their regret was also
shown to achieve the asymptotically minimal order σ2 logN . Martingale the-
ory provided us with important tools to prove these asymptotically optimal
properties of adaptive stochastic approximation.

With hindsight, it was lucky that we began this research project by
considering adaptive stochastic approximation rather than the certainty-
equivalence rule of Anderson and Taylor (1976) whose conjecture had led
to this project. After deriving a relatively complete theory for adaptive
stochastic approximation, we returned to the Anderson–Taylor paper and
found a counter-example to the conjecture. Strictly speaking, (3.1) is un-
defined when β̂n = 0, but this is a zero-probability event in the simulation
studies of Anderson and Taylor involving continuous (normal) n. In Lai and
Robbins (1982b), we showed that (3.1) does not converge a.s. to θ by exhibit-
ing an event which has positive probability and on which xn gets stuck at one
of the endpoints K1, K2 for n ≥ 2. We also established in Lai and Robbins
(1982a,b) the asymptotic optimality of iterated least squares schemes of the
form xn+1 = x̄n − ȳn/bn, in which bn is a truncated least squares estimate of
β when a priori upper and lower bounds B1 and B2 of β, having the same
sign as β, are known. Unlike adaptive stochastic approximation that has an
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intrinsic martingale structure, martingale theory is not directly applicable
to iterated least squares, which therefore was considerably harder to analyze
than adaptive stochastic approximation.

3.2 Martingales in stochastic regression and sequential
experimental design

A key step in our analysis of adaptive stochastic approximation and iter-
ated least squares procedures was to establish strong consistency of the least
squares estimate

β̂n =

n
i=1(xi − x̄n)yin
i=1(xi − x̄n)2

= β +

n
i=1(xi − x̄n)in
i=1(xi − x̄n)2

.

In Lai and Ying (2006), which was written in memory of Ching-Zong Wei
who was my Ph.D. student at Columbia from 1977 to 1980, I described how
Robbins and I tackled this problem and Wei’s subsequent involvement in the
project that led to the papers Lai, Robbins and Wei (1978, 1979) and Chen,
Lai and Wei (1981) on the strong consistency of least squares estimates in
multiple regression models yi = θTxi + i, under the minimal assumption

λmin


n

i=1

ψiψ
T
i


−→∞ (3.4)

on the design vectors ψi when they are nonrandom, as in the traditional
Gauss–Markov model; the notation λmin(·) (or λmax(·)) is used to denote
the minimum (or maximum) eigenvalue of a nonnegative definite matrix.
However, when the ψi are sequentially determined random vectors, Lai and
Robbins (1981) had already shown that in the simple linear regression model
with ψi = (1, xi)

T , (3.4) does not ensure strong consistency of the least
squares estimate θ̂n. In fact, they gave a counter-example in which (3.4)
holds but θ̂n does not converge to θ a.s. Using Chow’s (1965) strong law
for martingales and a recursive representation (of the Kalman filter type) of
least squares estimates, Lai and Wei (1982) proved the following fundamental
result on strong consistency of least squares estimates in stochastic regression
models of the form yi = θTψi + i, in which {i,Fi, i ≥ 1} is a martingale
difference sequence and ψi is Fi−1-measurable: If supiE(|i|r|Fi−1} <∞ a.s.
for some r > 2, then

θ̂n → θ a.s. on


λmin


n

i=1

ψiψ
T
i


log λmax


n

i=1

ψiψ
T
i


→∞


. (3.5)

It occurred to me several years afterwards (see Lai, 1989) that the argu-
ments used to prove (3.5) in Lai and Wei (1982) could be linked to Robbins
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and Siegmund’s almost supermartingales described in Section 2.2. Suppose
that (2.18) is modified to

Vn ≤ (1 + αn−1)Vn−1 + βn − γn + wn−1n a.s., (3.6)

where αn, βn, γn, Vn are nonnegative Fn-measurable random variables such
that


αn <∞ a.s. and wn is Fn-measurable. Then, for every δ > 0,

max


Vn,

n

i=1

γi


= O




n

i=1

βi +


n−1

i=1

w2
i

1
2
+δ



 a.s. (3.7)

Moreover, Vn converges and

E(γn|Fn−1) < ∞ a.s. on {


E(βn|Fn−1) <

∞}. The convergence of Vn on {

E(βn|Fn−1) <∞} basically follows by the

same argument as that leading to (2.19) upon taking conditional expectation
with respect to Fn−1 in (3.6). On the other hand, on {


E(βn|Fn−1) =∞},

Vn need not converge and (3.7) provides a bound on the order of magnitude
of Vn and

n
i−1 γi. The function Vn = xn+1 − θ2 used by Robbins and

Siegmund (1971) is closely related to Liapounov functions in the stability
theory of ordinary differential equations (ODEs); see Lai (1989). Analogous
to Liapounov functions in ODEs, the stochastic Liapounov function Vn in-
herits an almost supermartingale structure (2.18) from the dynamics of the
original stochastic system. The idea behind Lai’s (1989) extended stochastic
Liapounov functions (3.6) was to achieve greater flexibility by not insisting on
the almost supermartingale property that guarantees convergence. In fact,
Lai and Wei’s (1982) proof of (3.5) basically amounts to these arguments
with

Vn =

θ̂n − θ

T


n

i=1

ψiψ
T
i


θ̂n − θ


,

γn =


θ̂n−1 − θ

T
ψn

2




1− ψTn


n

i=1

ψiψ
T
i

−1

ψn




 .

The extension to the more general framework (3.6) in Lai (1989) was moti-
vated by a unified treatment of stochastic approximation, least squares and
other recursive estimates in the control engineering literature that will be
described in the next subsection.

Lai and Wei (1982) also made use of martingale central limit theorems to
prove the asymptotic normality of θ̂n. This application of martingale central
limit theorems was subsequently used by Ford, Titterington and Wu (1985),
Wu (1985a,b), Chaudhuri and Mykland (1993), and Lai (1994) to address
some open problems in nonlinear experimental designs and other sequential
designs.
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3.3 Time series analysis, forecasting and control

The title of this subsection is the same (except for minor punctuation dif-
ferences) as that of the influential textbook by Box and Jenkins (1976). A
preliminary edition of that book was published when I was assigned to teach
a master’s level course on time series at Columbia in 1974, and I used it as
a required text for the course. What I liked most about the book was its
applications to prediction and control in engineering. Although they were
beyond the scope of the one-semester course, they stimulated my interest in
the subject and provided me with some subject-matter background when I
worked on stochastic adaptive control problems in the 1980s.

I have summarized in Section 2.3 of Lai and Ying (2006) the developments
in the engineering literature on adaptive control of linear input/output of the
form

A(q−1)yn = B(q−1)un−1 + C(q−1)n (3.8)

that attracted me and Wei to work in this area after we obtained the key
results in Lai and Wei (1982), around the same time when Goodwin, Ra-
madge and Caines (1981) provided a major advance in the subject by using
stochastic approximation to circumvent the difficulties in the analysis of least
squares (or extended least squares) estimates in a feedback control environ-
ment. The yn, un and n in (3.8) denote the output, input and random
disturbance at time n, respectively, and

A(q−1) = 1 + a1q
−1 + · · ·+ apq

−p,

B(q−1) = b1 + · · ·+ bkq
−(k−1),

C(q−1) = 1 + · · ·+ chq
−h

are polynomials in the backward shift operator q−1. The adaptive control
problem is to determine the inputs ut, based on current and past observations
yt, yt−1, ut−1, . . . , to keep the outputs yt+1 as close as possible to certain
target values y∗t+1 when the system parameters are unknown and have to be
estimated sequentially. If the parameters were known, then one could choose
Ft-measurable ut such that E(yt+1|Ft) = y∗t+1, yielding the optimal output
y∗t+1 + t+1. This suggests defining the regret

Rn =
n

i=1

(yi − y∗i − i)
2 , (3.9)

which is an extension of
n

i=1(yi − i)
2 considered in Section 3.1 for the

multi-period control problem in the linear regression model with y∗ = 0.
My subsequent work with Wei in Lai and Wei (1986, 1987) showed how to
make use of (3.7) to construct modifications of certainty-equivalence rules
(also called self-tuning rules in the adaptive control literature) by using least
squares (or extended least squares) estimates of the parameters in (3.8) to
attain a logarithmic order for the regret, i.e., Rn = O(log n) a.s., similar to
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adaptive stochastic approximation reviewed in Section 3.1; see Lai and Ying
(2006, pp. 751–753).

One of the centers of time series research during this period was the
statistics group at Australian National University (ANU). The ANU group
can be credited as the first to apply systematically martingale theory to time
series analysis, dating back to Hannan and Heyde (1972), Heyde and Seneta
(1972) and Heyde (1972, 1973). The monograph by Hall and Heyde (1980)
gives a review of the martingale applications to estimation theory in time
series and branching processes in the 1970s. Subsequent representative work
by the group in this direction during the period under review includes Solo
(1979), Hannan (1980a,b), Hannan and Rissanen (1982), and An, Chen and
Hannan (1982).

Martingale theory also played an important role in addressing some open
problems in nonstationary time series during this period, paving the way for
major advances in the field in the next five years that will be described in
the next section. For the AR(p) model yn = β1yn−1 + · · ·+ βpyn+p + n with
i.i.d. zero-mean random disturbances n satisfying certain moment condi-
tions, weak consistency of the least squares estimates had been proved by
tedious computations of moments of certain linear and quadratic forms in-
volving the observations. These results, under various assumptions on the
roots of the characteristic polynomial ϕ(z) = zp − β1z

p−1 − · · · − βp, were
unified by Stigum (1974) who established weak consistency without any as-
sumptions on the roots of ϕ(z). By making use of the general results of Lai
and Wei (1982) and a linear transformation of Yn = (yn, yn−1, . . . , yn−p+1)

T

that corresponds to factorizing ϕ as a product of a non-explosive polynomial
(with zeros on or inside the unit circle) and an explosive one (whose zeros lie
outside the unit circle), Lai and Wei (1983) proved strong consistency of the
least squares estimate in general AR(p) models in which the random distur-
bances form a martingale difference sequence with supnE(|n|r|Fn−1) < ∞
a.s. for some r > 2, thereby solving a long-standing problem in the literature.

A special case of nonstationary autoregressive models that has attracted
much attention in economics is unit-root nonstationarity (β = 1) associ-
ated with the AR(1) model yn = βyn−1 + n. The test developed by Dickey
and Fuller (1979) during this period, for testing the null hypothesis of unit
root versus the alternative hypothesis |β| < 1, has become widely used in
econometric time series. Other than the Dickey–Fuller test, inference in
non-explosive AR(1) models was relatively unexplored because of techni-
cal difficulties that Fuller explained in a seminar at Stanford in the early
1980s. Siegmund, who had moved from Columbia to Stanford in 1976, had
attended Fuller’s seminar and summarized it for me when we met at a con-
ference in Heidelberg, in which I talked about my recent work with Wei on
general AR(p) models. The main issue is that the least squares estimate
β̂n is asymptotically normal if |β| < 1 whereas its limiting distribution af-
ter Studentization is highly non-Gaussian if |β| = 1, causing great difficulty
in constructing large-sample confidence intervals for β in non-explosive but
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T
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possibly nonstationary AR(1) models. After some discussion, we decided
to circumvent this difficulty by using, instead of a fixed sample size n, the
stopping rule

Nc = inf


n ≥ 1 :

n

i=1

y2
i ≥ c


. (3.10)

In Lai and Siegmund (1983), we proved the following uniform asymptotic
normality property of β̂Nc as c→∞:

sup
|β|≤1,x∈R

P
√

c(β̂Nc − β)/σ ≤ x

− Φ(x)

 −→ 0. (3.11)

Since σ̂2
n := n−1

n
i=1(yi − β̂nyi−1)

2 is a consistent estimate of σ2, β̂Nc ±
c−1/2σ̂NcΦ

−1(1 − α) is an approximate (1 − 2α)-level confidence interval for
β in non-explosive AR(1) models. Moreover, letting

N(d) = inf




n ≥ 1 :
�
σ̂n ∨ n−1/2


Φ−1(1− α)


n

i=1

y2
i−1

−1/2

≤ d




 ,

(3.12)
β̂N(d) ± d is an approximate (1 − 2α)-level confidence interval for β, with
fixed width 2d → 0. Fixed-width confidence intervals based on stopping
rules of the type (3.12) were first proposed by Chow and Robbins (1965) for
a population mean when the variance σ2 is unknown. Letting Ȳn denote the
sample mean and σ̂2

n the sample variance based on a sample of size n, define
Ñ(d) = inf{n ≥ n0 : (σ̂n ∨ n−1/2)Φ−1(1 − α) ≤ d

√
n}. The Chow–Robbins

approximate (1 − 2α)-level confidence interval for the population mean is
ȲÑ(d) ± d. Although the stopping rule (3.12) clearly uses the same idea as

that of Chow and Robbins, the analysis of β̂N(d) ± d is considerably harder
than that of Chow and Robbins and relies heavily on the martingale structure
of

n
i=2 yi−1i. Martingale theory features prominently in the analysis in Lai

and Siegmund (1983, pp. 480–482).

4 Epilogue

Inspired by Lai and Siegmund (1983), Wei and his Ph.D. student Ngai Hang
Chan undertook the study of the behavior of β̂n in the AR(1) model whose
β approaches 1 at a rate depending on n. Specifically, Chan and Wei (1987)
made use of martingale functional central limit theorems to show that for
β = 1−γ/n, with γ being a fixed positive constant, the Studentized statistic


n

i=1

y2
i−1

1
2 
β̂n − β


=


n

i=1

yi−1i


n

i=1

y2
i−1

1
2

(4.1)

converges in distribution to a non-normal random variable Y (γ), with Y (γ)
approaching standard normal as γ →∞.
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The period 1986–1991 witnessed major advances in multivariate time
series with unit-root nonstationarity. Representative works include Chan
and Wei (1988), Johansen (1988, 1991) and Phillips (1988, 1991). Mar-
tingale theory was extensively used in these works and eventually became
standard material in econometric time series, as evidenced by Hamilton’s
(1994) popular textbook on the subject. The same can be said for stochastic
adaptive control in linear dynamic systems; see the monographs by Caines
(1988), Kumar and Varaiya (1986) and the paper of Guo and Chen (1991)
that solved a long-standing problem (Åström and Wittenmark, 1973) on
certainty-equivalence-type rules in linear dynamic systems, similar to the
Anderson–Taylor problem for the linear regression model.

As a result, the level of exposure to martingale theory in the Ph.D.
curriculum in Statistics was much greater in 1987, the year I moved from
Columbia to Stanford after Robbins’ retirement (in 1986), than in 1968
when I began my graduate study at Columbia. However, Columbia was
somewhat unique in those days because three of the seven faculty members
of the department, Chow (who had been Doob’s student at Illinois), Robbins
and Siegmund, were working together in martingales and sequential analysis.
Therefore I had the good fortune to learn the subject from my teachers as
they were still developing it, instead of from systematic courses and text-
books presenting a fully-developed theory. It was even more fortunate that
I could join their team and participate in this development. Some of what
was produced in those days continued to benefit me in seemingly unrelated
problems many years later, and I will conclude by mentioning a relatively
recent example.

To begin, note that (4.1) is a Studentized statistic, whose name came from
Gosset’s (1908) paper on the t-statistic published under the name ‘Student’.
The t-statistic is prototypical of a large class of self-normalized processes of
the form An/Bn, with An =

n
i=1Xi and B

2
n =

n
i=1X

2
i in the case of the

t-statistic

√
nX̄nn

i=1(Xi − X̄n)2/(n− 1)
1/2

=
An

Bn


n− 1

n− (An/Bn)2

1
2

.

Active development of the probability theory of self-normalized processes
began in the 1990s, first for self-normalized sums of i.i.d. random variables
belonging to the domain of attraction of a stable law and then more generally
for martingales self-normalized by their quadratic or predictable variation
processes; see de la Peña, Lai and Shao (2009). Chapter 11 of that book
points out the connection between the method of mixtures that we have
described in Section 2.3 and the general theory of self-normalized processes,
developed in de la Peña, Klass and Lai (2004) under the canonical assumption
that


eθAt−θ

2B2
t /2,Ft, t ∈ T


is a supermartingale with mean ≤ 1 (4.2)
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for all 0 ≤ θ < θ0, where T is either {1, 2, . . . } or [0,∞), or under variants
thereof. Our key observation of de la Peña et al. (2004) was that

A2
t

2B2
t

= max
θ


θAt −

θ2B2
t

2


.

Although maximizing the supermartingale (4.2) over θ would not yield a
supermartingale and the maximum may also occur outside the range 0 ≤ θ <
θ0, integrating the supermartingale with respect to the measure f(λ)dλ still
preserves the supermartingale property. This is the essence of the Robbins–
Siegmund method of mixtures for At = Wt and Bt =

√
t that we have

reviewed in Section 2.3.
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